Week 8 Problem Sheet Group Theory and Linear algebra Semester II 2011

Arun Ram Department of Mathematics and Statistics University of Melbourne Parkville, VIC 3010 Australia aram@unimelb.edu.au

Last updates: 1 September 2011

(1) Week 8: Vocabulary
(2) Week 8: Results
(3) Week 8: Examples and computations

1. Week 8: Vocabulary

- (1) Let G be a group and let H be a subgroup. Define a left coset of H, a right coset of H and the index of H in G and give some illustrative examples.
- (2) Let G be a group and let H be a subgroup. Define G/H and give some illustrative examples.
- (3) Let G be a group. Define normal subgroup of G and give some illustrative examples.
- (4) Let G be a group and let H be a normal subgroup. Define the quotient group G/H and give some illustrative examples.

2. Week 8: Results

- (1) Let G be a group and let H be a subgroup of G. Let $a, b \in G$. Show that Ha = Hb if and only if $ab^{-1} \in H$.
- (2) Let G be a group and let H be a subgroup of G. Show that each element of G lies in exactly one coset of G.
- (3) Let G be a group and let H be a subgroup of G. Let $a, b \in G$. Show that the function f: $Ha \rightarrow Hb$ given by f(ha) = hb is a bijection.
- (4) Let G be a group and let H be a subgroup of G. Show that G/H is a partition of G.
- (5) Let G be a group and let H be a subgroup of G. Let $g \in G$. Show that gH and H have the same number of elements.

- (6) Let G be a group of finite order and let H be a subgroup of G. Show that Card(H) divides Card(G).
- (7) Let G be a group of finite order and let $g \in G$. Show that the order of g divides the order of G.
- (8) Let G be a finite group and let n = Card(G). Show that if $g \in G$ then $g^n = 1$.
- (9) Let p be a prime positive integer. Show that if a is an integer which is not a multiple of p then $a^{p-1} = 1 \mod p$.
- (10) Let p be a prime positive integer. Let G be a group of order p. Show that G is isomorphic to $\mathbb{Z}/p\mathbb{Z}$.
- (11) Let G be a group and let H be a subgroup of G. Show that H is a normal subgroup of G if and only if H satisfies

if
$$g \in G$$
 then $Hg = gH$.

(12) Let G be a group and let H be a subgroup of G. Show that H is a normal subgroup of G if and only if H satisfies

if
$$g \in G$$
 then $gHg^{-1} = H$.

- (13) Let G be a group and let H be a normal subgroup of G. Show that if $a, b \in G$ then HaH b = Hab.
- (14) Let G be a group and let H be a normal subgroup of G. Show that G/H with operation given by $(g_1H)(g_2H) = g_1g_2H$ is a group.
- (15) Let $f: G \to H$ be a group homomorphism. Show that ker f is a normal subgroup of G.
- (16) Let $f: G \to H$ be a group homomorphism. Show that im f is a subgroup of H.
- (17) Let $f: G \to H$ be a group homomorphism. Show that f is injective if and only if ker $f = \{1\}$.
- (18) Let G be a group and let H be a normal subgroup of G. Let $f: G \to G/H$ be given by f(g) = gH. Show that
 - (a) f is a group homomorphism,
 - (b) ker f = H,
 - (c) $\operatorname{im} f = G/H$.
- (19) Let $f: G \to H$ be a group homomorphism. Show that $G/\ker f \cong \operatorname{im} f$.

3. Week 8: Examples and computations

(1) Let

$$A = \begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

Show that A has order 3, that B has order 4 and that AB has infinite order.

(2) Assume that G is a group such that

if $g, h \in G$ then $(gh)^2 = g^2 h^2$.

Show that *G* is commutative.

