Week 8 Problem Sheet Group Theory and Linear algebra Semester II 2011

Arun Ram
Department of Mathematics and Statistics
University of Melbourne
Parkville, VIC 3010 Australia
aram@unimelb.edu.au

Last updates: 1 September 2011
(1) Week 8: Vocabulary
(2) Week 8: Results
(3) Week 8: Examples and computations

1. Week 8: Vocabulary

(1) Let G be a group and let H be a subgroup. Define a left coset of H, a right coset of H and the index of H in G and give some illustrative examples.
(2) Let G be a group and let H be a subgroup. Define G / H and give some illustrative examples.
(3) Let G be a group. Define normal subgroup of G and give some illustrative examples.
(4) Let G be a group and let H be a normal subgroup. Define the quotient group G / H and give some illustrative examples.

2. Week 8: Results

(1) Let G be a group and let H be a subgroup of G. Let $a, b \in G$. Show that $H a=H b$ if and only if $a b^{-1} \in H$.
(2) Let G be a group and let H be a subgroup of G. Show that each element of G lies in exactly one coset of G.
(3) Let G be a group and let H be a subgroup of G. Let $a, b \in G$. Show that the function f : $H a \rightarrow H b$ given by $f(h a)=h b$ is a bijection.
(4) Let G be a group and let H be a subgroup of G. Show that G / H is a partition of G.
(5) Let G be a group and let H be a subgroup of G. Let $g \in G$. Show that $g H$ and H have the same number of elements.
(6) Let G be a group of finite order and let H be a subgroup of G. Show that $\operatorname{Card}(H)$ divides $\operatorname{Card}(G)$.

Let G be a group of finite order and let $g \in G$. Show that the order of g divides the order of G.
(8) Let G be a finite group and let $n=\operatorname{Card}(G)$. Show that if $g \in G$ then $g^{n}=1$.
(9) Let p be a prime positive integer. Show that if a is an integer which is not a multiple of p then $a^{p-1}=1 \bmod p$.
(10) Let p be a prime positive integer. Let G be a group of order p. Show that G is isomorphic to $\mathbb{Z} / p \mathbb{Z}$.
(11) Let G be a group and let H be a subgroup of G. Show that H is a normal subgroup of G if and only if H satisfies

$$
\text { if } g \in G \quad \text { then } \quad H g=g H
$$

(12) Let G be a group and let H be a subgroup of G. Show that H is a normal subgroup of G if and only if H satisfies

$$
\text { if } g \in G \quad \text { then } g H g^{-1}=H
$$

(13) Let G be a group and let H be a normal subgroup of G. Show that if $a, b \in G$ then HaH $b=H a b$.
(14) Let G be a group and let H be a normal subgroup of G. Show that G / H with operation given by $\left(g_{1} H\right)\left(g_{2} H\right)=g_{1} g_{2} H$ is a group.
(15) Let $f: G \rightarrow H$ be a group homomorphism. Show that $\operatorname{ker} f$ is a normal subgroup of G.

Let $f: G \rightarrow H$ be a group homomorphism. Show that $\operatorname{im} f$ is a subgroup of H.
(17) Let $f: G \rightarrow H$ be a group homomorphism. Show that f is injective if and only if ker f $=\{1\}$.

Let G be a group and let H be a normal subgroup of G. Let $f: G \rightarrow G / H$ be given by $f($ $g)=g H$. Show that
(a) f is a group homomorphism,
(b) $\operatorname{ker} f=H$,
(c) $\operatorname{im} f=G / H$.
(19) Let $f: G \rightarrow H$ be a group homomorphism. Show that $G / \operatorname{ker} f \cong \operatorname{im} f$.

3. Week 8: Examples and computations

(1) Let

$$
A=\left(\begin{array}{cc}
0 & 1 \\
-1 & -1
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

Show that A has order 3 , that B has order 4 and that $A B$ has infinite order.
(2) Assume that G is a group such that

