Week 1 Problem Sheet Group Theory and Linear algebra Semester II 2011

Arun Ram Department of Mathematics and Statistics University of Melbourne Parkville, VIC 3010 Australia aram@unimelb.edu.au

Last updates: 1 July 2011

(1) Week 1: Vocabulary
(2) Week 1: Results
(3) Week 1: Examples and Computations

1. Week 1: Vocabulary

- (1) Define set, subset and equal sets and give some illustrative examples.
- (2) Define union of sets, intersection of sets, and product of sets and give some illustrative examples.
- (3) Define partition of a set and give some illustrative examples.
- (4) Define relation, symmetric relation, reflexive relation and transitive relation and give some illustrative examples.
- (5) Define equivalence relation and equivalence class and give some illustrative examples.
- (6) Define the order \leq on \mathbb{Z} and give some illustrative examples.
- (7) Define well ordered set and give some illustrative examples.
- (8) Let $d \in \mathbb{Z}$. Define the ideal generated by d and give some illustrative examples.
- (9) Let $d, a \in \mathbb{Z}$ and define
 - (i) d divides a,
 - (ii) d is a factor of a,
 - (iii) a is a multiple of d,

and give some illustrative examples.

- (10) Let $a, b \in \mathbb{Z}$. Define greatest common divisor of a and b and give some illustrative examples.
- (11) Define relatively prime integers and give some illustrative examples.

- (12) Define prime integer and give some illustrative examples.
- (13) Let $m \in \mathbb{Z}$. Define congruence modulo *m* and give some illustrative examples.
- (14) Let $m \in \mathbb{Z}$. Define congruence class modulo *m* and give some illustrative examples.
- (15) Define $\mathbb{Z}_{>0}$ and give some illustrative examples.
- (16) Define $\mathbb{Z}_{>0}$ and the operations of addition and multiplication on $\mathbb{Z}_{>0}$ and give some illustrative examples.
- (17) Define $\mathbb{Z}_{\geq 0}$ and give some illustrative examples.
- (18) Define $\mathbb{Z}_{\geq 0}$ and the operations of addition and multiplication on $\mathbb{Z}_{\geq 0}$ and give some illustrative examples.
- (19) Define \mathbb{Z} and give some illustrative examples.
- (20) Define \mathbb{Z} and the operations of addition and multiplication on \mathbb{Z} and give some illustrative examples.
- (21) Let $m \in \mathbb{Z}$. Define $\mathbb{Z}/m\mathbb{Z}$ and give some illustrative examples.
- (22) Let $m \in \mathbb{Z}$. Define $\mathbb{Z} / m \mathbb{Z}$ and the operations of addition and multiplication on $\mathbb{Z} / m \mathbb{Z}$ and give some illustrative examples.
- (23) Let $m \in \mathbb{Z}$. Define multiplicative inverse in $\mathbb{Z}/m\mathbb{Z}$ and give some illustrative examples.
- (24) Which sets are the three elements of $\mathbb{Z}/3\mathbb{Z}$?

2. Week 1: Results

- (1) (Division with remainder) Show that if $a, d \in \mathbb{Z}$ and d > 0 then there exist unique integers q and r such that $0 \le r < d$ and a = qd + r.
- (2) Let $a, b, c \in \mathbb{Z}$. Show that if a | b and b | c then a | c.
- (3) Let a, b, and c be integers. Show that if a|b and a|c then $a^2|(b^2 + 3c^2)$.
- (4) Show that if a, b, c, d are integers such that a|b and c|d then ac|bd.
- (5) Prove that if a, b, c, d, x, y are integers such that a|b and a|c then a|(xb + yc).
- (6) Prove that if a, b are positive integers such that a|b and b|a then a = b.
- (7) Show that if $a, d \in \mathbb{Z}$ and $q_1, r_1, q_2, r_2 \in \mathbb{Z}$ and $0 \le r_1 < d$ and $0 \le r_2 < d$ and $a = q_1 d + r_1$ and $a = q_2 d + r_2$ then $q_1 = q_2$ and $r_1 = r_2$.

