Week 9 Problem Sheet
 Group Theory and Linear algebra Semester II 2011

Arun Ram
Department of Mathematics and Statistics
University of Melbourne
Parkville, VIC 3010 Australia
aram@unimelb.edu.au

Last updates: 1 September 2011

(1) Week 9: Vocabulary

(2) Week 9: Results
(3) Week 9: Examples and computations

1. Week 9: Vocabulary

(1) Define a dihedral group and give some illustrative examples.
(2) Define a rotation in \mathbb{R}^{2} and give some illustrative examples.
(3) Define a rotation in \mathbb{R}^{3} and give some illustrative examples.
(4) Define a G-action on X and give some illustrative examples.
(5) Define a G-set and give some illustrative examples.
(6) Define orbits and stabilizers and give some illustrative examples.
(7) Define the action of G on itself by left multiplication and the action of G on itself by conjugation and give some illustrative examples.
(8) Define conjugate, conjugacy class, and centralizer and give some illustrative examples.
(9) Define the centre of a group and give some illustrative examples.

2. Week 9: Results

(1) Let G be a group and let X be a G-set. Let $x \in X$. Show that the stabilizer of x is a subgroup of G.
(2) Let G be a group and let X be a G-set. Show that the orbits partition G.
(3) Let G be a group and let X be a G-set. Let $x \in X$ and let H be the stabilizer of x. Show that $\operatorname{Card}(G / H)=\operatorname{Card}(G x)$ and that

$$
\operatorname{Card}(G)=\operatorname{Card}(G x) \operatorname{Card}(H) .
$$

(4) Let G be a group. Show that G is isomorphic to a subgroup of a permutation group.
(5) Let G be a finite group acting on a finite set X. For each $g \in G$ let Fix (g) be the set of elements of X fixed by g.
(a) Let $S=\{(g, x) \in G \times X \mid g \cdot x=x\}$. By counting S in two ways, show that

$$
|S|=\sum_{x \in X}|\operatorname{Stab}(x)|=\sum_{g \in G}|\operatorname{Fix}(g)| .
$$

(b) Show that if $g \cdot x=y$ then $g \operatorname{Stab}(x) g^{-1}=\operatorname{Stab}(y)$, hence $|\operatorname{Stab}(x)|=\mid \operatorname{Stab}(y$)|.
(c) Prove that the number of distinct orbits is

$$
\frac{1}{|G|} \sum_{g \in G}|\operatorname{Fix}(g)|
$$

i.e. the average number of points fixed by elements of G.
(6) Let G be a finite group. Show that the number of elements of a conjugacy class is equal to the number of cosets of the centralizer of any element of the conjugacy class.
(7) Show that the centre of a group G is a normal subgroup of G.
(8) Let p be a prime, let $n \in \mathbb{Z}_{>0}$ and let G be a group of order p^{n}. Show that $Z(G) \neq\{1\}$.
(9) Let p be a prime and let G be a group of order p^{2}. Show that G is isomorphic to \mathbb{Z} / p^{2} \mathbb{Z} or $\mathbb{Z} / p \mathbb{Z} \times \mathbb{Z} / p \mathbb{Z}$.
(10) Let G be a finite group of order divisible by a prime p. Show that G has an element of order p.
(11) Let p be an odd prime and let G be a group of order $2 p$. Show that $G \simeq \mathbb{Z} / 2 p \mathbb{Z}$ or $G \simeq$ D_{p}.

3. Week 9: Examples and computations

(1) Let H denote the subgroup of $D_{4}=\left\langle a, b \mid a^{4}=1, b^{2}=1, b a b^{-1}=a^{-1}\right\rangle$ generated by a. Show that H is a normal subgroup of D_{4} and write out the multiplication table of $D_{4} /$ H.
(2) Let H denote the subgroup of $D_{4}=\left\langle a, b \mid a^{4}=1, b^{2}=1, b a b^{-1}=a^{-1}\right\rangle$ generated by a^{2}. Show that H is a normal subgroup of D_{4} and write out the multiplication table of D_{4} / H .
(3) Find all of the normal subgroups of D_{4}.
(4) The quaternion group is the set $Q_{8}=\{ \pm U, \pm I, \pm J, \pm K\}$ where

$$
U=\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right), \quad I=\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right), \quad J=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \quad K=\left(\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right) .
$$