- (3) Decide whether the positive integers is a subgroup of the integers with operation addition.
- (4) Decide whether the set of permutations which fix 1 is a subgroup of S_n .
- (5) List all subgroups of $\mathbb{Z}/12\mathbb{Z}$.
- (6) Let G be a group, let H be a subgroup and let $g \in G$. Show that $gHg^{-1} = \{ghg^{-1} \mid h \in H\}$ is a subgroup of G.
- (7) Let G be a group and let $g \in G$. Let $f: G \to G$ be given by $f(h) = ghg^{-1}$. Show that f is an isomorphism.
- (8) Show that $SO_2(\mathbb{R})$ is isomorphic to $U_1(\mathbb{C})$.
- (9) Show that $(\mathbb{R}, +)$ and $(\mathbb{R}^{\times}, \times)$ are not isomorphic.
- (10) Show that $(\mathbb{Z}, +)$ and $(\mathbb{Q}, +)$ are not isomorphic.
- (11) Show that $(\mathbb{Z}, +)$ and $(\mathbb{Q}_{>0}, \times)$ are not isomorphic.
- (12) Show that $SL_2(\mathbb{Z})$ is a subgroup of $GL_2(\mathbb{R})$.
- (13) Find the orders of elements 1, -1, 2 and *i* in the group $\mathbb{C}^{\times} = \mathbb{C} \{0\}$ with operation multiplication.
- (14) Find the orders of elements in $\mathbb{Z}/6\mathbb{Z}$.
- (15) Find the subgroups of $\mathbb{Z}/6\mathbb{Z}$.
- (16) Write the element (345) in S_5 in diagram notation, two line notation, and as a permutation matrix, and determine its order.
- (17) Write the element (13425) in S_5 in diagram notation, two line notation, and as a permutation matrix, and determine its order.

- (18) Write the element (13)(24) in S_5 in diagram notation, two line notation, and as a permutation matrix, and determine its order.
- (19) Write the element (12)(345) in S_5 in diagram notation, two line notation, and as a permutation matrix, and determine its order.
- (20) Let *n* be a positive integer. Determine if the group of complex *n*th roots of unity $\{z \in \mathbb{C} | z^n = 1\}$ (with operation multiplication) is a cyclic group.
- (21) Determine if the rational numbers Q with operation addition is a cyclic group.
- (22) Find the order of the element (1,2) in the group $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/8\mathbb{Z}$.
- (23) Show that the group $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/6\mathbb{Z}$ and the group $\mathbb{Z}/12\mathbb{Z}$ are not isomorphic.
- (24) Show that the group $\mathbb{Z} \times \mathbb{Z}$ and the group \mathbb{Q} with operation addition are not isomorphic.
- (25) Let G be a group and let $a, b \in G$. Assume that ab = ba.
 - (a) Prove, by induction, that if $n \in \mathbb{Z}_{>0}$ then $ab^n = b^n a$,
 - (b) Prove, by induction, that if $n \in \mathbb{Z}_{>0}$ then $a^n b^n = b^n a^n$,
 - (c) Show that the order of ab divides the least common multiple of the order of a and the order of b.

(d) Show that if a = (12) and b = (13) then the order of ab does not divide the least common multiple of the order of a and the order of b.

- (26) Show that the order of $GL_2(\mathbb{Z}/2\mathbb{Z})$ is 6.
- (27) Let *p* be a prime positive integer. Find the order of the group $GL_2(\mathbb{Z}/p\mathbb{Z})$.
- (28) Let $n \in \mathbb{Z}_{>0}$ and let p be a prime positive integer. Find the order of the group $GL_n(\mathbb{Z}/p \mathbb{Z})$.
- (29) Show that the group $\mathbb{Z}[x]$ of polynomials with integer coefficients with operation addition is isomorphic to the group $\mathbb{Q}_{>0}$ with operation multiplication.
- (30) Let G be a group with less than 100 elements which has subgroups of orders 10 and 25.Find the order of G.
- (31) Let G be a group and let H and K be subgroups of G. Show that $|H \cap K|$ is a common divisor of |H| and |K|.
- (32) Let *G* be a group and let *H* and *K* be subgroups of *G*. Assume that |H| = 7 and |K| = 29. Show that $H \cap K = \{1\}$.