(8) Let $a, b \in \mathbb{Z}$. Show that

- (a) gcd(a, b) = gcd(b, a) = gcd(-a, b),
- (b) gcd(a, 0) = a,
- (c) If q and r are integers such that a = bq + r then gcd(a, b) = gcd(b, r).
- (9) Let $a, b \in \mathbb{Z}$ and let d be the greatest common divisor of a and b. Show that there exist integers x and y such that ax + by = d.
- (10) Let $a, b \in \mathbb{Z}$ and let d be the greatest common divisor of a and b. Show that d is the largest integer that divides both a and b.
- (11) Let $d, a, b \in \mathbb{Z}$. Show that if $d \mid ab$ and gcd(a, d) = 1 then $d \mid b$.
- (12) Let $p, a, b \in \mathbb{Z}$. Show that if p is prime and p|ab then p|a then or p|b.
- (13) Give an example of positive integers a, b, c such that a|c and b|c but $ab \nmid c$.
- (14) Let $a, b, c \in \mathbb{Z}$ be integers with gcd(a, b) = 1. Prove that if a | c and b | c then ab | c.
- (15) Let $m \in \mathbb{Z}_{\geq 0}$. Prove that congruence mod *m* is an equivalence relation.
- (16) Let $m \in \mathbb{Z}_{\geq 0}$. Prove that the operation of addition on $\mathbb{Z}/m\mathbb{Z}$ is well defined.
- (17) Let $m \in \mathbb{Z}_{\geq 0}$. Prove that the operation of multiplication on $\mathbb{Z}/m\mathbb{Z}$ is well defined.
- (18) Let $m \in \mathbb{Z}_{\geq 0}$ and let $a \in \mathbb{Z}$. Prove that [a] has a multiplicative inverse in $\mathbb{Z}/m\mathbb{Z}$ if and only if gcd(a, m) = 1.
- (19) Let $p \in \mathbb{Z}$ be prime. Show that every non-zero element of $\mathbb{Z}/p\mathbb{Z}$ has a multiplicative inverse.
- (20) Prove that if $a = b \mod m$ and $b = c \mod m$ then $a = c \mod m$
- (21)
- (a) Prove that if a, b, c are integers with $ac = bc \mod m$ and gcd(c, m) = 1 then $a = b \mod m$.
- (b) Give an example to show that this result fails if we drop the condition that gcd(c, m) = 1.
- (c) What can you conclude if gcd(c, m) = d?
- (22)
- (a) Show that if p is prime, then p divides the binomial coefficient $\binom{p}{k} = \frac{p!}{p!(p-k)!}$, for 0 < k < p.

(b) Deduce, using induction on *n* and the binomial theorem, that if *p* is prime then $n^p = n \mod p$, for all natural numbers *n* ("Fermat's Little Theorem").

3. Week 1: Examples and Calculations

- (1)
- (a) Find the quotient and remainder when 25 is divided by 3.
- (b) Find the quotient and remainder when 68 is divided by 7.
- (c) Find the quotient and remainder when -33 is divided by 7.
- (d) Find the quotient and remainder when -25 is divided by 3.

(2)

- (a) Find the quotient and remainder when 25 is divided by -3.
- (b) Find the quotient and remainder when -25 is divided by -3.
- (c) Find the quotient and remainder when 25 is divided by 0.
- (d) Find the quotient and remainder when 0 is divided by 25.
- (3) Show that gcd(4, 6) = 2.
- (4) Show that gcd(10, -20) = 10.
- (5) Show that gcd(7, 3) = 1.
- (6) Show that gcd(0, 5) = 5.
- (7) Show that 12 and 35 are relatively prime.
- (8) Show that 12 and 34 are not relatively prime.
- (9) Find gcd(4163, 8869).
- (10) Solve the equation 131x + 71y = 1. Explain why this question is not well stated. Fix up the question and solve it.
- (11) Using Euclid's Algorithm find gcd(14, 35).
- (12) Using Euclid's Algorithm find gcd(105, 165).
- (13) Using Euclid's Algorithm find gcd(1287, 1144).
- (14) Using Euclid's Algorithm find gcd(1288, 1144).
- (15) Using Euclid's Algorithm find gcd(1287, 1145).
- (16) Find $d = \gcd(27, 33)$ find integers x and y such that d = x27 + y33.
- (17) Find $d = \gcd(27, 32)$ find integers x and y such that d = x27 + y32.
- (18) Find $d = \gcd(312, 377)$ find integers x and y such that d = x312 + y377.

(19)

- (a) Show that $3 = 1 \mod 2$.
- (b) Show that $3 = 17 \mod 17$.

(20)

- (a) Show that $3 = -15 \mod 9$.
- (b) Show that $4 = 0 \mod 2$.
- (21) Show that $6 \neq 1 \mod 4$.
- (22) Explain the most efficient way to calculate 29^4 modulo 12.
- (23) Show that 3 + 4 = 1, $3 \cdot 5 = 3$, and 3 5 = 4 in $\mathbb{Z}/6\mathbb{Z}$.
- (24) Write down the addition and multiplication tables for $\mathbb{Z}/5\mathbb{Z}$ and $\mathbb{Z}/6\mathbb{Z}$.
- (25) Show that 2 has no multiplicative inverse in $\mathbb{Z}/4\mathbb{Z}$.
- (26) Find the multiplicative inverse of 71 in $\mathbb{Z}/131 \mathbb{Z}$.

