Week 2 Problem Sheet Group Theory and Linear algebra Semester II 2011

Arun Ram Department of Mathematics and Statistics University of Melbourne Parkville, VIC 3010 Australia aram@unimelb.edu.au

Last updates: 11 July 2011

(1) Week 2: Vocabulary
(2) Week 2: Results
(3) Week 2: Examples and computations

1. Week 2: Vocabulary

- (1) Define abelian group and ring and give some illustrative examples.
- (2) Define commutative ring and field and give some illustrative examples.
- (3) Let R a ring and let $r \in R$. Define a multiplicative inverse of r and give some illustrative examples.
- (4) Let \mathbb{F} be a field. Define $\mathbb{F}[t]$ and $\mathbb{F}(t)$ and give some illustrative examples.
- (5) Let \mathbb{F} be a field. Define $\mathbb{F}[[t]]$ and $\mathbb{F}((t))$ and give some illustrative examples.
- (6) Let \mathbb{F} be a field. Define the addition and multiplication in $\mathbb{F}[t]$ and $\mathbb{F}(t)$ and give some illustrative examples.
- (7) Let \mathbb{F} be a field. Define the addition and multiplication in $\mathbb{F}[[t]]$ and $\mathbb{F}((t))$ and give some illustrative examples.
- (8) Define abelian group homomorphism and give some illustrative examples.
- (9) Define ring homomorphism and give some illustrative examples.
- (10) Define field homomorphism and give some illustrative examples.
- (11) Define algebraically closed field and give some illustrative examples.
- (12) Define function and equal functions and give some illustrative examples.
- (13) Define injective, surjective and bijective functions and give some illustrative examples.
- (14) Define composition of functions, the identity function and inverse function and give some illustrative examples.

2. Week 2: Results

- (1) Let A be an abelian group. Show that $0 \in A$ is unique.
- (2) Let A be an abelian group. Show that if $a \in A$ then its additive inverse $-a \in A$ is unique.
- (3) Let *R* a ring. Show that the identity $1 \in R$ is unique.
- (4) Let R a ring and let $r \in R$. Show that if r has a multiplicative inverse then it is unique.
- (5) Let *R* a ring. Show that $0 \cdot 0 = 0$.
- (6) Let A be an abelian group. Show that if $a \in A$ then -(-a) = a.
- (7) Let *R* a ring. Show that if $r \in R$ then $0 \cdot r = 0$.
- (8) Let *R* a ring. Show that if $r \in R$ and $1 \in R$ is the identity in *R* then $(-1) \cdot r = r \cdot (-1)$ = -r.
- (9) Let K and F be fields with identities 1_K and 1_F, respectively.
 A field homomorphism from K to F is a function f: K → F such that
 - (a) If $k_1, k_2 \in \mathbb{K}$ then $f(k_1 + k_2) = f(k_1) + f(k_2)$,
 - (b) If $k_1, k_2 \in \mathbb{K}$ then $f(k_1k_2) = f(k_1)f(k_2)$,
 - (c) $f(1_{\mathbb{K}}) = 1_{\mathbb{F}}$.

Explain why conditions (a) and (b) in the definition of a field homomorphism do not imply condition (c).

- (10) Show that if f: K → F is a field homomorphism then f(0_K) = 0_F, where 0_K and 0_F are the zeros in K and F, respectively.
- (11) Show that if $f: \mathbb{K} \to \mathbb{F}$ is a field homomorphism then f is injective.
- (12) Show that the field of complex numbers \mathbb{C} is algebraically closed.
- (13) Show that every field lies inside an algebraically closed field.
- (14) Prove that if $p \in \mathbb{Z}$ and p is prime then $\mathbb{Z} / p \mathbb{Z}$ is a field.
- (15) Prove that if $p \in \mathbb{Z}$ and p is not prime then $\mathbb{Z} / p \mathbb{Z}$ is not a field.
- (16) Let $n \in \mathbb{Z}_{>0}$. Define the multiplication on $M_n(\mathbb{R})$ and prove that if $a, b, c \in M_n(\mathbb{R})$ then (ab)c = a(bc).

