Real Analysis

Arun Ram
Department of Mathematics and Statistics
University of Melbourne
Parkville, VIC 3010 Australia
aram@unimelb.edu.au

Last update: 8 July 2014

Lecture 3

The set of polynomials is [x]= { a0+a1x+a2x2 ++ax| 0and a1,,a } . The set of series is [[x]]= { a0+a1x+a2x2+ |a1,a2, } . (x)= { p(x)q(x) |p(x),q(x) [x],q(x)0 } with p(x)q(x)= r(x)s(x) ifp(x)s(x)= r(x)q(x). ((x))= { p(x)q(x) |p(x),q(x) [[x]],q(x) 0 } with p(x)q(x)= r(x)s(x) ifp(x)s(x)= r(x)q(x).

3x2+2x+7[x], 3x2+2x+7(x-1)(x-2) (x), ex=1+x+x22!+ [[x]],sinx =eix-e-ix2i [[x]], tanx=sinxcosx= x-x33!+ x55!- x77!+ 1-x22!+ x44!- x66!+ ((x)).

Find a series expansion of 11-x.

Another way to say the same thing is: Write 11-x as an element of [[x]]. Last lecture we found: 11-x=1+x+x2+x3+x4+.

Find a series expansion of 11+x. 11+x = 11-(-x) = 1+(-x)+ (-x)2+ (-x)3+ = 1-x+x2-x3+ x4-x5+.

Find the MacLaurin series for log(1+x).

Another way to say the same thing is: Find the Taylor series for log(1+x) at x=0 or Find a series expansion of log(1+x) or Write log(1+x) as an element of [[x]]

Proof.

11+xdx= log(1+x), sinceddx log(1+x)=11+x. So log(1+x) = 11+xdx = ( 1-x+x2-x3+ x4+ ) dx = x-x22+ x33- x44+ x55-.

Find the Taylor series for logx at x=1.

Another way to say the same thing is: Find a series representation for logx in powers of x-1.

Proof.

Let y=x-1. Then logx = log(1+y) = y-y22+ y33- y44+ = (x-1)- (x-1)22+ (x-1)33- (x-1)44+.

Find the Taylor series for ex at the point a=-3. i.e. Write ex=c0+c1(x-(-3))+c2(x-(-3))+ i.e. Write ex=c0+c1(x+3)+c2(x+3)2+c3(x+3)3+ Well c0=ex|x=-3 =e-3 and since dexdx=0+c1 +2c2(x+3)+3c3 (x+3)2+4c4 (x+3)3+ then c1=dexdx |x=-3=ex |x=-3=e-3. Then d2exdx2= 2c2+3·2c3 (x+3)+4·3c4 (x+3)2+5·4 c5(x+3)3+. So 2c2=d2exdx2 |x=-3=ex |x=-3=e-3. So c3=12e-3. Next d3exdx3= 3·2c3+4·3·2 c4(x+3)+5·4 ·3c5(x+3)2 +6·5·4c6(x+3)3 +. So 3·2c3= d3exdx3 |x=-3=ex |x=-3=e-3. So c3=13·2e-3. Next d4exdx4= 4·3·2c4+5·4·3·2 c5(x+3)+6·5·4 ·3c6(x+3)2 +7·6·5·4c7 (x+3)4+. So 4·3·2c4= d4exdx4 |x=-3=ex |x=-3=e-3. So c4=14·3·2 e-3. So ex = c0+c1(x+3) +c2(x+3)2 +c3(x+3)3+ = e-3+e-3(x+3) +12e-3(x+3)2 +13·2e-3 (x+3)3+14·3·2 e-3(x+3)4+.

Notes and References

These are notes from a 2010 course on Real Analysis 620-295. This page comes from 100305Lect3.pdf and was given on 5 March 2010.

page history