REPRESENTATION THEORY

EMILY PETERS

AbStract. Notes from Arun Ram's 2008 course at the University
of Melbourne.

1. Week 1

2. Week 2

Theorem 2.1 (Artin-Wedderburn). (Almost) every algebra A is semisimple, $A=\oplus_{\lambda \in \hat{A}} M_{d_{\lambda}}(\mathcal{C})$

Counter-example. Last week we has the counter-example that

$$
\left\{\left(\begin{array}{lll}
0 & * & * \\
0 & 0 & * \\
0 & 0 & 0
\end{array}\right)\right\}
$$

is not semisimple.
However, there is a problem: this is not an algebra (no identity). We can try to fix this:

$$
\left\{\left(\begin{array}{ccc}
* & * & * \\
0 & * & * \\
0 & 0 & *
\end{array}\right)\right\}
$$

is not semisimple, but the proof is different from the proof we used last week.

2.1. Remark about generators and relations.

[^0]Definition. The general Temperley-Lieb algebra $T L_{k}$ is:

$$
T L_{k}=\operatorname{span}\left\{\begin{array}{l}
\text { noncrossing (planar) diagrams with } \\
k \text { top dots and } k \text { bottom dots }
\end{array}\right\}
$$

with the product

$$
b_{1} b_{2}=\left(q+q^{-1}\right)^{\# \text { of internal loops }}\left(b_{1} \text { on top of } b_{2}\right)
$$

(ie, blob= $\left(q+q^{-1}\right)=[2]$.)

Example.

$$
\bigcirc|=[2] \quad \backsim|
$$

Example.

$$
\begin{aligned}
& T L_{1}=\operatorname{span}\{\quad \mid \\
& T L_{2}=\operatorname{span}\{
\end{aligned}
$$

These have dimensions $1,2,5,14, \ldots$ which are the Catalan numbers.

Definition. Let $e_{i}=|\ldots|_{\curvearrowleft}^{\smile}|\ldots|, i=1,2, \ldots, k-1$.
Theorem 2.2. $T L_{k}$ is presented by generators e_{i}, \ldots, e_{k-1} and relations

$$
e_{i}^{2}=\left(q+q^{-1}\right) e_{i} \quad \text { and } \quad e_{i} e_{i \pm 1} e_{i}=e_{i}
$$

Remark. It's not possible to define an algebra except by generators and relations. Whenever we want to show that an algebra, defined in terms of generators A and relations A, is presented by generators B and relations B , what we really need to do is show:
(1) generators A can be written in terms of generators B
(2) relations A can be derived from relations B
(3) generators B can be written in terms of generators A
(4) relations B can be derived from relations A

Proof. In the definition of Temperley-Lieb, let generators A be \{noncrossing (planar) diagrams with k top dots and k bottom dots\}, and relations A be $\left\{b_{1} b_{2}=\left(q+q^{-1}\right)^{\#}\right.$ of internal loops $\left(b_{1}\right.$ on top of $\left.\left.b_{2}\right)\right\}$. Now let generators B be $\left\{e_{i}\right\}$, and relations B be $\left\{e_{i}^{2}=\left(q+q^{-1}\right) e_{i}\right.$ and $\left.e_{i} e_{i \pm 1} e_{i}=e_{i}\right\}$.
(3) and (4) are easy in this case; (1) and (2) are the hard parts.

2.2. Traces.

Definition. Let A be an algebra. A trace on A is a linear transformation $t: A \rightarrow \mathbb{C}$ such that

$$
t\left(a_{1} a_{2}\right)=t\left(a_{2} a_{1}\right) \quad \text { for } a_{1}, a_{2} \in A
$$

Define $\langle\rangle:, A \otimes A \rightarrow \mathbb{C}$ by

$$
\left\langle a_{1}, a_{2}\right\rangle=t\left(a_{1} a_{2}\right) \quad \text { for } a_{1}, a_{2} \in A
$$

Note:

$$
\left\langle a_{1}, a_{2}\right\rangle=\left\langle a_{2}, a_{1}\right\rangle \quad \text { and } \quad\left\langle a_{1} a_{2}, a_{3}\right\rangle=\left\langle a_{1}, a_{2} a_{3}\right\rangle .
$$

Definition. The radical of \langle,$\rangle is$

$$
\operatorname{Rad}(\langle,\rangle)=\{r \in A \mid\langle r, a\rangle=0 \text { for all } a \in A\}
$$