- (17) Let $f: S \to T$ be a function. Prove that an inverse function to f exists if and only if f is bijective.
- (18) DeMorgan's Laws. Let A, B and C be sets. Show that
 - (a) $(A \cup B) \cup C = A \cup (B \cup C),$
 - (b) $A \cup B = B \cup A$,
 - (c) $A \cup \emptyset = A$,
 - (d) $(A \cap B) \cap C = A \cap (B \cap C),$
 - (e) $A \cap B = B \cap A$, and
 - (f) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C).$
- (19) Let S, T and U be sets and let $f: S \to T$ and $g: T \to U$ be functions. Show that
 - (a) if f and g are injective then $g \circ f$ is injective,
 - (b) if f and g are surjective then $g \circ f$ is surjective, and
 - (c) if f and g are bijective then $g \circ f$ is bijective.
- (20) Let $f: S \to T$ be a function and let $U \subseteq S$. The **image** of U under f is the subset of T given by

$$f(U) = \{ f(u) \mid u \in U \} \,.$$

Let $f: S \to T$ be a function. The **image** of f U under f is the is the subset of T given by $\operatorname{im} f = \{f(s) \mid s \in S\}.$

Note that im f = f(S).

Let $f: S \to T$ be a function and let $V \subseteq T$. The **inverse image** of V under f is the subset of S given by

$$f^{-1}(V) = \{s \in S \mid f(s) \in V\}.$$

Let $f: S \to T$ be a function and let $t \in T$. The **fiber** of f over t is the subset of S given by

$$f^{-1}(t) = \{s \in S \mid f(s) = t\}.$$

Let $f: S \to T$ be a function. Show that the set $F = \{f^{-1}(t) \mid t \in T\}$ of fibers of the map f is a partition of S.

(21)

(a) Let $f: S \to T$ be a function. Define

$$\begin{array}{rccc} f':S & \longrightarrow & \operatorname{im} f \\ s & \longmapsto & f(s) \end{array}$$

Show that the map f' is well defined and surjective.

(b) Let $f: S \to T$ be a function and let $F = \{f^{-1}(t) \mid t \in \text{im } f\} = \{f^{-1}(t) \mid t \in T\}$ $\} - \emptyset$ be the set of nonempty fibers of the map f. Define

$$\widehat{f}: F \longrightarrow T$$

$$f^{-1}(t) \longmapsto t$$

Show that the map \hat{f} is well defined and injective.

(c) Let $f: S \to T$ be a function and let $F = \{f^{-1}(t) \mid t \in \text{im } f\} = \{f^{-1}(t) \mid t \in T$

- $\} \emptyset$ be the set of nonempty fibers of the map f. Define
 - $\widehat{f}': F \longrightarrow \operatorname{im} T$ $f^{-1}(t) \longmapsto t$

Show that the map \hat{f}' is well defined and bijective.

(22) Let S be a set. The **power set** of S, 2^S , is the set of all subsets of S.

Let S be a set and let $\{0,1\}^S$ be the set of all functions $f: S \to \{0,1\}$. Given a subset $T \subseteq S$ define a function $f_T: S \to \{0,1\}$ by

$$f_T(s) = \begin{cases} 0, & \text{if } s \notin T, \\ 1, & \text{if } s \in T. \end{cases}$$

Show that

$$\begin{array}{rcl} \varphi \colon & 2^S & \longrightarrow & \{0,1\}^S \\ & T & \longmapsto & f_T \end{array} \quad \text{is a bijection.} \end{array}$$

(23) Let $\circ : S \times S \to S$ be an associtaive operation on a set *S*. An **identity** for \circ is an element $e \in S$ such that if $s \in S$ then $e \circ s = s \circ e = s$.

Let *e* be an identity for an associative operation \circ on a set *S*. Let $s \in S$. A **left inverse** for *s* is an element $t \in S$ such that $t \circ s = e$. A **right inverse** for *s* is an element $t' \in S$ such that $s \circ t' = e$. An **inverse** for *s* is an element $s^{-1} \in S$ such that $s^{-1} \circ s = s \circ s^{-1} = e$.

