REPRESENTATION THEORY

EMILY PETERS

Abstract

Notes from Arun Ram's 2008 course at the University of Melbourne.

3. Week 3

Question. Why is $\left(q+q^{-1}\right)$ the q-analogue of 2 ?
Answer. If $q=1$ then this is 2 . More generally, we can define

$$
[n]=\frac{q^{n}-1}{q-1}=1+q+\cdots q^{n-1}
$$

And we can also define

$$
[n]!=[n][n-1] \cdots[2][1] \quad \text { and } \quad\left[\begin{array}{l}
n \\
k
\end{array}\right]=\frac{[n]!}{[k]![n-k]!}
$$

Note that (perhaps surprisingly) this last quantity is a genuine polynomial, not just a quotient of polynomials.

In analogy to the binomial theorem, we have: If $x y=q y x$ then we have $(x+y)^{n}=\sum\left[\begin{array}{l}n \\ k\end{array}\right] x^{n} y^{n-k}$.

3.1. Heading towards Artin-Wedderburn Theorem.

Theorem 3.1. Let A be a finite dimensional algebra such that the trace of the regular representation is nondegenerate. Then A is isomorphic to a direct sum of matrix algebras. More precisely, $A=\bigoplus_{\lambda \in \hat{A}} M_{d_{\lambda}}(\mathbb{C})$.

[^0]We picture this as

$$
\operatorname{RHS}=\left\{\left(\begin{array}{cc}
\boxed{*} \mid\} d_{\lambda} & 0 \\
\hline & \boxed{*}\} \\
0 & \boxed{*} d_{\mu}
\end{array}\right)\right\} .
$$

$\bigoplus_{\lambda \in \hat{A}} M_{d_{\lambda}}(\mathbb{C})$ has basis $\left\{E_{i, j}^{\lambda} \mid \lambda \in \hat{A}, 1 \leq i, j \leq d_{\lambda}\right\}$. $E_{i, j}^{\lambda}$ has 1 in i th row, j th column of λ th block and all other entries 0. Meanwhile A has basis $B=\{b\}$. In practice, Artin-Wedderburn says we can change basis from B to $E_{i, j}^{\lambda}$. How do we do this?

Idea of Proof. A is an A-module (A acts on A by left multiplication).
Maschke says we can decompose A into simple modules:

$$
A=\bigoplus_{\lambda \in \hat{A}}\left(A^{\lambda}\right)^{n_{\lambda}}
$$

where \hat{A} is an index set for the simples and n_{λ} is the number of times A^{λ} appears in A.

We have a map

$$
\begin{aligned}
\rho^{\lambda}: A & \rightarrow \operatorname{End}\left(A^{\lambda}\right)=M_{d_{\lambda}}(\mathbb{C}) \\
a & \mapsto \rho^{\lambda}(a)
\end{aligned}
$$

where $\rho^{\lambda}(a)$ is the action of a on A^{λ}.
$M_{d}(\mathbb{C})$ has $\mathbb{C}^{d}=\operatorname{span}\left\{e_{1}, \ldots, e_{d}\right\}$, where e_{i} is a column vector with a 1 in the i th row, as a module, and $M_{d}(\mathbb{C})=\left(\mathbb{C}^{d}\right)^{d}$.

Homework. \mathbb{C}^{d} is a simple $M_{d}(\mathbb{C})$ module! It's the only one!
$\bigoplus_{\lambda \in \hat{A}} M_{d_{\lambda}}(\mathbb{C})$ has simple modules $A^{\lambda}=\mathbb{C}^{d_{\lambda}}=\operatorname{span}\left\{e_{i}^{\lambda} \mid 1 \leq i \leq d_{\lambda}\right\}$ with $E_{i, j}^{\mu} e_{r}^{\lambda}=\delta_{\mu, \lambda} \delta_{j, r} e_{i}^{\lambda}$.