Show that

$$
I^{2}=J^{2}=K^{2}=-U, \quad I J=K, \quad J K=I, \quad K I=J,
$$

and that Q_{8} is a subgroup of $\mathrm{GL}_{2}(\mathbb{C})$.
(5) Find all of the cyclic subgroups of the quaternion group Q_{8}.
(6) Show that every subgroup of the quaternion group Q_{8}, except Q_{8} itself, is cyclic.
(7) Determine whether Q_{8} and D_{4} are isomorphic.
(8) Let H denote the subgroup of $D_{8}=\langle a, b\rangle$ generated by a^{4}. Write out the multiplication table of D_{8} / H.
(9) Show that the set of rotations in the dihedral group D_{n} is a subgroup of D_{n}.
(10) Show that the set of reflections in the dihedral group D_{n} is not a subgroup of D_{n}.
(11) Let $n \in \mathbb{Z}_{>0}$. Calculate the order of D_{n}. Always justify your answers.
(12) Calculate the orders of the elements of D_{6}. Always justify your answers.
(13) Show that D_{3} is isomorphic to S_{3}.
(14) Show that D_{3} is nonabelian and noncyclic.
(15) Prove that D_{2} and $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$ are isomorphic.
(16) Let $n \in \mathbb{Z}_{>0}$. Determine the orders of the elements in the dihedral group D_{n}.
(17) Let $m, n \in \mathbb{Z}_{>0}$ such that $m<n$. Show that D_{m} is isomorphic to a subgroup of D_{n}.
(18) Determine if the group of symmetries of a rectangle is a cyclic group.
(19) Show that the group $\mathbb{Z} / 4 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$ and the group D_{4} are not isomorphic.
(20) Determine all subgroups of the dihedral group D_{5}.
(21) Let $n \in \mathbb{Z}_{>0}$. Let $G=D_{n}$ and $H=C_{n}$. Compute the cosets of H in G and the index $\mid G$: $H \mid$.
(22) Let D_{n} be the group of symmetries of a regular n-gon. Let a denote a rotation through 2 π / n and let b denote a reflection. Show that

$$
a^{n}=1, \quad b^{2}=1, \quad b a b^{-1}=a^{-1}
$$

Show that every element of D_{n} has a unique expression of the form a^{i} or $a^{i} b$, where $i \in$ $\{0,1, \ldots, n-1\}$.

Let G be the group of rotational symmetries of a regular tetrahedron so that $|G|=12$. Show that G has subgroups of order 1,2,3,4 and 12 .

Describe precisely the action of S_{n} on $\{1,2, \ldots, n\}$ and the action of $\mathrm{GL}_{n}(\mathbb{F})$ on \mathbb{F}^{n}.
Describe precisely the action of $\mathrm{GL}_{n}(\mathbb{F})$ on the set of bases of the vector space \mathbb{F}^{n} and prove that this action is well defined.

Describe precisely the action of $\mathrm{GL}_{n}(\mathbb{F})$ on the set of subspaces of the vector space \mathbb{F}^{n} and prove that this action is well defined.

Find the orbits and stabilisers for the action of S_{3} on the set $\{1,2,3\}$.
Find the orbits and stabilisers for the action of $G=\mathrm{SO}_{2}(\mathbb{R})$ on the set $X=\mathbb{R}^{2}$.
Find the orbits and stabilisers for the action of $G=\mathrm{SO}_{3}(\mathbb{R})$ on the set $X=\mathbb{R}^{3}$.
The dihedral group D_{6} acts on a regular hexagon. Colour two opposite sides blue and the other four sides red and let G be the subgroup of D_{6} which preserves the colours. Let $X=\{A, B, C, D, E, F\}$ be the set of vertices of the hexagon. Determine the stabilizers and orbits for the action of G on X.

Since S_{4} acts on $X=\{1,2,3,4\}$ any subgroup G acts on $X=\{1,2,3,4\}$. Let $G=\langle(123$ $)\rangle$. Describe the orbits and stabilizers for the action of G on X.

