Week 12 Problem Sheet
 Group Theory and Linear algebra Semester II 2011

Arun Ram
Department of Mathematics and Statistics
University of Melbourne
Parkville, VIC 3010 Australia
aram@unimelb.edu.au

Last updates: 1 September 2011

(1) Week 12: Questions from past exams

1. Week 12: Questions from past exams

(1) Consider the permutation group $G=\{(1),(12)(34),(13)(24),(14)(23)\}$ acting on a set X of four symbols 1,2,3,4.
(a) Describe the orbit and stabiliser of 1. Explain how the orbit/stabiliser theorem connects G and the orit and stabiliser.
(b) Find the orbit and stabiliser of 1 for the action of the subgroup $H=\{(1),(12)$ (34) \} acting on the set X.
(2)
(a) If a group of order 9 acts on a set X with 4 elements, explain why each orbit must consist of either one or three points.
(b) Explain why a group with 9 elements must have an element in the centre, which is different from the identity element.
(3) Let V be a complex finite dimensional inner product space and let $f: V \rightarrow V$ be a linear transformation satisfying $f^{*} f=f f^{*}$.
(a) State the spectral theorem and deduce that there is an orthonormal basis of V consisting of eigenvectors of f.
(b) Show that there is a linear transformation $g: V \rightarrow V$ so that $f=g^{2}$.
(c) Show that if every eigenvalue of f has absolute value 1 , then $f^{*}=f^{-1}$.
(d) Give an example to show that the result in (a) can fail if V is a real inner product space.
(4)
(a) Let A be an $n \times n$ complex Hermitian matrix. Define a product on \mathbb{C}^{n} by $(X$, $Y)=X A Y^{*}$, where $X, Y \in \mathbb{C}^{n}$ are written as row vectors. Show that this is an inner product if all the eigenvalues of A are positive real numbers.
(b) Show that if $A=B^{*} B$, where B is any invertible $n \times n$ complex matrix, then A is a Hermitian matrix and all the eigenvalues of A are real and positive.

Let G be the multiplicative group $\mathrm{GL}_{2}\left(\mathbb{F}_{2}\right)$ of invertible 2×2 matrices, where the entries are from the field with two elements $\mathbb{F}_{2}=\mathbb{Z} / 2 \mathbb{Z}$. There are six matrices which are elements of this group.

Let V be the 2-dimensional vector space over the field \mathbb{F}_{2} (V contains 4 vectors). Then G acts on V by usual multiplication of column vectors by matrices; $A: X \rightarrow A X$, where A $\in G, X \in V$.
(a) Find the orbits and stabilisers of the vectors $(0,0)^{t}$ and $(1,0)^{t}$ under the action of G, where the transpose t converts row vectors to column vectors.
(b) Use this action to construct a homomorphism φ from G into S_{4}, the permutation group on 4 symbols.
(c) Prove that the homomorphism φ is injective.
(6) Consider the symmetric group S_{4} acting on the four numbers $\{1,2,3,4\}$. Consider the three ways of dividing these numbers into two pairs, namely $P_{1}=\{\{1,2\},\{3,4\}\}, P_{2}$ $=\{\{1,3\},\{2,4\}\}, P_{3}=\{\{1,4\},\{2,3\}\}$.
(a) Construct a homomorphism from S_{4} onto S_{3} by using the action of S_{4} on $\{1,2,3,4\}$ to give an action of S_{4} on the set of three objects $\left\{P_{1}, P_{2}, P_{3}\right\}$. In particular, explain why the mapping you have described is a homomorphism.
(b) Describe the elements of the kernel K of this homomorphism and explain why this subgroup is normal.
(c) Explain why the quotient group S_{4} / K is isomorphic to S_{3}.

