Real Analysis

Arun Ram
Department of Mathematics and Statistics
University of Melbourne
Parkville, VIC 3010 Australia
aram@unimelb.edu.au

Last update: 8 July 2014

Lecture 8

Recall

Assume limxaf(x) and limxag(x) exist. Then

(a) limxaf(x)+g(x)=limxaf(x)+limxag(x).
(b) limxaf(x)g(x)=(limxaf(x))(limxag(x)).
(c) If c then limxacf(x)=climxaf(x).
(d) If f(x)g(x) then limxaf(x)limxag(x).
(e) If g(x)0 then limxa1g(x)=1limxag(x).
(f) If limxag(x)= then limyf(y)=limxaf(g(x)).

For lecture 8, 17 March presentation

(a) Let x. Then limnxn= { 0, if|x|<1, diverges, if|x|>1, 1, ifx=1, diverges, if|x|=1 andx1.
(b) Let x. Then limn 1+x++xn= limn 1-xn+11-x= { 11-x, if|x|<1, diverges, if|x|1.

(a) Let n>0 and a. Then limxaxn =an.
(b) Let a. Then limxaex=ea.

Our definitions

limxaf(x)= if f(x) satisfies: if ε>0 then there exists δ>0 such that if d(x,a)<δ then d(f(x),)<ε.

In n, d:n×n0 is given by d(x,y)= |(x1-y1)2++(xn-yn)2| where |a|=sup(a,-a), fora. We defined x as the inverse expression to x2 so that branches are possible and 9=-3 is possible.

We defined ex=1+x+x22!+x33!+ sinx= eix-e-ix2i and cosx= eix+e-ix2.

The limits limnxn and limn1+x+x2++xn

(a) Let x. limnxn= { 0, if|x|<1, diverges, if|x|>1, 1, ifx=1, diverges, if|x|=1 andx1.
(b) Let x. limn1+x+ x2++xn = limn 1-xn+11-x = { 11-x, if|x|<1, diverges, if|x|1.

Proof.

If x=1 then the sequence an=xn is an=1 and limn1n=1.

If x=1 then the limn1+12++1n=limnn, which diverges.

The remaining statements in (b) follow from (a).

Let x with |x|<1. Prove that limnxn=0.

Proof.

Let N>0 such that |x|<1-1N+1. limn |xn-0| = limn|x|n limn (1-1N+1)n = limn (N+1-1N+1)n = limn (NN+1)n = limn 1(1+1N)n = limn 11+n1N++(1N)n limn 11+nN = limn Nn+N = Nlimn 1n+N = N·0 = 0.

Let x with |x|>1. Prove that limnxn diverges.

Proof.

Let N>0 be such that |x|>1+1N. Then |x|n > (1+1N)n= 1+n(1N)++ (1N)n = n(1N)=nN. Since nN is unbounded as n gets larger and larger, |x|n is unbounded as n. so limnxn diverges.

Let x with |x|<1. Let an=xn. Find limnan. limnan= limnxn

limnan=limnxn and the graphs of y=x, y=x2, y=x3, y=x4, are y=x y=x3 y=x5 - 1 1 x - 1 1 y y=x2 y=x4 y=x6 - 1 1 x - 1 1 y So limnxn=0 where |x|<1.

limnxn diverges when |x|>1.

limn1n=1 and limn(-1)n diverges.

Let x. Find limn1+x+x2++xn. limn1+x+x2 ++xn=limn 1-xn+11-x= 11-xif|x| <1. For example, if x=12 limn1+12 +(12)2+ (12)3++ (12)n= limn 1-(12)n+11-12 =11-12=2.

Let n>0. Let a. Prove that limxaxn=an.

Proof.

To show: limy0|(y+a)n-an|=0. limy0 |(y+a)n-an| = limy0 yn+nyn-1a+ +nan-1y+ an-an = limy0 yn+nyn-1a ++nan-1y = limy0 y ( yn-1+a yn-2n++ nan-1 ) = limy0 |y| yn-1+a yn-2n++ nan-1 limy0|y| ( |y|n-1+ |a|n|y|n-2 ++|nan-1| ) limy0 |y|n |a|n-1 =0·n· |a|n-1=0.

So f(x)=xn is continuous at x=a.

An alternative proof is that

(a) f(x)=x (the identity function) is continuous,
(b) the product is continuous (since is a topological field)
and therefore limxaxn=an.

Prove that limx0ex=e0.

Proof.

limx0 (1+x+x22!+x33!+) -1 = limx0 |x(1+x+x22!+x33!+)| limx0|x| (1+|x|2+|x|23!+) limx0|x| (1+|x|+|x|2+) = limx0|x| ·11-|x| =0·1=0.

Prove that limxaex=ea.

Proof.

limxaex = limy0 ey+a= limy0 eaey = ealimy0ey =ea·e0= ea+0=ea.

Hence ex is continuous at x=a.

Notes and References

These are notes from a 2010 course on Real Analysis 620-295. This page comes from 100317suggLect8.pdf and was given on 17 March 2010.

page history