Since S_{4} acts on $X=\{1,2,3,4\}$ any subgroup G acts on $X=\{1,2,3,4\}$. Let $G=\langle(123$ $4)\rangle$. Describe the orbits and stabilizers for the action of G on X.

Since S_{4} acts on $X=\{1,2,3,4\}$ any subgroup G acts on $X=\{1,2,3,4\}$. Let $G=\langle(12)$, (34) \rangle. Describe the orbits and stabilizers for the action of G on X.
(35)
(44) Let G be a group. Show that $\{1\} \subseteq Z(G)$. Describe the orbits and stabilizers for the action of G on X. for the action of G on X.

Let G be the subgroup of S_{15} generated by the three permutations multiple of 60 . action of G on X has a fixed point. action of G on X has a fixed point.

Give an explicit isomorphism between D_{2} and a subgroup of S_{4}.
Find the conjugacy classes of D_{4}.
Find the centre of D_{4}.

Show that $Z\left(S_{3}\right)=\{1\}$.
Let \mathbb{F} be a field and let $n \in \mathbb{Z}_{>0}$. Determine the centre of $\mathrm{GL}_{n}(\mathbb{F})$.
Find the conjugacy classes in the quaternion group.

Find the conjugates of $(12 \ldots m)$ in S_{n}, for $n \geq m$.
Describe the conjugacy classes in the symmetric group S_{n}.

Since S_{4} acts on $X=\{1,2,3,4\}$ any subgroup G acts on $X=\{1,2,3,4\}$. Let $G=S_{4}$.

Since S_{4} acts on $X=\{1,2,3,4\}$ any subgroup G acts on $X=\{1,2,3,4\}$. Let $G=\langle(123$ 4), (13) \rangle (isomorphic to a dihedral group of order 8). Describe the orbits and stabilizers

Let $G=\mathbb{R}$ (with operation addition) and let $X=\mathbb{R}^{3}$. Let $v \in \mathbb{R}^{3}$. Show that

$$
\alpha \cdot x=x+\alpha v,
$$

defines an action of G on X and give a geometric description of the orbits.
$(1,12)(3,10)(5,13)(11,15)$,
$(2,7)(4,14)(6,10)(9,13), \quad$ and
$(4,8)(6,10)(7$, $12)(9,11)$.

Find the orbits of G acting on $X=\{1,2, \ldots, 15\}$ and prove that G has order which is a

Let G be a group of order 5 acting on a set X with 11 elements. Determine whether the

Let G be a group of order 15 acting on a set X with 8 elements. Determine whether the

Find the conjugates of (123) in S_{3} and find the conjugates of (123) in S_{4}.
Find the conjugates of (1234) in S_{4} and find the conjugates of (1234) in S_{n}, for $n \geq 4$.
(52) Suppose that g and h are conjugate elements of a group G. Show that $C_{G}(g)$ and $C_{G}(h)$ are conugate subgroups of G.

Determine the centralizer in $\mathrm{GL}_{3}(\mathbb{R})$ of the following matrices:

$$
\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right) .
$$

(57) Let G be a group and assume that $G / Z(G)$ is a cyclic group. Show that G is abelian.
(58) Describe the finite groups with exactly one conjugacy class.
(59) Describe the finite groups with exactly two conjugacy classes.
(60) Describe the finite groups with exactly three conjugacy classes.
(61) Let p be a prime. Show that a group of order p^{2} is abelian.
(62) Let p be a prime and let G be a group of order p^{2}. Show that $G \simeq Z / p \mathbb{Z} \times Z / p \mathbb{Z}$ or G $\simeq Z / p^{2} \mathbb{Z}$.
(63) Let p be a prime and let G be a group of order $2 p$. Show that G has a subgroup of order p and that this subgroup is a normal subgroup.
(64) Let p be a prime. Show that, up to isomorphism, there are exactly two groups of order 2
p.

