Real Analysis

Arun Ram
Department of Mathematics and Statistics
University of Melbourne
Parkville, VIC 3010 Australia
aram@unimelb.edu.au

Last update: 18 July 2014

Lecture 22

Fourier series and ζ(2)

Taylor series at x=0 are about expanding functions f(x) in powers of x.

Find the Taylor series of f(x)=cos2x at x=0.

Since cos2x = cos2x-sin2x = cos2x- (1-cos2x) = 2cos2x-1, cos2x = cos2x+12= 12+12cos2x = 12+12 ( 1- (2x)22!+ (2x)44!- (2x)66!+ ) = 32- 2x22!+ 23x44!- 25x66!+

Taylor series at x=3 are about expanding functions f(x) in powers of x-3.

Find the Taylor series of f(x)=x3 at x=3.

x3 = (x-3+3)3= (x-3)3+ 3(x-3)2·3+ 3(x-3)·32+ 33 = 27+27(x-3)+9 (x-3)2+ (x-3)3.

Fourier series are about expanding functions f(x) in powers of eix.

Since sinkx= eikx-e-ikx2i andcoskx= ei+e-ix2 eikx=coskx+ isinkxand e-ikx=coskx- isinkx.

Fourier series are about expanding functions f(x) in terms of coskx and sinkx.

Let k.

(a) 12π-ππ eikxdx = { 0, ifk0, 1, ifk=0.
(b) 12π-ππ eikx-e-ixdx =δkl, where δk = { 0, ifk, 1, ifk=.
(c) If f(x)=c0+c1 eix+c1e-ix +c2e2ix+ c-2e-i2x+ then ck=12π-ππ f(x)ei(-kx)dx.

Proof.

(a) Case 1: k=0 12π-ππ ei0xdx = 12π-ππdx =12(x|x=-πx=π) =12π(π-(-π)) = 12π·2π=1.

Case 2: If k0 then 12π-ππ eikxdx = 12π ( eikxik |x=-πx=π ) = 12πik (eiπk-e-iπk) = 12πik ((-1)k-(-1)-k) =0.

(b) To show: 12π-ππeikxe-ixdx=δk. 12π-ππ eikx- e-ixdx = 12π-ππ ei(k-)xdx = { 0, ifk-0, 1, ifk-=0, = { 0, ifk, 1, ifk=, =δk.

(c) Assume f(x)=c0+c1eix+c-1e-ix+c2ei2x+c-2e-i2x+. Then 12π-ππf(x) e-ikxdx = 12π-ππ (c0+c1eix+c-1e-ix+) e-ikxdx = c012π-ππ e-ikxdx+c1 12π-ππeix e-ikxdx+c-1 12π-ππ e-ix-e-ikxdx+ = 0+0++0+ck·1 +0+0+=ck. So ck=12π -ππf(x) e-ikxdx.

Consider f:[-π,π] given by f(x)=x2. Find the expansion f(x)=c0+c1 eix+c-1 e-ix+c2 e2ix+c-2 e-2ix+. First find c0: c0 = 12π-ππ f(x)dx= 12π-ππ x2dx=12π (x33|x=-πx=π) = 12π(π33-(-π)33) =12π2π33= π23. To find ck=12π-ππx2e-ikxdx, first do the integral x2e-ikxdx = x2e-ikx-ik -2xe-ikx-ik dx(by integration by parts) = ix2ke-ikx ( 2xe-ikx(-ik)2 -2e-ikx(-ik)2 dx ) = ix2ke-ikx+ 2xk2e-ikx+ 2e-ikx(-ik)3. So ck = 12π-ππ x2e-ikx=12π ( ix2ke-ikx+ 2xk2e-ikx- 2ik3e-ikx ) |x=-πx=π = 12π ( iπ2k+ 2πk2- 2ik3 ) e-iπk-12π ( iπ2k- 2πk2- 2ik3 ) eiπk = 12π ( iπ2k+ 2πk2- 2ik3 ) (-1)k-12π ( iπ2k- 2πk2- 2ik3 ) (-1)k. So ck=12π(-1)k (2πk2+2πk2) =(-1)k4π2πk2 =(-1)k2k2. So x2 = c0+k=1 ckeikx+ c-ke-ikx = π23+k=1 (-1)k2k2 eikx+(-1)-k 2(-k)2e-ikx = π23+k=1 (-1)k2k2 (eikx+e-ikx) = π23+k=1 (-1)k2k2·2coskx = π23+k=1 (-1)k1k24 coskx = π23-4coskx+ 144cos2x-19 4cos3x+1164cos 4x+. If x=π then π2 = π23+k=1 (-1)k1k24 coskπ = π23+k=1 (-1)k4k2(-1)k = π23+k=1 4k2. So k=11k2 =14(π2-π23) =142π23= π26.

Notes and References

These are notes from a 2010 course on Real Analysis 620-295. This page comes from 100430Lect22.pdf and was given on 30 April 2010.

page history