- (33) Let *H* be the subgroup of $G = \mathbb{Z}/6\mathbb{Z}$ generated by 3. Compute the right cosets of *H* in *G* and the index |G:H|.
- (34) Let *H* be the subgroup of $G = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$ generated by (1,0). Find the order of each element in *G*/*H* and identify the group *G*/*H*.
- (35) Let *H* be the subgroup of $G = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$ generated by (0, 2). Find the order of each element in *G*/*H* and identify the group *G*/*H*.
- (36) Let $n \in \mathbb{Z}_{\geq 2}$ and define $f: \operatorname{GL}_n(\mathbb{C}) \to \operatorname{GL}_n(\mathbb{C})$ by $f(A) = A^t$. Determine whether f is a group homomorphism.
- (37) Let $n \in \mathbb{Z}_{\geq 2}$ and define $f: \operatorname{GL}_n(\mathbb{C}) \to \operatorname{GL}_n(\mathbb{C})$ by $f(A) = (A^{-1})^t$. Determine whether f is a group homomorphism.
- (38) Let $n \in \mathbb{Z}_{\geq 2}$ and define $f: \operatorname{GL}_n(\mathbb{C}) \to \operatorname{GL}_n(\mathbb{C})$ by $f(A) = A^2$. Determine whether f is a group homomorphism.
- (39) Let *B* be the subgroup of $GL_2(\mathbb{R})$ of upper triangular matrices and let *T* be the subgroup of $GL_2(\mathbb{R})$ of diagonal matrices. Let $f: B \to T$ be given by

$$f\!\left(\!\begin{pmatrix}a&b\\0&c\end{pmatrix}\!\right) = \!\begin{pmatrix}a&0\\0&c\end{pmatrix}.$$

Show that f is a group homomorphism. Find $N = \ker f$ and identify the quotient B/N.

- (40) Assume G is a cyclic group and let N be a subgroup of G. Show that N is a normal subgroup of G and that G/N is a cyclic group.
- (41) Simplify 3⁵² mod 53.
- (42) Suppose that $2^{147052} = 76511 \mod 147053$. What can you conclude about 147053?
- (43) Show that if $f: G \to H$ is a group homomorphism and $a_1, a_2, \dots, a_n \in G$ then $f(a_1 a_2 \cdots a_n) = f(a_1)f(a_2)\cdots f(a_n)$.
- (44) Describe all group homomorphisms $f: \mathbb{Z} \to \mathbb{Z}$.
- (45) Show that $SO_n(\mathbb{R})$ is a normal subgroup of $O_n(\mathbb{R})$ by finding a homomorphism $f: O_n(\mathbb{R})$ $\rightarrow \{\pm 1\}$ with kernel $SO_n(\mathbb{R})$. Identify the quotient $O_n(\mathbb{R})/SO_n(\mathbb{R})$.
- (46) Show that $SU_n(\mathbb{C})$ is a normal subgroup of $U_n(\mathbb{C})$ by finding a homomorphism $f: U_n(\mathbb{C})$ $\rightarrow U_1(\mathbb{C})$ with kernel $SU_n(\mathbb{C})$. Identify the quotient $U_n(\mathbb{C})/SU_n(\mathbb{C})$.
- (47) Let G be a group and let H be a subgroup of G. Let $f:G/H \to H \setminus G$ be given by $f(aH) = Ha^{-1}$. Show that f is a function and that f is a bijection.

- (48) Let $G = \mathbb{Z}$ and $H = 2\mathbb{Z}$. Compute the cosets of H in G and the index |G:H|.
- (49) Let $G = S_3$ and let *H* be the subgroup generated by (123). Compute the cosets of *H* in *G* and the index |G:H|.
- (50) Let $G = S_3$ and let H be the subgroup generated by (12). Compute the cosets of H in G and the index |G:H|.
- (51) Let $G = GL_2(\mathbb{R})$ and let $H = SL_2(\mathbb{R})$. Compute the cosets of H in G and the index |G:H|.
- (52) Let G be the subgroup of $GL_2(\mathbb{R})$ given by

$$G = \left\{ \begin{pmatrix} x & y \\ 0 & 1 \end{pmatrix} \middle| x, y \in \mathbb{R}, x > 0 \right\}$$

Let H be the subgroup of G given by

$$H = \left\{ \begin{pmatrix} z & 0 \\ 0 & 1 \end{pmatrix} \middle| z \in \mathbb{R}, z > 0 \right\}.$$

Each element of *G* can be identified with a point (x, y) of \mathbb{R}^2 . Use this to describe the right cosets of *H* in *G* geometrically. Do the same for the left cosets of *H* in *G*.