(27)

- (a) Decide whether $3 = 42 \pmod{13}$.
- (b) Decide whether $2 = -20 \pmod{11}$.
- (c) Decide whether $26 = 482 \pmod{14}$.

(28)

- (a) Decide whether $-2 = 933 \pmod{5}$.
- (b) Decide whether $-2 = 933 \pmod{11}$.
- (c) Decide whether $-2 = 933 \pmod{55}$.

- (a) Simplify 482 (mod 14).
- (b) Simplify 511 (mod 9).
- (c) Simplify -374 (mod 11).

(30)

- (a) Simplify 933 (mod 55).
- (b) Simplify 102725 (mod 10).
- (c) Simplify 57102725 (mod 9).
- (31) Calculate $24 \cdot 25 \pmod{21}$.
- (32) Calculate 84 · 125 (mod 210).
- (33) Calculate $25^2 + 24 \cdot 3 6 \pmod{9}$.

- (34) Calculate $36^3 3 \cdot 19 + 2 \pmod{11}$.
- $(35) \qquad \text{Calculate } 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \pmod{7},$
- $(36) \qquad \text{Calculate } 1 \cdot 2 \cdot 3 \cdots 20 \cdot 21 \pmod{22}.$
- (37) Use congruences modulo 9 to show that the following multiplication in \mathbb{Z} is incorrect: 326 · 4471 = 1357546.
- (38) Determine the multiplicative inverses in $\mathbb{Z}/7\mathbb{Z}$.
- (39) Determine the multiplicative inverses in $\mathbb{Z}/8\mathbb{Z}$,
- (40) Determine the multiplicative inverses in $\mathbb{Z}/12\mathbb{Z}$,
- (41) Determine the multiplicative inverses in $\mathbb{Z}/13\mathbb{Z}$,
- (42) Determine the multiplicative inverses in $\mathbb{Z}/15\mathbb{Z}$,
- (43) If it exists, find the multiplicative inverse of 32 in $\mathbb{Z}/27\mathbb{Z}$.
- (44) If it exists, find the multiplicative inverse of 32 in $\mathbb{Z}/39\mathbb{Z}$.
- (45) If it exists, find the multiplicative inverse of 17 in $\mathbb{Z}/41\mathbb{Z}$.
- (46) If it exists, find the multiplicative inverse of 18 in $\mathbb{Z}/33\mathbb{Z}$.
- (47) If it exists, find the multiplicative inverse of 200 in $\mathbb{Z}/911\mathbb{Z}$.
- (48) Write down all the common divisors of 56 and 72.
- (49)
- (a) Use Euclid's algorithm to find d = gcd(323, 377).
- (b) Find integers x, y such that 323x + 377y = d.

(50) Simplify the following, giving your answers in the form $a \mod m$, where $0 \le a < m$.

- (a) $14 \cdot 13 67 + 133 \pmod{10}$,
- (b) 53 (mod 7),
- (c) $53 + 2 \cdot 4 \pmod{7}$,
- (d) $21 \cdot 22 \cdot 23 \cdot 24 \cdot 25 \pmod{20}$.
- (51) For the following, write your answers in the form $0, 1, \ldots, 18 \pmod{19}$.
 - (a) Calculate 3^2 , 3^4 , 3^8 , 3^{16} , 3^{32} , 3^{64} , 3^{128} and 3^{256} modulo 19.
 - (b) Use (a) to calculate 3^{265} modulo 19. (Hint: 265 = 256 + 8 + 1.)

(52) (A test for divisibility by 11.) Let $n = a_d a_{d-1} \cdots a_2 a_1 a_0$ be a positive integer written in base 10, i.e. $n = a_0 + 10a_1 + 10^2a_2 + \cdots + 10^da_d$, where a_0, a_1, \ldots, a_d , are the digits of the number *n* read from right to left.

(a) Show that $n = a_0 - a_1 + a_2 - a_3 + \dots + (-1)^d a_d \mod 11$. Hence *n* is divisible by 11 exactly when $a_0 - a_1 + a_2 - a_3 + \dots + (-1)^d a_d$ is divisible by 11.

(b) Use this test to decide if the following numbers are divisible by 11: (i) 123537, (ii) 30639423045.

(53)

- (a) Write down the addition and multiplication tables for $\mathbb{Z}/7\mathbb{Z}$.
- (b) Find the multiplicative inverse of 2 in $\mathbb{Z}/7\mathbb{Z}$.
- (54) Find the smallest positive integer in the set $\{6u + 15v \mid u, v \in \mathbb{Z}\}$. Always justify your answers.

4. References

[GH] J.R.J. Groves and C.D. Hodgson, Notes for 620-297: Group Theory and Linear Algebra, 2009.