Real Analysis

Arun Ram
Department of Mathematics and Statistics
University of Melbourne
Parkville, VIC 3010 Australia
aram@unimelb.edu.au

Last update: 12 July 2014

Lecture 12

Definition

Let |an| be a sequence in or .

The series n=1an is the sequence (s1,s2,s3,), where sk=a1+a2++ak.

The series n=1an converges to L if the sequence (s1,s2,s3,) converges to L.

Write n=1an=L if n=1an converges to L.

Harmonic series and the Riemann zeta function

n=11n = 1+12+1/3+14 +15+16+17+18 + > 1+12+12+12+ So n=11n diverges. n=11n2 = 1 + 1/22+132 + 142+152+162+172 + 182+ < 1+222+442 +882+ = 1+12+14+18+ = 1+12+ (12)2+ (12)3+ (12)4+= 11-12=2. In fact, according to Wolfram alpha, n=1 1n2=π26. If k>1 then n=1 1nk = 1 + 1/2k+13k + 14k+15k+16k+17k + 18k+ < 1+22k+44k +88k+ = 1+12k-1+ 14k-1+ 18k-1+ = 1+12k-1+ (12k-1)2+ (12k-1)3 = 11-12k-1= 2k-12k-1-1 so that n=11nk converges.

If k<1 then n=11nk = 1+12k+13k +14k+ > 1+12+13+14+ so that n=11nk diverges.

Let k>0. n=11nk converges if k>1 and n=11nk diverges if k1.

Let s. The Riemann zeta function at s is ζ(s)=n=1 1ns.

ζ(2)=π26.

Integral tests

The fundamental theorem of calculus (FTC) says: Let abf(x)dx =F(b)-F(a) wheredFdx=f. Then abf(x)dx= (area undery=f(x) betweenx=aandx=b) if you can make good sense of what "area under y=f(x) between x=a and x=b" means. We want to use FTC to think about series.

an=1n and n=11n.

If F(x)=log(x) then dFdx=1x and ab1xdx = log(b)-log(a) = (area undery=1xbetween x=aandx=b) y=1x 1 2 3 4 5 x 1 1 2 1 5 y So n=1 1n = 1+12+1/3+ 14+ = area of the shaded boxes > area undery=1x fromx=1to x=100000000000 = log(100000000000)-log(1) = VERY LARGE. So n=11n diverges.

(an)=1n2 and n=11n2.

If F(x)=-1x then dFdx=1x2 and ab1x2dx =-1b-(-1a)= (area undery=1x2 betweenx=aandx=b). y=1x2 1 2 3 x 1 1 4 y Then n=11n2 = 1+122+ 132+142+ = area of shaded boxes < 1+(area undery=1x2fromx=1tox=1000000000000) = 1+(-11000000000000--11) = 1+1-11000000000000is very close to 2. So n=11n2<2.

Notes and References

These are notes from a 2010 course on Real Analysis 620-295. This page comes from 100326suggLect12.pdf and was given on 26 March 2010.

page history