- (53) Consider the set AX = B of linear equations where X and B are column vectors, X is the matrix of unknowns, and A the matrix of coefficients. Let W be the subspace of \mathbb{R}^n which is the set of solutions of the homogeneous equations AX = 0. Show that the set of solutions of AX = B is either empty or is a coset of W in the group \mathbb{R}^n (with operation addition).
- (54) Let *H* be a subgroup of index 2 in a group *G*. Show that if $a, b \in G$ and $a \notin H$ and $b \notin H$ then $ab \in H$.
- (55) Let G be a group. Let H be a subgroup of G such that if $a, b \in G$ and $a \notin H$ and $b \notin H$ then $ab \in H$. Show that H has index 2 in G.
- (56) Let G be a group of order $841 = (29)^2$. Assume that G is not cyclic. Show that if $g \in G$ then $g^{29} = 1$.
- (57) Show that the subgroup $\{(1), (123), (132)\}$ of S_3 is a normal subgroup.
- (58) Show that the subgroup $\{(1), (12)\}$ of S_3 is not a normal subgroup.
- (59) Show that $SL_n(\mathbb{C})$ is a normal subgroup of $GL_n(\mathbb{C})$.
- (60) Let G be a group. Show that $\{1\}$ and G are normal subgroups of G.

- (61) Show that every subgroup of an abelian group is normal.
- (62) Write down the cosets in $\operatorname{GL}_n(\mathbb{C})/\operatorname{SL}_n(\mathbb{C})$ then show that $\operatorname{GL}_n(\mathbb{C})/\operatorname{SL}_n(\mathbb{C}) \simeq \operatorname{GL}_1(\mathbb{C}).$
- (63) Show that the function det: $GL_n(\mathbb{C}) \to GL_1(\mathbb{C})$ given by taking the determinant of a matrix is a homomorphism.
- (64) Show that the function $f: GL_1(\mathbb{C}) \to GL_1(\mathbb{R})$ given by f(z) = |z| is a homomorphism.
- (65) Show that the determinant function det: $GL_n(\mathbb{C}) \to GL_1(\mathbb{C})$ is surjective and has kernel $SL_n(\mathbb{C})$.
- (66) Show that the homomorphism $f: \operatorname{GL}_1(\mathbb{C}) \to \operatorname{GL}_1(\mathbb{R})$ given by f(z) = |z| has image $\mathbb{R}_{>0}$ and kernel $U_1(\mathbb{C})$ (the group of 1×1 unitary matrices. Conclude that

$$GL_1(\mathbb{C})/U_1(\mathbb{C}) \simeq \mathbb{R}_{>0}$$
.

(67) Show that the homomorphism

$$f: \mathbb{R} \to \operatorname{SO}_2(\mathbb{R})$$
$$\theta \to \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$$

is surjective with kernel $2\pi \mathbb{Z}$. Conclude that

$$\mathbb{R}/(2\pi\mathbb{Z})\simeq \mathrm{SO}_2(\mathbb{R})\,.$$

(68)
Show that the set of matrices
$$H = \left\{ \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \middle| ad \neq 0 \right\}$$
 is a subgroup of GL2(\mathbb{R}) and
that the set of matrices $K = \left\{ \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} \middle| b \in \mathbb{R} \right\}$ is a normal subgroup of H .

- (69) Let G be a group and let H be a subgroup of G. Show that HH = H.
- (70) Let G be a group and let K and L be normal subgroups of G. Show that $K \cap L$ is a normal subgroup of G.
- (71) Let G be a group and let n be a positive integer. Assume that H is the only subgroup of G of order n. Show that H is a normal subgroup of G.
- (72) Let G be an abelian group and let N be a normal subgroup of G. Show that G/N is abelian.
- (73) Let G be a cyclic group and let N be a normal subgroup of G. Show that G/N is cyclic.

- (74) Find surjective homomorphisms from $\mathbb{Z}/8\mathbb{Z}$ to $\mathbb{Z}/8\mathbb{Z}$, $\mathbb{Z}/4\mathbb{Z}$, $\mathbb{Z}/2\mathbb{Z}$, and {1} (the group with one element).
- (75) Let R denote the group of real numbers with the operation of addition and let Q and Z be the subgroups of rational numbers and integers, respectively. Show that it is possible to regard Q/Z as a subgroup of R/Z and show that this subgroup consists exactly of the elements of finite order in R/Z.

4. References

[GH] J.R.J. Groves and C.D. Hodgson, Notes for 620-297: Group Theory and Linear Algebra, 2009.

[Ra] A. Ram, Notes in abstract algebra, University of Wisconsin, Madison 1994.