Consider the infinte pattern of symbols
YYYYYYYYYYY
(a) Describe the full group G of symmetries of this pattern.
(b) Describe the stabiliser H of one of the symbols .
(c) Describe the maximal normal subgroup of translations T in G and explain
why the quotient group G / T is isomorphic to the stabiliser subgroup H.
(8)

An inner product \langle,$\rangle on \mathbb{R}^{3}$ is defined by

$$
\left\langle\left(x_{1}, x_{2}, x_{3}\right),\left(y_{1}, y_{2}, y_{3}\right)\right\rangle=x_{1} y_{1}+2 x_{2} y_{2}+3 x_{3} y_{3} .
$$

Let W be the subspace of \mathbb{R}^{3} spanned by $\{(1,-1,0),(0,1,-1)\}$. Find all vectors in W orthogonal to $(1,1,-1)$.
(9) The subset $\{1,2,4,5,7,8\}$ of $\mathbb{Z} / 9 \mathbb{Z}$ forms a group G under multiplication modulo 9 .
(a) Show that the group G is cyclic.
(b) Give an example of a non-cyclic group of order 6 .
(a) Express the following permutations as products of disjoint cycles: (134)(25) - (12345) and the inverse of (12)(3456).
(b) Find the order of the permutation (123)(4567).

Let G be a group of order 21 .
(a) What are the possible orders of subgroups of G ?
(b) What are the possible orders of non-cyclic subgroups of G ?

Always explain your answers.
(a) Show that the set

$$
\left\{\left.\left(\begin{array}{ll}
a & b \\
0 & 1
\end{array}\right) \right\rvert\, a, b \in \mathbb{R}, a \neq 0\right\}
$$

forms a group G under matrix multiplication.
(b) Show that the function $f: G \rightarrow \mathbb{R}^{*}$ defined by

$$
f\left(\left(\begin{array}{ll}
a & b \\
0 & 1
\end{array}\right)\right)=a^{2}
$$

is a homomorphism from G to the multiplicative group \mathbb{R}^{*} of non-zero real numbers.
(c) Find the image and kernel of f.
(17) Let G be the subgroup of the symmetric group S_{4} consisting of the permutations
\{ (1), (12)(34), (13)(24), (14)(23)
(123), (132), (124), (142), (134), (143), (234), (243) \}
(a) Show that G has 4 conjugacy classes, containing 1, 3, 4 and 4 elements.
(b) Explain why any normal subgroup of G is a union of conjugacy classes.
(c) Deduce that G contains no normal subgroup of order 6 .
(d) Does G contain any subgroup of order 6?

Always explain your answers.
(a) Show that if G is a group with centre Z such that G / Z is cyclic, then G is abelian.
(b) If G is a nonabelian group of order p^{3} where p is prime, what can you say about the centre Z of G and the quotient group G / Z ?

Always explain your answers.

Let $V=\mathscr{P}_{2}(\mathbb{R})$ be the real vector space of all polynomials of degree ≤ 2 with real coefficients. An inner product \langle,$\rangle on V$ is defined by

$$
\langle p, q\rangle=\int_{-1}^{1} p(x) q(x) d x .
$$

Find a basis for the orthogonal complement of the subspace W spanned by $\{1, x\}$.
Consider the complex matrix

$$
A=\left(\begin{array}{ll}
1 & 1 \\
i & 1
\end{array}\right)
$$

Decide whether the matrix is: (i) Hermitian, (ii) unitary, (iii) normal, (iv) diagonalizable. Always explain your answers.

The set of eight elements $\{ \pm 1, \pm 2, \pm 4, \pm 7\}$ forms a group G under multiplication modulo 15.
(a) Find the order of each element in G.
(b) Is the group cyclic?

Always explain your answers.
(a) Express the permutation (1342) $\cdot(345)(12)$ as a product of disjoint cycles.
(b) Find the order of the permutation (12)(4536) in the group S_{6}.
(c) Find all the conjugates of (123) in the group S_{3}.

Let G be a finite group containing a subgroup H of order 4 and a subgroup K of order 7 .
(a) State Lagrange's theorem for finite groups.
(b) What can you say about the order of G ?
(c) What can you say about the order of the subgroup $H \cap K$?