- a. Let \circ be an operation on a set S. Show that if S contains an identity for \circ then it is unique.
- b. Let *e* be an identity for an associative operation \circ on a set *S*. Let $s \in S$. Show that

if *s* has an inverse then it is unique.

(24) a. Let *S* and *T* be sets and let ι_S and ι_T be the identity maps on *S* and *T*, respectively. Show that for any function $f: S \to T$,

 $\iota_T \circ f = f$, and $f \circ \iota_S = f$.

b. Let $f: S \to T$ be a function. Show that if an inverse function to f exists then it is unique. (Hint: The proof is very similar to the proof in Ex. 5b above.)

3. Week 2: Examples and computations

- (1) Let \mathbb{F} be a field. Define $M_{5\times 3}(\mathbb{F})$ and addition and show that it is an abelian group.
- (2) Let \mathbb{F} be a field. Define $M_{5\times 5}(\mathbb{F})$ and addition and multiplication and show that it is a ring.
- (3) Calculate

(1	2	3	4	(1	2	3	4		(1	2	3	4	(1	2	3	4	
2	0	1	3	2	3	4	0	a m d								3	
0	3	2	5	3	4	0	1	and	3	4	0	1	0	3	2	5	•
4	5	2	-3)	4	0	1	2)		4	0	1	2)	4	5	2	-3)	

(4) For
$$i, j \in \{1, 2, 3, 4\}$$
 let $a_{ij}, b_{ij}, c_{ij} \in \mathbb{R}$. Calculate the (2, 4)-entry of

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{pmatrix} \begin{pmatrix} b_{11} & b_{12} & b_{13} & b_{14} \\ b_{21} & b_{22} & b_{23} & b_{24} \\ b_{31} & b_{32} & b_{33} & b_{34} \\ b_{41} & b_{42} & b_{43} & b_{44} \end{pmatrix} \begin{pmatrix} c_{11} & c_{12} & c_{13} & c_{14} \\ c_{31} & c_{32} & c_{33} & c_{34} \\ c_{41} & c_{42} & c_{43} & c_{44} \end{pmatrix} \end{pmatrix}$$
 and
$$\begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{pmatrix} \begin{pmatrix} b_{11} & b_{12} & b_{13} & b_{14} \\ b_{21} & b_{22} & b_{23} & b_{24} \\ b_{31} & b_{32} & b_{33} & b_{34} \\ b_{41} & b_{42} & b_{43} & b_{44} \end{pmatrix} \begin{pmatrix} c_{11} & c_{12} & c_{13} & c_{14} \\ c_{21} & c_{22} & c_{23} & c_{24} \\ c_{31} & c_{32} & c_{33} & c_{34} \\ c_{41} & c_{42} & c_{43} & c_{44} \end{pmatrix} .$$
(5)
Find a multiplicative inverse of $\begin{pmatrix} 1 & 2 \\ 2 & 0 \end{pmatrix}$ in $M_2(\mathbb{R})$.

(6) Define \mathbb{Q} and addition and multiplication and show that it is a field.

- (7) Define \mathbb{R} and addition and multiplication and show that it is a field.
- (8) Define \mathbb{C} and addition and multiplication and show that it is a field.
- (9) Define addition and multiplication for the collection of all expressions p(x)/q(x) where p(x) and q(x) are polynomials in x with real coefficients and q(x) is not the zero polynomial and show that it is a field.
- (10) Show that the set of integers with the usual addition and multiplication does *not* give us a field.
- (11) Let \mathbb{F} have two elements $\{0, 1\}$ with the following addition and multiplication tables

+	0	1	•	0	1
0	0	1	0	0	1
1	1	0	1	0	1

Show that \mathbb{F} forms a field.