$$
\text { if } g, h \in G \quad \text { then } \quad(g h)^{2}=g^{2} h^{2} .
$$

Show that G is commutative.
(3) Decide whether the positive integers is a subgroup of the integers with operation addition.
(4) Decide whether the set of permutations which fix 1 is a subgroup of S_{n}.
(5) List all subgroups of $\mathbb{Z} / 12 \mathbb{Z}$.
(6) Let G be a group, let H be a subgroup and let $g \in G$. Show that $g H g^{-1}=\left\{g h g^{-1} \mid h \in\right.$ $H\}$ is a subgroup of G.
(7) Let G be a group and let $g \in G$. Let $f: G \rightarrow G$ be given by $f(h)=g h g^{-1}$. Show that f is an isomorphism.
(8) Show that $\mathrm{SO}_{2}(\mathbb{R})$ is isomorphic to $U_{1}(\mathbb{C})$.
(9) Show that $(\mathbb{R},+)$ and $\left(\mathbb{R}^{\times}, \times\right)$are not isomorphic.
(10) Show that $(\mathbb{Z},+)$ and $(\mathbb{Q},+)$ are not isomorphic.
(11) Show that $(\mathbb{Z},+)$ and $\left(\mathbb{Q}_{>0}, \times\right)$ are not isomorphic.
(12) Show that $\mathrm{SL}_{2}(\mathbb{Z})$ is a subgroup of $\mathrm{GL}_{2}(\mathbb{R})$.
(13) Find the orders of elements $1,-1,2$ and i in the group $\mathbb{C}^{\times}=\mathbb{C}-\{0\}$ with operation multiplication.
(14) Find the orders of elements in $\mathbb{Z} / 6 \mathbb{Z}$.
(15) Find the subgroups of $\mathbb{Z} / 6 \mathbb{Z}$.
(16) Write the element (345) in S_{5} in diagram notation, two line notation, and as a permutation matrix, and determine its order.
(17) Write the element (13425) in S_{5} in diagram notation, two line notation, and as a permutation matrix, and determine its order.
(30) Let G be a group with less than 100 elements which has subgroups of orders 10 and 25 . Find the order of G.
Write the element (13)(24) in S_{5} in diagram notation, two line notation, and as a permutation matrix, and determine its order.

Write the element (12)(345) in S_{5} in diagram notation, two line notation, and as a permutation matrix, and determine its order.

Let n be a positive integer. Determine if the group of complex nth roots of unity $\{z \in \mathbb{C}$ $\left.\mid z^{n}=1\right\}$ (with operation multiplication) is a cyclic group.

Determine if the rational numbers \mathbb{Q} with operation addition is a cyclic group.
Find the order of the element $(1,2)$ in the group $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 8 \mathbb{Z}$.
Show that the group $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 6 \mathbb{Z}$ and the group $\mathbb{Z} / 12 \mathbb{Z}$ are not isomorphic.
Show that the group $\mathbb{Z} \times \mathbb{Z}$ and the group \mathbb{Q} with operation addition are not isomorphic.
Let G be a group and let $a, b \in G$. Assume that $a b=b a$.
(a) Prove, by induction, that if $n \in \mathbb{Z}_{>0}$ then $a b^{n}=b^{n} a$,
(b) Prove, by induction, that if $n \in \mathbb{Z}_{>0}$ then $a^{n} b^{n}=b^{n} a^{n}$,
(c) Show that the order of $a b$ divides the least common multiple of the order of a and the order of b.
(d) Show that if $a=(12)$ and $b=(13)$ then the order of $a b$ does not divide the least common multiple of the order of a and the order of b.

Show that the order of $\mathrm{GL}_{2}(\mathbb{Z} / 2 \mathbb{Z})$ is 6 .
Let p be a prime positive integer. Find the order of the $\operatorname{group} \mathrm{GL}_{2}(\mathbb{Z} / p \mathbb{Z})$.
Let $n \in \mathbb{Z}_{>0}$ and let p be a prime positive integer. Find the order of the group $\mathrm{GL}_{n}(\mathbb{Z} / p$ \mathbb{Z}).

Show that the group $\mathbb{Z}[x]$ of polynomials with integer coefficients with operation addition is isomorphic to the group $\mathbb{Q}_{>0}$ with operation multiplication.

Let G be a group and let H and K be subgroups of G. Show that $|H \cap K|$ is a common divisor of $|H|$ and $|K|$.

Let G be a group and let H and K be subgroups of G. Assume that $|H|=7$ and $|K|=29$. Show that $H \cap K=\{1\}$.

Let H be the subgroup of $G=\mathbb{Z} / 6 \mathbb{Z}$ generated by 3 . Compute the right cosets of H in G and the index $|G: H|$.

Let H be the subgroup of $G=\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 4 \mathbb{Z}$ generated by $(1,0)$. Find the order of each element in G / H and identify the group G / H.

Let H be the subgroup of $G=\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 4 \mathbb{Z}$ generated by $(0,2)$. Find the order of each element in G / H and identify the group G / H.

Let $n \in \mathbb{Z}_{\geq 2}$ and define $f: \mathrm{GL}_{n}(\mathbb{C}) \rightarrow \mathrm{GL}_{n}(\mathbb{C})$ by $f(A)=A^{t}$. Determine whether f is a group homomorphism.

Let $n \in \mathbb{Z}_{\geq 2}$ and define $f: \mathrm{GL}_{n}(\mathbb{C}) \rightarrow \mathrm{GL}_{n}(\mathbb{C})$ by $f(A)=\left(A^{-1}\right)^{t}$. Determine whether f is a group homomorphism.