Always explain your answers.
(a) Show that

$$
G=\left\{\left.\left(\begin{array}{lll}
1 & a & c \\
0 & 1 & b \\
0 & 0 & 1
\end{array}\right) \right\rvert\, a, b, c \in \mathbb{R}\right\}
$$

is a subgroup of $\mathrm{GL}_{3}(\mathbb{R})$ using matrix multiplication as the operation.
(b) Find the centre of G.
(26) Let $f: V \rightarrow V$ be a linear operator on a finite dimensional inner product space.
(a) Explain how the adjoint f^{*} of f is defined.
(b) Prove that the nullspace of f^{*} is the orthogonal complement of the range of f
(c) Deduce that the nullity of f^{*} is equal to the nullity of f.
(27) Consider the complex matrix

$$
A=\left(\begin{array}{cc}
4 & -5 i \\
5 i & 4
\end{array}\right)
$$

(a) Without calculating eigenvalues, explain why A is diagonalizable.
(b) Find a diagonal matrix D and a unitary matrix U such that

$$
U^{-1} A U=D .
$$

(c) Write down U^{-1}.
(d) Find a complex matrix B such that $B^{2}=A$.

Let \mathbb{Q} denote the additive group of rational numbers, and \mathbb{Z} the subgroup of integers.
(a) Show that every element of the quotient group \mathbb{Q} / \mathbb{Z} has finite order.
(b) Let $S^{1}=\{z \in \mathbb{C}| | z \mid=1\}$ denote the multiplicative group of complex numbers of absolute value one. Show that the function $f: \mathbb{Q} \rightarrow S^{1}$ defined by

$$
f(x)=e^{2 \pi i x}=\cos (2 \pi x)+i \sin (2 \pi x)
$$

is a homomorphism.
(c) Find the kernel of f.
(d) Deduce that \mathbb{Q} / \mathbb{Z} is isomorphic to a subgroup of S^{1}.
(e) Is \mathbb{Q} / \mathbb{Z} is isomorphic to S^{1} ?

Always explain your answers.
(a) Use the Euclidean algorithm to find $d=\operatorname{gcd}(469,959)$.
(b) Find integers x, y such that $469 x+959 y=d$.

The complex vector space \mathbb{C}^{4} has an inner product defined by

$$
\langle a, b\rangle=a_{1} \bar{b}_{1}+a_{2} \bar{b}_{2}+a_{3} \bar{b}_{3}+a_{4} \bar{b}_{4}
$$

for $a=\left(a_{1}, a_{2}, a_{3}, a_{4}\right), b=\left(b_{1}, b_{2}, b_{3}, b_{4}\right) \in \mathbb{C}^{4}$. Let W be the subspace of \mathbb{C}^{4} spanned by the vectors $(1,0,-1,0)$ and $(0,1,0, i)$.

Find a basis for the orthogonal complement W^{\perp} of W.

Determine whether the matrix $A=\left(\begin{array}{ll}3 & 4 i \\ 4 i & 3\end{array}\right)$ is (i) Hermitian, (ii) unitary, (iii) normal, (iv) diagonalizable. Always explain your answers.

The sets $G_{1}=\{1,3,9,11\}$ and $G_{2}=\{1,7,9,15\}$ form groups under multiplication modulo 16.
(a) Find the order of each element in G_{1} and each element in G_{2}.
(b) Are the groups G_{1} and G_{2} isomorphic?

Always explain your answers.
(a) Express the following permutation as a product of disjoint cycles: (234)(56)* (1354)(26).
(b) Find the order of the permutation (12)(34567) in S_{7}.
(c) Find all conjugates of (13)(24) in the group S_{4}.

Let G be a group of order 35 .
(a) What does Lagrange's theorem tell you about the orders of subgroups of G ?
(b) If H is a subgroup of G with $H \neq G$, expalin why H is cyclic.

Consider the set of matrices

$$
G=\left\{\left.\left(\begin{array}{ll}
a & b \\
b & a
\end{array}\right) \right\rvert\, a, b \in \mathbb{R}, a^{2}-b^{2}=1\right\} .
$$

Prove that G is a group using matrix multiplication as the operation.
Let X be a subset of \mathbb{R}^{2} consisting of the four edges of a square together with its two diagonals. Let Y be obtained from X by filling in two triangles as shown below:

Let G be the symmetry group of X and H the symmetry group of Y.
(a) Describe the group G by giving geometric descriptions of the symmetries in G, and writing down a familiar group isomorphic to G.
(b) Give a similar description of H.
(c) Explain why H is a normal subgroup of G.
(39) Let $f: V \rightarrow V$ be a self-adjoint linear operator on an inner product space V, i.e. $f^{*}=f$.
(a) Prove that every eigenvalue of f is real.
(b) Let v_{1}, v_{2} be eigenvectors of f corresponding to eigenvalues λ_{1}, λ_{2} with $\lambda_{1} \neq$ λ_{2}. Prove that v_{1} and v_{2} are orthogonal.

