Real Analysis

Arun Ram
Department of Mathematics and Statistics
University of Melbourne
Parkville, VIC 3010 Australia
aram@unimelb.edu.au

Last update: 13 July 2014

Lecture 19

Areas

Δx r f() has areaf()Δx Δx r f() f(r) has area f()Δx+ 12Δx (f(r)-f()) = Δx2 ( 2f()+ f(r)-f() ) = Δx2 ( f()+ f(r) ) Δx Δx m r f() f(m) f(r) has areaΔx3 ( f()+4f(m) +f(r) )

Riemann Integral

abf(x)dx = limΔx0 (sum of the areas of the little rectangles) = limΔx0 Δx ( f(a)+ f(a+Δx)++ f(b-Δx) ) a b

Trapezoidal integral

abf(x)dx = limΔx0 (sum of the areas of the little trapezoids) = limΔx0 Δx2 ( f(a)+f(a+Δx) +f(a+Δx)+ f(a+2Δx) +f(a+2Δx) +f(a+3Δx) ++f(b-2Δx) +f(b-Δx) +f(b-Δx)+f(b) ) = limΔx0 Δx2 ( f(a)+2 f(a+Δx) +2f(a+2Δx) ++2f(b-Δx) +f(b) )

Simpson's Integral

Δx Δx m r f() f(m) f(r) has areaΔx3 ( f()+4 (m)+f(r) ) so that abf(x)dx = limΔx0 (sum of the areas of the little camel humps) = limΔx0 Δx3 ( f(a)+4f (a+Δx) +f(a+2Δx) +f(a+2Δx) +4f(a+3Δx) +f(a+4Δx) + +f(b-2Δx) +4f(b-Δx) +f(b) ) = limΔx0 Δx3 ( f(a)+ 4f(a+Δx)+ 2f(a+2Δx)+ 4f(a+3Δx)+ 2f(a+4Δx)+ +f(b) ) .

Let N>0 and f:[a,b] be a function and M>0.

(a) Assume that f(N+1):[a,b] exists and |f(N+1)(c)|<M for c[a,b]. Let TaylorErr(N)=f(b)- ( f(a)+ f(a)(b-a)+ 12!f(a)(b-a)2 ++1N!f(N) (a)(b-a) ) . Then |TaylorErr(N)|< 1(N+1)! (b-a)NM.
(b) Assume that f:[a,b] exists and |f(c)|<M for c[a,b]. Let Δx=b-aN and TrapErr(N)=ab f(x)dx- (b-aN)12 ( f(a)+ 2f(a+Δx) +2f(a+2Δx) + +2f(b-Δx) +f(b) ) . Then |TrapErr(N)|< (b-a)312N2 ·M.
(c) Assume that f(4):[a,b] exists and |f(4)(c)|<M for c[a,b]. Let Δx=b-aN and SimpErr(N)=ab f(x)dx- (b-a)3N ( f(a)+4 f(a+Δx)+ 2f(a+2Δx) +4f(a+3Δx) +2f(a+4Δx) + +2f(b-2Δx) +4f(b-Δx)+ f(b) ) . Then |SimpErr(N)|< (b-a)5180N4·M.

Find log(2) to within .01. log(1+x)=x- x22+x33- x44++ xNN+ Error(N). In fact, if f(x)=log(1+x) then f(x)= 11+x, f(x)= -1(1+x)2, f(3)(x)= (-1)(-2)(1+x)3, f(4)(x)= (-1)(-2)(-3)(1+x)4, ,f(N+1) (x)= (-1)(-2)(-N) (1+x)N+1 . So TaylorError(N)= (-1)(-2)(-N) (1+c)N+1 ·1(N+1)! ·(2-1e)N+1 withc(0,1). So |TayErr(N)|= 1(N+1)(1+c)N+1 <1N+1. So, to get an approximation within 1100=.01 we should let N=99.

So log(2)1-12+1/3++197-198+199, to within .01.

Find log2 to within .01. log2=121xdx Use a trapezoidal approximation with f(x)=1x, a=1andb=2. How many slices (i.e. what should N be)? 1 2 x y y=1x Then f(x)=-1x2 and f(x)=(-1)(-2)𝓍3=2x3.

So |f(c)|<2 for c[1,2].

So |TrapError(N)|< (b-a)312N2 ·2=16·N2. If N=5 then 16·N2=16·25=1150<.01.

So 5 slices will do. log(2) = 121xdx (b-a)512 ( f(a)+2f(a+Δx) +2f(a+2Δx) +2f(a+3Δx)+ 2f(a+4Δx)+ f(b) ) = 110 ( 11+2 11+15+2 11+25+2 11+35+2 11+45+12 ) = 110 ( 1+2·56+2·57+2 ·58+2·59+12 ) = 110+16+17+ 18+19+120.

Notes and References

These are notes from a 2010 course on Real Analysis 620-295. This page comes from 100421Lect19.pdf and was given on 21 April 2010.

page history