Real Analysis

Arun Ram
Department of Mathematics and Statistics
University of Melbourne
Parkville, VIC 3010 Australia
aram@unimelb.edu.au

Last update: 18 July 2014

Lecture 23

A field is a set ๐”ฝ with operations +: ๐”ฝร—๐”ฝ โŸถ ๐”ฝ (a,b) โŸผ a+b ๐”ฝร—๐”ฝ โŸถ ๐”ฝ (a,b) โŸผ ab such that

(a) if a,b,cโˆˆ๐”ฝ then (a+b)+c=a+(b+c),
(b) if a,bโˆˆ๐”ฝ then a+b=b+a,
(c) there exists 0โˆˆ๐”ฝ such that if aโˆˆ๐”ฝ then 0+a=a and a+0=a,
(d) if aโˆˆ๐”ฝ then there exists -aโˆˆ๐”ฝ such that a+(-a)=0 and (-a)+a=0,
(e) if a,b,cโˆˆ๐”ฝ then (ab)c=a(bc),
(f) if a,b,cโˆˆ๐”ฝ then (a+b)c=ac+bc andc(a+b) =ca+cb,
(g) there exists 1โˆˆ๐”ฝ such that if aโˆˆ๐”ฝ then 1ยทa=a and aยท1=a,
(h) if aโˆˆ๐”ฝ and aโ‰ 0 then there exists a-1โˆˆ๐”ฝ such that aa-1=1 and a-1a=1,
(i) if a,bโˆˆ๐”ฝ then ab=ba.

The positive integers is the set โ„ค>0= { 1, 1+1, 1+1+1, 1+1+1+1,โ€ฆ } with addition given by concatenation so that (1+1)+(1+1+1) =1+1+1+1+1, for example. The counting by k function is mk:โ„ค>0โ†’โ„ค>0 given by mk(1)=kand mk(a+b)=mk (a)+mk(b). For example: m5: โ„ค>0 โŸถ โ„ค>0 1 โŸผ 5 2 โŸผ 10 3 โŸผ 15 โ‹ฎ โŸผ โ‹ฎ Multiplication on โ„ค>0 is given by โ„ค>0ร—โ„ค>0 โŸถ โ„ค>0 (k,โ„“) โŸผ mk(โ„“) The nonnegative integers is the set โ„คโ‰ฅ0={0,1,2,3,โ€ฆ} where 2 really means 1+1, 3 really means 1+1+1, etc.

The integers is the set โ„ค={โ€ฆ,-3,-2,-1,0,1,2,โ€ฆ} with addition and multiplication determined from โ„ค>0 and the axioms of a field, except (h).

Define a relation โ‰ค on โ„ค by xโ‰คy if there exists nโˆˆโ„คโ‰ฅ0 such that x+n=y.

The rational numbers is the set โ„š= { abโ€‰|โ€‰a,bโˆˆโ„ค, bโ‰ 0 } with ab=cdif ad=bc, and ab+cd= ad+bcbdand abยทcd= acbd.

The real numbers โ„ is the set โ„=โ„โ‰ค0โˆช โ„โ‰ฅ0, where โ„โ‰ฅ0 = { aโ„“aโ„“-1โ‹ฏ a1a0ยทa-1 a-2. โ€‰|โ€‰โ„“โˆˆโ„คโ‰ฅ0, aiโˆˆ{0,1,โ€ฆ,9} } โ„โ‰ค0 = { -aโ„“aโ„“-1โ‹ฏ a1a0.a-1 a-2โ‹ฏโ€‰|โ€‰ โ„“โˆˆโ„คโ‰ฅ0,ai โˆˆ{0,1,โ€ฆ,9} } and a=bifa-b= 0.000โ€ฆ where addition and multiplication are given by a+b to an accuracy of k decimal places is aโ‰ฅ(-k-1)+bโ‰ฅ(-k-1) (addition in โ„š), with aโ‰ฅ-k=aโ„“ aโ„“-1โ‹ฏa1 a0.a-1a-2 โ‹ฏa-k000โ€ฆ and ab to an accuracy of k decimal places is aโ‰ฅ(-m-k)ยท bโ‰ฅ(-โ„“-k) (multiplication in โ„š) if ?????????

The complex numbers โ„‚ is the set โ„‚={a+biโ€‰|โ€‰a,bโˆˆโ„} withi2=-1, the addition and multiplication in โ„ and the properties of a field determining the addition and multiplication in โ„‚.

For example: (3+2i)+ (5+7i)=8+9i and (3+2i) (5+7i) = 15+21i+10i+14i2 = (15-14)+31i=1+31i and (3+2i)-1= 1(3+2i) (3-2i)(3-2i) =19-4(3-2i)= 35-25i. Graphing: 3-2i 2-3i i โ„

Let a=210.98765432109876543210987โ€ฆ and b=b=100101.101001000100001โ€ฆ. Compute a+b and aยทb to 10 decimal places. Well 210.987654321098765... 100101.101001000100001... 100312.088655321198766... 7or... and b=105+102+1+ 10-1+10-3+ 10-6+10-10+ 10-15+10-21+โ‹ฏ. So 105a = 21098765.432109876543210... 102a = 21098.765432109876543... โ”€ (105+102)a = 21119864.197541986419753... a = 210.987654321098765... โ”€ (105+102+1)a = 21120075.185195307518518... 10-1a = 21.098765432109876... โ”€ 21120096.283960739628394... etc.

Notes and References

These are notes from a 2010 course on Real Analysis 620-295. This page comes from 100503Lect23.pdf and was given on 3 May 2010.

page history