REPRESENTATION THEORY

EMILY PETERS

ABSTRACT. Notes from Arun Ram's 2008 course at the University of Melbourne.

1. Week 1

2. Week 2

Theorem 2.1 (Artin-Wedderburn). (Almost) every algebra A is semisimple, $A = \bigoplus_{\lambda \in \hat{A}} M_{d_{\lambda}}(\mathcal{C})$

Counter-example. Last week we has the counter-example that

$$\left\{ \left(\begin{array}{ccc} 0 & * & * \\ 0 & 0 & * \\ 0 & 0 & 0 \end{array} \right) \right\}$$

is not semisimple.

However, there is a problem: this is not an algebra (no identity). We can try to fix this:

$$\left\{ \left(\begin{array}{cc} * & * & * \\ 0 & * & * \\ 0 & 0 & * \end{array} \right) \right\}$$

is not semisimple, but the proof is different from the proof we used last week.

2.1. Remark about generators and relations.

Date: August 10, 2008.

Send comments and corrections to E.Peters@ms.unimelb.edu.au.

Definition. The general Temperley-Lieb algebra TL_k is:

$$TL_{k} = \operatorname{span} \left\{ \begin{array}{c} \operatorname{noncrossing} (\operatorname{planar}) \operatorname{diagrams} \operatorname{with} \\ k \operatorname{top} \operatorname{dots} \operatorname{and} k \operatorname{bottom} \operatorname{dots} \end{array} \right\}$$

with the product

$$b_1 b_2 = (q + q^{-1})^{\text{\# of internal loops}}(b_1 \text{ on top of } b_2)$$

blob= $(q + q^{-1}) = [2]$.)

Example.

(ie,

$$\bigcirc | = [2] \\
\bigcirc | = [2] \\
\sub | = [2] \\
\sub | = [2] \\
\sub |$$

Example.

$$TL_{1} = \operatorname{span} \left\{ \begin{array}{c} & & \\ & & \\ \end{array} \right\}$$

$$TL_{2} = \operatorname{span} \left\{ \begin{array}{c} & & \\ & & \\ \end{array} \right\}$$

$$TL_{3} = \operatorname{span} \left\{ \begin{array}{c} & & \\ & & \\ \end{array} \right\}, \quad \left[\begin{array}{c} & & \\ & \\ \end{array} \right], \quad \left[\begin{array}{c} & & \\ & \\ & \\ \end{array} \right], \quad \left[\begin{array}{c} & & \\ & \\ \end{array} \right], \quad \left[\begin{array}{c} & & \\ & \\ \end{array} \right], \quad \left[\begin{array}{c} & & \\ & \\ \end{array} \right], \quad \left[\begin{array}{c} & & \\ & \\ \end{array} \right], \quad \left[\begin{array}{c} & & \\ & \\ \end{array} \right], \quad \left[\begin{array}{c} & & \\ & \\ \end{array} \right], \quad \left[\begin{array}{c} & & \\ & \\ \end{array} \right], \quad \left[\begin{array}{c} & & \\ & \\ \end{array} \right], \quad \left[\begin{array}{c} & & \\ & \\ \end{array} \right], \quad \left[\begin{array}{c} & & \\ & \\ \end{array} \right], \quad \left[\begin{array}{c} & & \\ & \\ \end{array} \right], \quad \left[\begin{array}{c} & & \\ & \\ \end{array} \right], \quad \left[\begin{array}{c} & & \\ & \\ \end{array} \right], \quad \left[\begin{array}{c} & & \\ & \\ \end{array} \right], \quad \left[\begin{array}{c} & & \\ & \\ \end{array} \right], \quad \left[\begin{array}{c} & & \\ & \\ \end{array} \right], \quad \left[\begin{array}{c} & & \\ & \\ \end{array} \right], \quad \left[\begin{array}{c} & & \\ & \\ \end{array} \right], \quad \left[\begin{array}{c} & & \\ \end{array} \right], \quad \left[\begin{array}{c} & & \\ & \\ \end{array} \right], \quad \left[\begin{array}{c} & & \\ \end{array}], \quad \left[\end{array}], \quad \left[\begin{array}{c} & & \\ \end{array}], \quad \left[\end{array}], \quad \left[\begin{array}{c} & & \\ \end{array}], \quad \left[\begin{array}{c} & & \\ \end{array}], \quad \left[\end{array}], \quad \left[\begin{array}{c} & & \\ \end{array}], \quad \left[\end{array}], \quad \left[\begin{array}{c} & & \\ \end{array}], \quad \left[\end{array}], \quad \left[\begin{array}{c} & & \\ \end{array}], \quad \left[\end{array}], \quad \left[\end{array}], \quad \left[\end{array}], \quad \left[\begin{array}{c} & \\ \end{array}], \quad \left[\end{array}], \quad \left[\end{array}], \quad \left[\begin{array}{c} & \\ \end{array}], \quad \left[\end{array}], \quad \left[\end{array}], \quad \left[\end{array}], \quad \left[$$

These have dimensions 1,2,5,14, \ldots which are the Catalan numbers.