Homework. $\operatorname{Rad}(\langle\rangle$,$) is an ideal of A$ (ie if $r \in \operatorname{Rad}(\langle\rangle$,$) and a \in A$ then $r a, a r \in \operatorname{Rad}(\langle\rangle$,$) .$

Definition. The trace t of the form \langle,$\rangle is nondegenerate if$

$$
\operatorname{Rad}(\langle,\rangle)=0
$$

Definition. Let B be a basis of $A, B=\left\{b_{1}, \ldots, b_{n}\right\}$. The dual basis to B with respect to \langle,$\rangle is B^{*}=\left\{b_{1}^{*}, \ldots, b_{n}^{*}\right\}$ such that

$$
\left\langle b_{i}, b_{j}^{*}\right\rangle=\delta_{i, j} .
$$

Definition. The Gram matrix of \langle,$\rangle is$

$$
G=\left(\left\langle b_{i}, b_{j}\right\rangle\right)_{b_{i}, b_{j} \in B} .
$$

Homework. The dual basis exists iff the Gram matrix is invertible iff $\operatorname{det}(G)$ is inveritble in \mathbb{C} iff $\operatorname{Rad}(\langle\rangle)=$,0 .

Let A be an algebra with a nondegenerate trace t. Let B be your basis of A.

Example. Let $A=T L_{3}$,

My favorite trace is $t(b)=[2]^{\# \text { of loops in } c l(b)}$ where $c l(b)=\quad b$

So, for example, $t(\backsim \mid)=[2]^{2}$ and

$$
\langle\curvearrowright\rangle=t(\overbrace{\curvearrowright}^{\mho})=[2]
$$

2.3. Commuting operators. Again: Let A be an algebra with a nondegenerate trace t. Let B be your basis of A. Let B^{*} be the dual basis. Let M, N be A-modules. Recall

$$
\begin{array}{rlrl}
\rho_{M}: A & \rightarrow \operatorname{End}(M) \quad \text { and } \rho_{N}: A & \rightarrow \operatorname{End}(N) \\
a & \mapsto a_{M} & & \mapsto a_{N}
\end{array}
$$

Then

$$
\left.\begin{array}{rl}
\operatorname{Hom}_{A}(M, N) & =\{\phi: M \rightarrow N
\end{array} \begin{array}{l}
\phi \text { is a morphism of vector spaces and } \\
\phi(a m)=a \phi(m), \text { for } a \in A, m \in M
\end{array}\right\}
$$

Definition. The A-endomorphisms of M are

$$
\operatorname{End}_{A}(M):=\left\{\phi \in \operatorname{End}(M) \mid \phi a_{M}=a_{M} \phi \text { for } a \in A\right\}
$$

where $\operatorname{End}(M)=\operatorname{Hom}(M, M)$. Or we might just write

$$
\operatorname{End}_{A}(M)=\{\phi \in \operatorname{End}(M) \mid \phi a=a \phi \text { for } a \in A\}
$$

Now, let $\phi: M \rightarrow N$ be a vector space homomorophism. Define $[\phi]: M \rightarrow N$ by

$$
[\phi]=\sum_{b \in B} b \phi b^{*} .
$$

(and check that if $m \in M,[\phi] m=\sum_{b} b \phi b^{*} m \in N$).
Claim. $[\phi] \in \operatorname{Hom}_{A}(M, N)$.

Proof. Let $a \in A, m \in M$.

$$
\begin{aligned}
a[\phi] m & =\sum_{b \in B} a b \phi b^{*} m=\sum_{b \in B} \sum_{c \in B}\left\langle a b, c^{*}\right\rangle c \phi b^{*} m \\
& =\sum_{b, c \in B} c \phi\left\langle a b, c^{*}\right\rangle b^{*} m=\sum_{b, c \in B} c \phi\left\langle c^{*} a, b\right\rangle b^{*} m=\sum_{c \in B} c \phi c^{*} a m \\
& =[\phi] a m .
\end{aligned}
$$

Homework. Show that $[\phi]$ does not depend on the choice of B.

