Real Analysis

Arun Ram
Department of Mathematics and Statistics
University of Melbourne
Parkville, VIC 3010 Australia
aram@unimelb.edu.au

Last update: 13 July 2014

Lecture 15

Improper integrals

Idea: abf(x)dx= (area underf(x)fromx=atox=b). y=f(x) x y a b This area is abf(x)dx

Improper integrals: Definitions

af(x)dx =limbab f(x)dx y=f(x) a x y and abf(x)dx =limab f(x)dxif y=f(x) a b x y or abf(x)dx =limba f(x)dxif a x y

Evaluate 0dx1+x2 y=11+x2 x y

011+x2dx = limt0t 11+x2dx = limt (tan-1x|x=0x=t) = limt (tan-1t-tan-10) = limt (tan-1t-0)= π2-0=π2.

Let p, p>1. Evaluate 11xpdx. (Think p=2 for comfort.) y=1x2 -1 1 x 1 y 11xpdx = limt1t 1xpdx = limt1t x-pdx = limt ( x-p+1-p+1 |x=1x=t ) = limtt-p+1-p+1- 1-p+1-p+1 = limt ( (11-p) 1tp-1- 11-p ) = 0-11-p= 1p-1.

Let p=1. Evaluate 11xpdx

1 x 1 y 11xpdx = 11xdx = limt 1tx-1dx = limt (logx|x=1x=t) = limt (logt-log1) = limtlogt diverges since y=logt 1 t y Alternatively, 1 2 3 1 1 2 11xdx > 12+ 1/3+14+ 15+16+17+18+ > 12+24+48+ = 12+12+12+ diverges.

Evaluate 011x12dx

y=1x12 1 x 1 y 01x-12dx = limt01t x-12dx = limt0 (2x12|x=tx=1) = limt0 (2-2t12)=2.

Evaluate -1111-xtdx -1 1 x 1 y -11 11-x2dx = 201 11-x2dx = limt120t 11-x2dx = limt1 (2(sin-1x)|x=0x=t) = limt1 (2sin-1t-2sin-10) = 2π2-2·0=π. y=sin-1x -1 1 x - π 2 π 2 y

Let p0 with p<1. Evaluate 011xpdx. (Think p=12 for comfort.) 011xpdx = limt0 1t1xpdx = limt0 ( x-p+1-p+1 |x=tx=1 ) = limt0 ( 1-p+1-p+1- t-p+1-p+1 ) = limt0 ( 11-p- t1-p1-p ) = 11-p-0=11-p.

Evaluate 011xdx 1 x 1 y From the picture, 011xdx=1+ 11xdx diverges (from earlier computation).

Let p with p>1. Evaluate 011xpdx y=1xp 1 x 1 y Between x=0 and x=1, 1xp1x. So 011xpdx 011xdx which diverges. So 011xpdx diverges.

Notes and References

These are notes from a 2010 course on Real Analysis 620-295. This page comes from 100412Lect15.pdf and was given on 12 April 2010.

page history