- (12) Show that the set of all real numbers of the form $a + b\sqrt{2}$ with $a, b \in \mathbb{Q}$ is a subfield of \mathbb{R} .
- (13) Show that the set of all real numbers of the form $a + b\sqrt[3]{2}$ with $a, b \in \mathbb{Q}$ does not form a subfield of \mathbb{R} .
- (14) Explain how to make a subfield of \mathbb{R} which contains $\sqrt[3]{2}$ as well as the rational numbers.
- (15) Write down the multiplication table for $\mathbb{Z}/7\mathbb{Z}$.
- (16) Find an element *a* of $\mathbb{Z}/7\mathbb{Z}$ so that every non-zero element of $\mathbb{Z}/7\mathbb{Z}$ is a power of *a*.
- (17) Show that $\mathbb{Z}/9\mathbb{Z}$, with addition and multiplication modulo 9, does not form a field.
- (18) Show that the set of polynomials, with coefficients from the real numbers, does not form a field.
- (19) Let $\mathbb{C}((t))$ denote the set of power series of the form $c_{-k}t^{-k} + c_{-k+1}t^{-k+1} + \dots + c_0 + c_1t + \dots + c_st^s + \dots$ with the operations of addition and multiplication of power series. Show that $\mathbb{C}((t))$ forms a field.
- (20) Show that the field of all real numbers of the form $a + b\sqrt[3]{2}$ with $a, b \in \mathbb{Q}$ is not algebraically closed.
- (21) Let $p \in \mathbb{Z}_{>0}$ be prime. Show that the field $\mathbb{Z} / p \mathbb{Z}$, is not algebraically closed.
- (22) Which of the following are fields using the usual definitions of addition and multiplication? Explain your answers.

- (a) The positive real numbers.
- (b) The set of all numbers of the form $a\sqrt{2}$, where a is a rational number.
- (23) (Testing for subfields) Let K be a subset of a field F and define addition and multiplication in K using the operations in F. Explain why K is a field if the following four conditions are satisfied:
 - (a) \mathbb{K} is closed under addition and multiplication,
 - (b) \mathbb{K} contains 0 and 1,
 - (c) if $a \in \mathbb{K}$ then $-a \in \mathbb{K}$,
 - (d) if $a \in \mathbb{K}$ and $a \neq 0$ then $a^{-1} \in \mathbb{K}$.
- (24) Show that $\{a + bi \mid a, b \in \mathbb{Q}\}$ forms a field with the usual operations of addition and multiplication of complex numbers. (Here $i = \sqrt{-1}$.)
- (25) (Fields have no zero divisors) Using the field axioms, show that in any field: if $a \cdot b = 0$ then a = 0 or b = 0.
- (26) (Solving equations in fields) Solve the following equations in $\mathbb{Z}/7\mathbb{Z}$: (i) $x^2 = 2$, (ii) $x^2 = 3$.
- (27) Is $\mathbb{Z}/7\mathbb{Z}$ algebraically closed? (An answer without proof receives no credit.)
- (28) Factor the polynomial $x^2 2$ over $\mathbb{Z}/7\mathbb{Z}$.
- (29) Find the inverse of 35 in $\mathbb{Z}/24\mathbb{Z}$ and the inverse of 24 in $\mathbb{Z}/35\mathbb{Z}$.
- (30) Solve the equation 24x + 5 = 0 in $\mathbb{Z}/35\mathbb{Z}$.
- (31) What is the smallest subfield of \mathbb{C} containing the rational numbers and *i*.
- (32) What is the smallest subfield of \mathbb{C} containing the rational numbers and $\sqrt[4]{5}$.
- (33) What is the smallest subfield of \mathbb{C} containing the rational numbers and $\sqrt{2}$ and *i*.
- (34) Find addition and multiplication tables describing a field \mathbb{F} consisting of exactly 4 elements $\{0, 1, a, b\}$. (Consider all the field axioms, including the distributive law.)

4. References

[GH] J.R.J. Groves and C.D. Hodgson, Notes for 620-297: Group Theory and Linear Algebra, 2009.

[Ra] A. Ram, Notes in abstract algebra, University of Wisconsin, Madison 1994.