Week 7 Problem Sheet Group Theory and Linear algebra Semester II 2011

Arun Ram Department of Mathematics and Statistics University of Melbourne Parkville, VIC 3010 Australia aram@unimelb.edu.au

Last updates: 1 September 2011

(1) Week 7: Vocabulary
(2) Week 7: Results
(3) Week 7: Examples and computations

1. Week 7: Vocabulary

- (1) Define a group and give some illustrative examples.
- (2) Define abelian group and give some illustrative examples.
- (3) Define permutations and give some illustrative examples.
- (4) Define a symmetric group and give some illustrative examples.
- (5) Define a cyclic group and give some illustrative examples.
- (6) Define cyclic subgroup generated by g and give some illustrative examples.
- (7) Define $GL_n(R)$ and give some illustrative examples.
- (8) Define $O_n(R)$ and give some illustrative examples.
- (9) Define $U_n(\mathbb{C})$ and give some illustrative examples.
- (10) Define $SL_n(R)$ and give some illustrative examples.
- (11) Define $SO_n(R)$ and give some illustrative examples.
- (12) Define $SU_n(\mathbb{C})$ and give some illustrative examples.
- (13) Define subgroup and give some illustrative examples.
- (14) Define subgroup generated by g_1, \ldots, g_k and give some illustrative examples.
- (15) Define order of a group and order of an element of a group and give some illustrative examples.

- (16) Define homomorphism and isomorphism and give some illustrative examples.
- (17) Define product of groups and give some illustrative examples.
- (18) Define kernel and image of a group homomorphism and give some illustrative examples.

2. Week 7: Results

- (1) Let G be a group. Show that the identity of G is unique.
- (2) Let G be a group and let $g, h \in G$. Show that $(gh)^{-1} = h^{-1}g^{-1}$.
- (3) Let G be a group and let $g, x, y \in G$. Show that if gx = gy then x = y.
- (4) Let G be a group and let $g, h \in G$. Show that there exist unique $x, y \in G$ such that gx = h and yg = h.
- (5) Let G be a subgroup. Show that H is a subgroup of G if and only if H is a subset of G such that

if
$$h_1, h_2 \in H$$
 then $h_1h_2 \in H$ and $h_1^{-1} \in H$.

(6) Let G be a subgroup. Show that H is a subgroup of G if and only if H is a subset of G such that

if $h_1, h_2 \in H$ then $h_1 h_2^{-1} \in H$.

- (7) Show that every subgroup of a cyclic group is cyclic.
- (8) Show that if G is a cyclic group then G is isomorphic to \mathbb{Z} or there exists $n \in \mathbb{Z}_{>0}$ such that G is isomorphic to $\mathbb{Z}/n\mathbb{Z}$.
- (9) Let $f: G \to H$ be a group homomorphism. Show that f(1) = 1.
- (10) Let $f: G \to H$ be a group homomorphism and let $g \in G$. Show that $f(g^{-1}) = f(g)^{-1}$.
- (11) Let $f: G \to H$ be a group homomorphism and let $g \in G$. Show that the order of g is equal to the order of f(g).
- (12) Let G and H be groups. Prove that $G \times H$ with operation defined by $(g_1, h_1)(g_2, h_2) = (g_1g_2, h_1h_2)$ is a group.

3. Week 7: Examples and computations

(1) Let *n* be a positive integer. Show that the set of all complex *n*th roots of unity $\{z \in \mathbb{C} \mid z^n = 1\}$ forms a group under multiplication.

- (2) Let U(n) be the set of $n \times n$ unitary matrices. Show that U(n) is a group under matrix multiplication.
- (3) Let *G* be a group and let $x, y, z, w \in G$. Assume that $xyz^{-1}w = 1$. Solve for *y*.
- (4) Compute the following products of permutations: (123)(456) * (12)(34)(56) and (12) * (246) * (123654).
- (5) Write out the multiplication table for the group S_3 of permutations of $\{1, 2, 3\}$ using cycle notation.
- (6) Let G be a group and let x, y, z ∈ G. Assume that xyz = 1. Does it follow that yzx = 1? Does it follow that yxz = 1?
- (7) Assume that G is a group such that if $g \in G$ then $g^2 = 1$. Show that G is abelian.
- (8) Show that \mathbb{Z} with the operation of addition is a group.
- (9) Show that \mathbb{Q} with the operation of addition is a group.
- (10) Show that \mathbb{R} with the operation of addition is a group.
- (11) Show that \mathbb{C} with the operation of addition is a group.
- (12) Show that \mathbb{Z} with the operation of multiplication is not a group.
- (13) Show that \mathbb{Q} with the operation of multiplication is not a group.
- (14) Show that \mathbb{R} with the operation of multiplication is not a group.
- (15) Show that \mathbb{C} with the operation of multiplication is not a group.
- (16) Show that $M_n(\mathbb{R})$ with the operation of addition is a group.
- (17) Show that $GL_n(\mathbb{R})$ is a group.
- (18) Show that $O_n(\mathbb{R})$ is a group.
- (19) Show that $SL_n(\mathbb{R})$ is a group.
- (20) Show that $SO_n(\mathbb{R})$ is a group.
- (21) Describe the elements of $GL_1(\mathbb{R})$ and $GL_2(\mathbb{R})$.
- (22) Describe the elements of $GL_1(\mathbb{Z})$ and $GL_2(\mathbb{Z})$.
- (23) Describe the elements of $SL_1(\mathbb{R})$ and $SL_2(\mathbb{R})$.
- (24) Describe the elements of $SL_1(\mathbb{Z})$ and $SL_2(\mathbb{Z})$.