Let $n \in \mathbb{Z}_{\geq 2}$ and define $f: \mathrm{GL}_{n}(\mathbb{C}) \rightarrow \mathrm{GL}_{n}(\mathbb{C})$ by $f(A)=A^{2}$. Determine whether f is a group homomorphism.

Let B be the subgroup of $\mathrm{GL}_{2}(\mathbb{R})$ of upper triangular matrices and let T be the subgroup of $\mathrm{GL}_{2}(\mathbb{R})$ of diagonal matrices. Let $f: B \rightarrow T$ be given by

$$
f\left(\left(\begin{array}{ll}
a & b \\
0 & c
\end{array}\right)\right)=\left(\begin{array}{ll}
a & 0 \\
0 & c
\end{array}\right)
$$

Show that f is a group homomorphism. Find $N=\operatorname{ker} f$ and identify the quotient B / N.
Assume G is a cyclic group and let N be a subgroup of G. Show that N is a normal subgroup of G and that G / N is a cyclic group.

Simplify $3^{52} \bmod 53$.
Suppose that $2^{147052}=76511 \bmod 147053$. What can you conclude about $147053 ?$
Show that if $f: G \rightarrow H$ is a group homomorphism and $a_{1}, a_{2}, \ldots, a_{n} \in G$ then $f\left(a_{1} a_{2} \ldots\right.$ $\left.a_{n}\right)=f\left(a_{1}\right) f\left(a_{2}\right) \cdots f\left(a_{n}\right)$.

Describe all group homomorphisms $f: \mathbb{Z} \rightarrow \mathbb{Z}$.
Show that $\mathrm{SO}_{n}(\mathbb{R})$ is a normal subgroup of $\mathrm{O}_{n}(\mathbb{R})$ by finding a homomorphism $f: \mathrm{O}_{n}(\mathbb{R})$ $\rightarrow\{ \pm 1\}$ with kernel $\mathrm{SO}_{n}(\mathbb{R})$. Identify the quotient $\mathrm{O}_{n}(\mathbb{R}) / \mathrm{SO}_{n}(\mathbb{R})$.

Show that $\mathrm{SU}_{n}(\mathbb{C})$ is a normal subgroup of $\mathrm{U}_{n}(\mathbb{C})$ by finding a homomorphism $f: \mathrm{U}_{n}(\mathbb{C})$ $\rightarrow \mathrm{U}_{1}(\mathbb{C})$ with kernel $\mathrm{SU}_{n}(\mathbb{C})$. Identify the quotient $\mathrm{U}_{n}(\mathbb{C}) / \mathrm{SU}_{n}(\mathbb{C})$.

Let G be a group and let H be a subgroup of G. Let $f: G / H \rightarrow H \backslash G$ be given by $f(a H)$ $=H a^{-1}$. Show that f is a function and that f is a bijection.

Let $G=\mathbb{Z}$ and $H=2 \mathbb{Z}$. Compute the cosets of H in G and the index $|G: H|$.
Let $G=S_{3}$ and let H be the subgroup generated by (123). Compute the cosets of H in G and the index $|G: H|$.

Let $G=S_{3}$ and let H be the subgroup generated by (12). Compute the cosets of H in G and the index $|G: H|$.

Let $G=\mathrm{GL}_{2}(\mathbb{R})$ and let $H=\mathrm{SL}_{2}(\mathbb{R})$. Compute the cosets of H in G and the index $\mid G: H$ ।.

Let G be the subgroup of $\mathrm{GL}_{2}(\mathbb{R})$ given by

$$
G=\left\{\left.\left(\begin{array}{ll}
x & y \\
0 & 1
\end{array}\right) \right\rvert\, x, y \in \mathbb{R}, x>0\right\}
$$

Let H be the subgroup of G given by

$$
H=\left\{\left.\left(\begin{array}{ll}
z & 0 \\
0 & 1
\end{array}\right) \right\rvert\, z \in \mathbb{R}, z>0\right\}
$$

Each element of G can be identified with a point (x, y) of \mathbb{R}^{2}. Use this to describe the right cosets of H in G geometrically. Do the same for the left cosets of H in G.

Consider the set $A X=B$ of linear equations where X and B are column vectors, X is the matrix of unknowns, and A the matrix of coefficients. Let W be the subspace of \mathbb{R}^{n} which is the set of solutions of the homogeneous equations $A X=0$. Show that the set of solutions of $A X=B$ is either empty or is a coset of W in the group \mathbb{R}^{n} (with operation addition).

Let H be a subgroup of index 2 in a group G. Show that if $a, b \in G$ and $a \notin H$ and $b \notin$ H then $a b \in H$.

Let G be a group. Let H be a subgroup of G such that if $a, b \in G$ and $a \notin H$ and $b \notin H$ then $a b \in H$. Show that H has index 2 in G.