Definition. Let
$$e_i = \left| \dots \right|_{\bigcirc}^{\bigcirc} \left| \dots \right|, i = 1, 2, \dots, k-1.$$

Theorem 2.2. TL_k is presented by generators e_i, \ldots, e_{k-1} and relations

$$e_i^2 = (q + q^{-1})e_i$$
 and $e_i e_{i\pm 1}e_i = e_i$

Remark. It's not possible to define an algebra except by generators and relations. Whenever we want to show that an algebra, defined in terms of generators A and relations A, is presented by generators B and relations B, what we really need to do is show:

- (1) generators A can be written in terms of generators B
- (2) relations A can be derived from relations B
- (3) generators B can be written in terms of generators A
- (4) relations B can be derived from relations A

Proof. In the definition of Temperley-Lieb, let generators A be {noncrossing (planar) diagrams with k top dots and k bottom dots}, and relations A be $\{b_1b_2 = (q+q^{-1})^{\# \text{ of internal loops}}(b_1 \text{ on top of } b_2)\}$. Now let generators B be $\{e_i\}$, and relations B be $\{e_i^2 = (q+q^{-1})e_i \text{ and } e_ie_{i\pm 1}e_i = e_i\}$.

(3) and (4) are easy in this case; (1) and (2) are the hard parts. \Box

2.2. **Traces.**

Definition. Let A be an algebra. A *trace* on A is a linear transformation $t: A \to \mathbb{C}$ such that

$$t(a_1a_2) = t(a_2a_1)$$
 for $a_1, a_2 \in A$.

Define $\langle,\rangle:A\otimes A\to\mathbb{C}$ by

$$\langle a_1, a_2 \rangle = t(a_1 a_2) \quad \text{for } a_1, a_2 \in A.$$

Note:

$$\langle a_1, a_2 \rangle = \langle a_2, a_1 \rangle$$
 and $\langle a_1 a_2, a_3 \rangle = \langle a_1, a_2 a_3 \rangle$.

Definition. The *radical* of \langle, \rangle is

$$\operatorname{Rad}(\langle,\rangle) = \{r \in A | \langle r, a \rangle = 0 \text{ for all } a \in A\}$$

Homework. Rad (\langle, \rangle) is an ideal of A (if $r \in \text{Rad}(\langle, \rangle)$ and $a \in A$ then $ra, ar \in \text{Rad}(\langle, \rangle)$.

Definition. The trace t of the form \langle,\rangle is nondegenerate if

$$\operatorname{Rad}(\langle,\rangle) = 0.$$

Definition. Let *B* be a basis of *A*, $B = \{b_1, \ldots, b_n\}$. The *dual basis* to *B* with respect to \langle, \rangle is $B^* = \{b_1^*, \ldots, b_n^*\}$ such that

$$\left\langle b_i, b_j^* \right\rangle = \delta_{i,j}.$$

Definition. The *Gram matrix* of \langle, \rangle is

$$G = (\langle b_i, b_j \rangle)_{b_i, b_j \in B}.$$

Homework. The dual basis exists iff the Gram matrix is invertible iff det(G) is invertible in \mathbb{C} iff $Rad(\langle,\rangle) = 0$.

Let A be an algebra with a nondegenerate trace t. Let B be your basis of A.

Example. Let $A = TL_3$,

So, for example,
$$t \begin{pmatrix} & & & \\ & & & \\ & & & \\ \end{pmatrix} = [2]^2$$
 and
$$\left\langle \begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{pmatrix} = t \begin{pmatrix} & & & \\ & & \\ & & & \\ & & & \\ \end{pmatrix} = [2]$$

2.3. Commuting operators. Again: Let A be an algebra with a nondegenerate trace t. Let B be your basis of A. Let B^* be the dual basis. Let M, N be A-modules. Recall

$$\rho_M : A \to End(M) \quad \text{and } \rho_N : A \to End(N)$$
 $a \mapsto a_M \quad a \mapsto a_N$

Then

$$\operatorname{Hom}_{A}(M, N) = \left\{ \phi : M \to N \middle| \begin{array}{l} \phi \text{ is a morphism of vector spaces and} \\ \phi(am) = a\phi(m), \text{ for } a \in A, m \in M \end{array} \right\}$$
$$= \left\{ \phi \in \operatorname{Hom}(M, N) \middle| \phi a_{M} = a_{N}\phi \right\}$$

Definition. The A-endomorphisms of M are

$$\operatorname{End}_A(M) := \{ \phi \in \operatorname{End}(M) | \phi a_M = a_M \phi \text{ for } a \in A \}$$

where $\operatorname{End}(M) = \operatorname{Hom}(M, M)$. Or we might just write

$$\operatorname{End}_A(M) = \{ \phi \in \operatorname{End}(M) | \phi a = a\phi \text{ for } a \in A \}$$

Now, let $\phi: M \to N$ be a vector space homomorphism. Define $[\phi]: M \to N$ by

$$[\phi] = \sum_{b \in B} b\phi b^*.$$

(and check that if $m \in M$, $[\phi]m = \sum_{b} b\phi b^*m \in N$). Claim. $[\phi] \in Hom_A(M, N)$.