- (25) Describe the elements of $O_1(\mathbb{R})$ and $O_2(\mathbb{R})$.
- (26) Describe the elements of $O_1(\mathbb{Z})$ and $O_2(\mathbb{Z})$.
- (27) Describe the elements of $SO_1(\mathbb{R})$ and $SO_2(\mathbb{R})$.
- (28) Describe the elements of $SO_1(\mathbb{Z})$ and $SO_2(\mathbb{Z})$.
- (29) Describe the elements of $U_1(\mathbb{C})$, $SU_1(\mathbb{C})$, $U_2(\mathbb{C})$, and $SU_2(\mathbb{C})$.
- (30) Describe the elements of $O_n(\mathbb{Z})$.
- (31) Describe the elements of $SO_n(\mathbb{Z})$.
- (32) Find the multiplication tables of all groups of order 2.
- (33) Find the multiplication tables of all groups of order 3.
- (34) Find the multiplication tables of all groups of order 4.
- (35) Find the multiplication tables of all groups of order 5.
- (36) Write the permutation $1 \rightarrow 2, 2 \rightarrow 3, 3 \rightarrow 1$, in diagram notation, in two line notation, in cycle notation, and in matrix notation.
- (37) Write the permutation $1 \rightarrow 3, 2 \rightarrow 2, 3 \rightarrow 1$, in diagram notation, in two line notation, in cycle notation, and in matrix notation.
- (38) Write the permutation $1 \rightarrow 3, 2 \rightarrow 4, 3 \rightarrow 5, 4 \rightarrow 2, 5 \rightarrow 1$, in diagram notation, in two line notation, in cycle notation, and in matrix notation.
- (39) Calculate the products

(1	2	3	(1	2	3)	and	(1	2	3	4)	(1	2	3	4	
3	2	1)	2	3	1)	and	3	1	2	4)	2	3	4	1)	•

- (40) Write all elements of the symmetric group S_3 in diagram notation, in two line notation, in cycle notation, and in matrix notation.
- (41) Determine whether the set of positive real numbers with the operation of addition is a group.
- (42) Determine whether the set of $n \times n$ matrices over the real numbers with the operation of multiplication is a group.
- (43) Let G be a group and let $x, y \in G$. Show that there exist unique w and z in G such that w x = y and xz = y. Is w = z?
- (44) Show that the set $\{z \in \mathbb{C} \mid n \in \mathbb{Z}_{>0}, z^n = 1\}$ forms a group under multiplication.

- (45) Compute the following products of permutations: (123)(456) * (134)(25)(6), (12345) * (1234567) and (123456) * (123
- (46) Let $X = \mathbb{R} \{0, 1\}$. Show that the following functions from X to X with the operation of composition of functions form a group:

$$f = \frac{1}{1-x}$$
, $g = \frac{x-1}{x}$, $h = \frac{1}{x}$, $i = x$, $j = 1-x$, $k = \frac{x}{x-1}$.

- (47) Show that $2\mathbb{Z}$ is a subgroup of the group \mathbb{Z} .
- (48) Show that the set of negative integers is not a subgroup of the group \mathbb{Z} .
- (49) Let G be a group and let $1 \in G$. Show that $\{1\}$ is a subgroup of G.
- (50) Show that $\{(1), (123), (132)\}$ is a subgroup of S_3 .
- (51) Show that $\{(1), (12), (23), (13)\}$ is not a subgroup of S_3 .
- (52) Let G be a group and let $g \in G$. Show that $\{g^n \mid n \in \mathbb{Z}\}$ is a subgroup of G.
- (53) Let $n \in \mathbb{Z}_{>0}$. Calculate the order of $\mathbb{Z}/n\mathbb{Z}$, Always justify your answers.
- (54) Let $n \in \mathbb{Z}_{>0}$. Calculate the order of S_n . Always justify your answers.
- (55) Calculate the orders of the elements of $\mathbb{Z}/12\mathbb{Z}$, Always justify your answers.
- (56) Calculate the orders of the elements of S_4 , Always justify your answers.
- (57) Show that S_3 is nonabelian and noncyclic.
- (58) Define the function $\exp: \mathbb{R} \to \mathbb{R}_{>0}$ and prove that it is a group isomorphism.
- (59) Prove that $\mathbb{Z}/4\mathbb{Z}$ and $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ are nonisomorphic groups of order 4.
- (60) Prove that $\mathbb{Z}/6\mathbb{Z}$ and $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$ are isomorphic groups of order 6.
- (61) Prove that $\mathbb{Z}/6\mathbb{Z}$ and S_3 are nonisomorphic groups of order 6.
- (62) Prove that the groups $\mathbb{Z}/8\mathbb{Z}$ and $\mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ and $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ are all nonisomorphic.
- (63) Calculate the order of $O_n(\mathbb{Z})$.
- (64) Calculate the order of $SO_n(\mathbb{Z})$.
- (65) Find the order of the element (123)(4567)(89) in S_{10} .
- (66) Find the order of the element (14)(23567) in S_7 .

- (67) Find the orders of the elements 6, 12, 11, and 14 in $\mathbb{Z}/20\mathbb{Z}$.
- (68) Find the orders of the elements 2, 12 and 8 in $\mathbb{Z}/13\mathbb{Z}$.
- (69) Let G be a group and let $g \in G$. Show that the order of g is equal to the order of g^{-1} .
- (70) Let G be a commutative group and let $g, h \in G$. Show that if g and h have finite order then gh has finite order.

4. References

[GH] J.R.J. Groves and C.D. Hodgson, Notes for 620-297: Group Theory and Linear Algebra, 2009.

[Ra] A. Ram, Notes in abstract algebra, University of Wisconsin, Madison 1994.