Let A be a 6×6 complex matrix with minimal polynomial

$$
m(X)=(X+1)^{2}(X-1) .
$$

(a) Describe the possible characteristic polynomials for A.
(b) Let the possible Jordan normal forms for A (up to reordering the Jordan blocks).
(c) Explain why A is invertible and write A^{-1} as a polynomial in A.
(41)
(a) Let $f: V \rightarrow V$ be a normal linear operator on a complex inner product space V such that $f^{4}=f^{3}$. Use the spectral theorem to prove that f is self-adjoint and that $f^{2}=f$.
(b) Give an example of a linear operator $g: V \rightarrow V$ on a complex inner product space V such that $g^{4}=g^{3}$ but $g^{2} \neq g$.

Consider the subgroup $H=\{ \pm 1, \pm i\}$ of the multiplicative group $G=\mathbb{C}^{*}$ of non-zero complex numbers.
(a) Describe the cosets of H in G. Draw a diagram in the complex plane showing a typical coset.
(b) Show that the function $f: G \rightarrow G$ defined by $f(z)=z^{4}$ is a homomorphism and find its kernel and image.
(c) Explain why H is a normal subgroup of G and identify the quotient group G / H.

Let G be the cyclic subgroup of S_{7} generated by the permutation (12)(3456). Consider the action of G on $X=\{1,2,3,4,5,6,7\}$.
(a) Write down all the elements of G.
(b) Find the orbit and stabilizer of (i) 1, (ii) 3 and (iii) 7. Check that your answers are consistent with the orbit-stabilizer theorem.
(c) Prove that if a group H of order 4 acts on a set Y with 7 elements then there must be at least one element of Y fixed by all elements of H.

Let p be a prime number, and let V be the vector space over the field $\mathbb{Z} / p \mathbb{Z}$ consisting of all column vectors in $(\mathbb{Z} / p \mathbb{Z})^{2}$:

$$
V=\left\{\left.\binom{x}{y} \right\rvert\, x, y \in \mathbb{Z} / p \mathbb{Z}\right\} .
$$

Let $G=\mathrm{GL}_{2}(\mathbb{Z} / p \mathbb{Z})$ be the group of invertible 2×2 matrices with $\mathbb{Z} / p \mathbb{Z}$ entries using matrix multiplication.This acts on V by matrix multiplication as usual: $A \cdot v=A v$ for all $A \in G$ and all $v \in V$.
(a) Consider the 1-dimensional subspaces of V. Show that there are exactly $p+$ 1 such subspaces: spanned by the vectors

$$
\binom{0}{1},\binom{1}{1}, \ldots\binom{p-1}{1} \text { and }\binom{1}{0} .
$$

(b) Explain why G also acts on the set X of 1-dimensional subspaces of V. This gives a homomorphism $\varphi: G \rightarrow S_{p+1}$.
(c) Show that the kernel of φ consists of the scalar matrices

$$
K=\left\{\left.\left(\begin{array}{ll}
a & 0 \\
0 & a
\end{array}\right) \right\rvert\, a \in \mathbb{Z} / p \mathbb{Z}-\{0\}\right\} .
$$

Deduce that the quotient group G / K is isomorphic to a subgroup of S_{p+1}.
(d) For the case where $p=3$, find $|K|$ and $|G|$. Deduce that G / K is isomorphic to S_{4}.

2. References

[GH] J.R.J. Groves and C.D. Hodgson, Notes for 620-297: Group Theory and Linear Algebra, 2009.
[Ra] A. Ram, Notes in abstract algebra, University of Wisconsin, Madison 1994.