Proof. Let $a \in A, m \in M$.

$$a[\phi]m = \sum_{b \in B} ab\phi b^*m = \sum_{b \in B} \sum_{c \in B} \langle ab, c^* \rangle c\phi b^*m$$
$$= \sum_{b,c \in B} c\phi \langle ab, c^* \rangle b^*m = \sum_{b,c \in B} c\phi \langle c^*a, b \rangle b^*m = \sum_{c \in B} c\phi c^*am$$
$$= [\phi]am.$$

Homework. Show that $[\phi]$ does not depend on the choice of B.

Game. You give me $\phi : M \to N$ and I make $[\phi] \in Hom_A(M, N)$.

Detour: Schur's lemma. Suppose $[\phi] \in \text{Hom}_A(M, N)$ and suppose M and N are simple. Then ker $[\phi]$ and $\text{im}[\phi]$ are submodules of M

EMILY PETERS

and N respectively. So ker $[\phi] = 0$ or ker $[\phi] = M$ and im $[\phi] = 0$ or im $[\phi] = N$. So either $[\phi]$ is zero, or $[\phi]$ is injective and surjective, ie an isomorphism. If $M \simeq N$ then $[\phi] \in \operatorname{End}_A(M)$. Since \mathcal{C} is an algebraically closed field $[\phi]$ has an eigenvalue λ . Then $[\phi] - \lambda \in \operatorname{End}_A(M)$. So $[\phi] - \lambda = 0$ or $[\phi] - \lambda$ is an isomorphism. Since $det([\phi] - \lambda) =$ $0, [\phi] - \lambda = 0$, ie $[\phi] = \lambda$. We've just proved

Theorem 2.3 (Schur's Lemma). Suppose $[\phi] \in Hom_A(M, N)$ and suppose M and N are simple. Then either $[\phi] = 0$ or $[\phi] = \lambda$ for some λ . In particular, if M is simple, then

$$End_A(M) = \mathcal{C}.$$

Definition. Let A be an algebra. Let M be an A-module. The commutant or centralizer algebra of M is $End_A(M)$.

General question: How are A and $End_A(M)$ related?

2.4. Regular representation.

Definition. Let A be an algebra. The *regular representation* of A is A with A-action given by left multiplication. Then

$$\rho_A : A \to End(A)$$
$$a \mapsto a_A$$

is injective, since $a \cdot 1 = a$ implies ker $\rho_A = 0$.

Therefore, elements of A "are" matrices. (You may have thought that Temperley-Lieb was diagrams, but it turns out it's nothing more than a bunch of 5-by-5 matrices.)

Let $t: A \to \mathcal{C}$ be the trace of the regular representation

$$t(a) := Tr(a_A)$$

Theorem 2.4. (Maschke's theorem) Let A be an algebra such that the trace of the regular representation is nondegenerate (note that finite dimensionality has already entered here – infinite matrices might not have traces). Then every A-module M is completely decomposable, ie

$$M = A^{\lambda} \oplus A^{\mu} \oplus \cdots$$

where $A^{\lambda}, A^{\mu}, \ldots$ are simple modules.

Proof. Let M be an A-module. If M is simple, we're done.

Otherwise let N be a submodule of M. N has basis $\{n_1, \ldots, n_r\}$ and M has basis $\{n_1, \ldots, n_r, m_1, \ldots, m_s\}$.

Define a map $\phi : M \to M$ by $\phi(n_i) = n_i$ and $\phi(m_j) = 0$. Then $\phi(n) = n$ for $n \in N$ and $\phi^2 = \phi$, $\operatorname{im} \phi = N$, so ϕ is projection onto N. And $[\phi] \in Hom_A(M, M)$.

If $n \in N$ then

$$[\phi]n = \sum_{b \in B} b\phi b^* n = \sum_{b \in B} bb^* n = n,$$

because

Claim.
$$\sum_{b \in B} bb^* = 1$$

Proof. Let $a \in A$ and consider $\left\langle \sum_{b \in B} bb^*, a \right\rangle = \sum_{b \in B} \langle ab, b^* \rangle = \sum_{b \in B} ab|_b = Tr(a_A) = \langle 1, a \rangle$.

Next if $m \in M$,

$$\begin{split} [\phi]^2 m &= [\phi] \sum_{b \in B} b\phi b^* m = \sum_{b,c \in B} c\phi c^* b\phi b^* m \\ &= \sum_{b,c, \in B} cc^* b\phi b^* m = \sum_{b \in B} b\phi b^* m = [\phi] m. \end{split}$$

So, $[\phi]^2 = [\phi]$ and $(1 - [\phi])^2 = \cdots = 1 - [\phi]$ and $M = 1 \cdot M = ([\phi] + 1 - [\phi])M = [\phi]M + (1 - [\phi])M$. Now $[\phi]M$ is a submodule and $(1 - [\phi])M$ is a submodule, and $[\phi]M \cap (1 - [\phi])M = 0$, so M is split.

By induction, we're done.