Game. You give me $\phi: M \rightarrow N$ and I make $[\phi] \in \operatorname{Hom}_{A}(M, N)$.
Detour: Schur's lemma. Suppose $[\phi] \in \operatorname{Hom}_{A}(M, N)$ and suppose M and N are simple. Then $\operatorname{ker}[\phi]$ and $\operatorname{im}[\phi]$ are submodules of M
and N respectively. So ker $[\phi]=0$ or $\operatorname{ker}[\phi]=M$ and $\operatorname{im}[\phi]=0$ or $\operatorname{im}[\phi]=N$. So either $[\phi]$ is zero, or $[\phi]$ is injective and surjective, ie an isomorphism. If $M \simeq N$ then $[\phi] \in \operatorname{End}_{A}(M)$. Since \mathcal{C} is an algebraically closed field $[\phi]$ has an eigenvalue λ. Then $[\phi]-\lambda \in \operatorname{End}_{A}(M)$. So $[\phi]-\lambda=0$ or $[\phi]-\lambda$ is an isomorphism. Since $\operatorname{det}([\phi]-\lambda)=$ $0,[\phi]-\lambda=0$, ie $[\phi]=\lambda$. We've just proved

Theorem 2.3 (Schur's Lemma). Suppose $[\phi] \in \operatorname{Hom}_{A}(M, N)$ and suppose M and N are simple. Then either $[\phi]=0$ or $[\phi]=\lambda$ for some λ. In particular, if M is simple, then

$$
\operatorname{End}_{A}(M)=\mathcal{C}
$$

Definition. Let A be an algebra. Let M be an A-module. The commutant or centralizer algebra of M is $\operatorname{End}_{A}(M)$.

General question: How are A and $E n d_{A}(M)$ related?

2.4. Regular representation.

Definition. Let A be an algebra. The regular representation of A is A with A-action given by left multiplication. Then

$$
\begin{aligned}
\rho_{A}: A & \rightarrow E n d(A) \\
a & \mapsto a_{A}
\end{aligned}
$$

is injective, since $a \cdot 1=a$ implies ker $\rho_{A}=0$.

Therefore, elements of A "are" matrices. (You may have thought that Temperley-Lieb was diagrams, but it turns out it's nothing more than a bunch of 5 -by- 5 matrices.)

Let $t: A \rightarrow \mathcal{C}$ be the trace of the regular representation

$$
t(a):=\operatorname{Tr}\left(a_{A}\right)
$$

Theorem 2.4. (Maschke's theorem) Let A be an algebra such that the trace of the regular representation is nondegenerate (note that finite dimensionality has already entered here - infinite matrices might not have traces). Then every A-module M is completely decomposable, ie

$$
M=A^{\lambda} \oplus A^{\mu} \oplus \cdots
$$

where $A^{\lambda}, A^{\mu}, \ldots$ are simple modules.

Proof. Let M be an A-module. If M is simple, we're done.
Otherwise let N be a submodule of $M . N$ has basis $\left\{n_{1}, \ldots, n_{r}\right\}$ and M has basis $\left\{n_{1}, \ldots, n_{r}, m_{1}, \ldots, m_{s}\right\}$.

Define a map $\phi: M \rightarrow M$ by $\phi\left(n_{i}\right)=n_{i}$ and $\phi\left(m_{j}\right)=0$. Then $\phi(n)=n$ for $n \in N$ and $\phi^{2}=\phi, \operatorname{im} \phi=N$, so ϕ is projection onto N. And $[\phi] \in \operatorname{Hom}_{A}(M, M)$.

If $n \in N$ then

$$
[\phi] n=\sum_{b \in B} b \phi b^{*} n=\sum_{b \in B} b b^{*} n=n,
$$

because
Claim. $\sum_{b \in B} b b^{*}=1$

Proof. Let $a \in A$ and consider $\left\langle\sum_{b \in B} b b^{*}, a\right\rangle=\sum_{b \in B}\left\langle a b, b^{*}\right\rangle=\left.\sum_{b \in B} a b\right|_{b}=$ $\operatorname{Tr}\left(a_{A}\right)=\langle 1, a\rangle$.

Next if $m \in M$,

$$
\begin{aligned}
{[\phi]^{2} m } & =[\phi] \sum_{b \in B} b \phi b^{*} m=\sum_{b, c \in B} c \phi c^{*} b \phi b^{*} m \\
& =\sum_{b, c, \in B} c c^{*} b \phi b^{*} m=\sum_{b \in B} b \phi b^{*} m=[\phi] m .
\end{aligned}
$$

So, $[\phi]^{2}=[\phi]$ and $(1-[\phi])^{2}=\cdots=1-[\phi]$ and $M=1 \cdot M=$ $([\phi]+1-[\phi]) M=[\phi] M+(1-[\phi]) M$. Now $[\phi] M$ is a submodule and $(1-[\phi]) M$ is a submodule, and $[\phi] M \cap(1-[\phi]) M=0$, so M is split.

By induction, we're done.

[^0]: Date: August 10, 2008.
 Send comments and corrections to E.Peters@ms.unimelb.edu.au.