Let G be a group of order $841=(29)^{2}$. Assume that G is not cyclic. Show that if $g \in G$ then $g^{29}=1$.

Show that the subgroup $\{(1),(123),(132)\}$ of S_{3} is a normal subgroup.
Show that the subgroup $\{(1),(12)\}$ of S_{3} is not a normal subgroup.
Show that $\mathrm{SL}_{n}(\mathbb{C})$ is a normal subgroup of $\mathrm{GL}_{n}(\mathbb{C})$.
Let G be a group. Show that $\{1\}$ and G are normal subgroups of G.

Show that the set of matrices $H=\left\{\left.\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right) \right\rvert\, a d \neq 0\right\}$ is a subgroup of GL2 (\mathbb{R}) and that the set of matrices $K=\left\{\left.\left(\begin{array}{ll}1 & b \\ 0 & 1\end{array}\right) \right\rvert\, b \in \mathbb{R}\right\}$ is a normal subgroup of H.
(69) Let G be a group and let H be a subgroup of G. Show that $H H=H$.
(70) Let G be a group and let K and L be normal subgroups of G. Show that $K \cap L$ is a normal subgroup of G.
(71) Let G be a group and let n be a positive integer. Assume that H is the only subgroup of G of order n. Show that H is a normal subgroup of G.
(72) Let G be an abelian group and let N be a normal subgroup of G. Show that G / N is abelian.
Show that every subgroup of an abelian group is normal.
Write down the cosets in $\mathrm{GL}_{n}(\mathbb{C}) / \mathrm{SL}_{n}(\mathbb{C})$ then show that

$$
\begin{equation*}
\mathrm{GL}_{n}(\mathbb{C}) / \mathrm{SL}_{n}(\mathbb{C}) \simeq \mathrm{GL}_{1}(\mathbb{C}) \tag{62}
\end{equation*}
$$

Show that the function $\operatorname{det}: \mathrm{GL}_{n}(\mathbb{C}) \rightarrow \mathrm{GL}_{1}(\mathbb{C})$ given by taking the determinant of a matrix is a homomorphism.

Show that the function $f: \mathrm{GL}_{1}(\mathbb{C}) \rightarrow \mathrm{GL}_{1}(\mathbb{R})$ given by $f(z)=|z|$ is a homomorphism.
Show that the determinant function det: $\mathrm{GL}_{n}(\mathbb{C}) \rightarrow \mathrm{GL}_{1}(\mathbb{C})$ is surjective and has kernel $\mathrm{SL}_{n}(\mathbb{C})$.

Show that the homomorphism $f: \mathrm{GL}_{1}(\mathbb{C}) \rightarrow \mathrm{GL}_{1}(\mathbb{R})$ given by $f(z)=|z|$ has image $\mathbb{R}_{>0}$ and kernel $\mathrm{U}_{1}(\mathbb{C})$ (the group of 1×1 unitary matrices. Conclude that

$$
\mathrm{GL}_{1}(\mathbb{C}) / \mathrm{U}_{1}(\mathbb{C}) \simeq \mathbb{R}_{>0}
$$

Show that the homomorphism

$$
\begin{array}{rlc}
f: \mathbb{R} & \rightarrow & \mathrm{SO}_{2}(\mathbb{R}) \tag{67}\\
\theta & \rightarrow\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right)
\end{array}
$$

is surjective with kernel $2 \pi \mathbb{Z}$. Conclude that

$$
\begin{equation*}
\mathbb{R} /(2 \pi \mathbb{Z}) \simeq \mathrm{SO}_{2}(\mathbb{R}) . \tag{68}
\end{equation*}
$$

Let G be a cyclic group and let N be a normal subgroup of G. Show that G / N is cyclic.
(74) Find surjective homomorphisms from $\mathbb{Z} / 8 \mathbb{Z}$ to $\mathbb{Z} / 8 \mathbb{Z}, \mathbb{Z} / 4 \mathbb{Z}, \mathbb{Z} / 2 \mathbb{Z}$, and $\{1\}$ (the group with one element).
(75) Let \mathbb{R} denote the group of real numbers with the operation of addition and let \mathbb{Q} and \mathbb{Z} be the subgroups of rational numbers and integers, respectively. Show that it is possible to regard \mathbb{Q} / \mathbb{Z} as a subgroup of \mathbb{R} / \mathbb{Z} and show that this subgroup consists exactly of the elements of finite order in \mathbb{R} / \mathbb{Z}.

4. References

[GH] J.R.J. Groves and C.D. Hodgson, Notes for 620-297: Group Theory and Linear Algebra, 2009.
[Ra] A. Ram, Notes in abstract algebra, University of Wisconsin, Madison 1994.