Let τ be a permutation in S_{m}.
(a) Let σ be an n-cycle $\sigma=\left(a_{1} a_{2} \cdots a_{n}\right)$ in S_{m}. Show that $\tau \sigma \tau^{-1}$ takes $\tau\left(a_{1}\right) \mapsto \tau($
$\left.a_{2}\right), \tau\left(a_{2}\right) \mapsto \tau\left(a_{3}\right), \ldots, \tau\left(a_{n}\right) \mapsto \tau\left(a_{1}\right)$. Hence $\tau \sigma \tau^{-1}$ is the n-cycle $\left(\tau\left(a_{1}\right) \tau\left(a_{2}\right) \cdots \tau(\right.$
(a) Let σ be an n-cycle $\sigma=\left(a_{1} a_{2} \cdots a_{n}\right)$ in S_{m}. Show that $\tau \sigma \tau^{-1}$ takes $\tau\left(a_{1}\right) \mapsto \tau($
$\left.a_{2}\right), \tau\left(a_{2}\right) \mapsto \tau\left(a_{3}\right), \ldots, \tau\left(a_{n}\right) \mapsto \tau\left(a_{1}\right)$. Hence $\tau \sigma \tau^{-1}$ is the n-cycle $\left(\tau\left(a_{1}\right) \tau\left(a_{2}\right) \cdots \tau(\right.$ $\left.a_{n}\right)$).
(b) Use the previous result to find all conjugates of (123) in S_{4}.
(c) Find a permutation τ in S 4 conjugating $\sigma=(1234)$ to $\tau \sigma \tau^{-1}=(2413)$.
(d) If $\sigma=\sigma_{1} \cdots \sigma_{k}$, show that $\tau \sigma \tau^{-1}=\tau \sigma_{1} \tau^{-1} \cdots \tau \sigma_{k} \tau^{-1}$.
(e) Use the previous results to find all conjugates of (12)(34) in S_{4}.

Prove that every nonabelian group of order 8 is isomorphic to the dihedral group D_{4} or to the quaternion group Q_{8}.

Show that each group G acts on $X=G$ by right multiplication: $g \cdot x=x g^{-1}$, for $g \in G$, $x \in X$.

Let $G=D_{2}$ act as symmetries of a rectangle. Determine the stabilizer and orbit of a vertex, and the stabilizer and orbit of the midpoint of an edge.

Let $\mathrm{GL}_{2}(\mathbb{R})$ act on \mathbb{R}^{2} in the usual way: $A \cdot \vec{x}=A \vec{x}$, for $A \in \mathrm{GL}_{2}(\mathbb{R})$ and \vec{x} a column vector in \mathbb{R}^{2}. Determine the stabilizer and orbit of $(0,0)$ and the stabilizer and orbit of $(1$, 0).

Let G be the group of rotational symmetries of a regular tetrahedron T.
(a) For the action of G on T, describe the stabilizer and orbit of a vertex, and describe the stabilizer and orbit of the midpoint of an edge.
(b) Use the results of (a) to calculate the order of G in two different ways.
(c) By considering the action of G on the set of vertices of T, find a subgroup of S_{4} isomorphic to G.

A group G of order 9 acts on a set X with 16 elements. Show that there must be at least one point in X fixed by all elements of G (i.e. an orbit consisting of a single element).

Find the conjugacy class and centralizer of (12) and (123) in S_{3}. Check that | conjugacy class $|\cdot|$ centralizer $\left|=\left|S_{3}\right|\right.$ in each case.

Find the number of conjugacy classes in each of S_{3}, S_{4} and S_{5} and write down a representative from each conjugacy class. How many elements are in each conjugacy class?
(74) Let H be a subgroup of G. Show that H is a normal subgroup of G if and only if H is a union of conjugacy classes in G.
(75) Find normal subgroups of S_{4} of order 4 and of order 12.
(76)

Find the centralizer in $\mathrm{GL}_{2}(\mathbb{R})$ of the matrix $\left(\begin{array}{ll}2 & 1 \\ 0 & 2\end{array}\right)$.
(77) Show that $\mathrm{SL}_{2}(\mathbb{R})$ acts on the upper half plane $H=\{z \in \mathbb{C} \mid \operatorname{Im} z>0\}$ by

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot z=\frac{a z+b}{c z+d} .
$$

Prove that this action is well defined and describe the orbit and stabiliser of i.

4. References

[GH] J.R.J. Groves and C.D. Hodgson, Notes for 620-297: Group Theory and Linear Algebra, 2009.
[Ra] A. Ram, Notes in abstract algebra, University of Wisconsin, Madison 1994.