Back to Artin-Wedderburn: To find the isomorphism from A to $\bigoplus_{\lambda \in \hat{A}} M_{d_{\lambda}}(\mathbb{C})$, we need to change basis from $B=\{b\}$ to $\left\{E_{i, j}^{\lambda} \mid \lambda \in \hat{A}, 1 \leq i, j \leq d_{\lambda}\right\}$. We found \hat{A} and the d_{λ} by decomposing A as an A-module (using

Maschke). We have

$$
\begin{aligned}
\rho^{\lambda}: A & \rightarrow \operatorname{End}\left(A^{\lambda}\right)=M_{d_{\lambda}}(\mathbb{C}) \quad \text { so } \rho:=\bigoplus_{\lambda \in \hat{A}} \rho^{\lambda}: A \rightarrow \bigoplus_{\lambda \in \hat{A}} M_{d_{\lambda}}(\mathbb{C}) \\
a & \mapsto \rho^{\lambda}(a) \\
& a \mapsto\left(\begin{array}{rll}
\rho^{\lambda}(a) & & \\
& \rho^{\mu}(a) & \\
& & \rho^{\nu}(a)
\end{array}\right)
\end{aligned}
$$

If $b \in B$ then

$$
\rho(b)=\sum_{\lambda \in \hat{A}} \sum_{i, j=1}^{d_{\lambda}} \rho^{\lambda}(b)_{i, j} E_{i, j}^{\lambda} .
$$

But ρ is injective (since A acts faithfully on itself by left multiplicaiton), so we identify b with $\rho(b)$:

$$
b=\sum_{\lambda \in \hat{A}} \sum_{i, j=1}^{d_{\lambda}} \rho^{\lambda}(b)_{i, j} E_{i, j}^{\lambda} .
$$

Now we want

$$
E_{i, j}^{\lambda}=\sum_{b \in B} ? ? b
$$

in order to prove this is an isomorphism.
(Fourier Inversion - noncommutative)

$$
\begin{equation*}
E_{i, j}^{\lambda}=\sum_{b \in B} \rho^{\lambda}\left(b^{*}\right)_{j, i} b, \tag{1}
\end{equation*}
$$

where $\left\{b^{*}\right\}$ is the dual basis to B with respect to \langle,$\rangle defined by \langle x, y\rangle=$ $t(x y)$, where t is the trace of the regular representation.

Why does this work? The point is that (1) does not depend on the choice of B. And (1) is trivial if $B=\left\{E_{i, j}^{\lambda} \mid \lambda \in \hat{A}, 1 \leq i, j \leq d_{\lambda}\right\}$.

Homework. Work this out and make this proof more formal
3.2. Towers of algebras and some families of algebras. For all k we have

$$
\begin{array}{r}
T L_{k} \hookrightarrow T L_{k+1} \\
b \mapsto\left|\begin{array}{c}
\ldots \\
\ldots \\
\ldots
\end{array}\right|
\end{array}
$$

which are injective algebras homomorphisms. Then

$$
T L_{1} \subset T L_{2} \subset T L_{3} \subset \cdots
$$

is a "tower of algebras."
Definition. The braid group B_{k} is the group of braids on k strands with product $b_{1} b_{2}=b_{1}$ stacked on top of b_{2}.

Theorem 3.2. (Artin) The braid group B_{k} is presented by generators $T_{i}=|\ldots| /\left||\ldots|, 1 \leq i \leq k-1\right.$ with relations $T_{i} T_{i+1} T_{i}=T_{i+1} T_{i} T_{i+1}$.

Definition. Let G be a group. The group algebra of G is the vector space $\mathbb{C} G$ with basis G with product determined by the product in G (and distributive laws). Sometimes this product is called convolution.

Definition. A G-module is a $\mathbb{C} G$ module.
Definition. The symmetric group S_{k} is given by generators s_{1}, \ldots, s_{k} and relations $s_{i} s_{i+1} s_{i}=s_{i+1} s_{i} s_{i+1}$ and $s_{i}=s_{i}^{-1}$.

Now we have two more towers of algebras: $\mathbb{C} B_{1} \subset \mathbb{C} B_{2} \subset \mathbb{C} B_{3} \subset \cdots$ and $\mathbb{C} S_{1} \subset \mathbb{C} S_{2} \subset \mathbb{C} S_{3} \subset \cdots$.

We also have a surjective map $B_{k} \rightarrow S_{k}$ given by

$$
T_{i}=|\ldots| \nmid|\ldots| \mapsto s_{i}=|\ldots| X|\cdots|
$$

Definition. The Iwahori-Hecke algebra H_{k} is the quotient of $\mathbb{C} B_{k}$ by $T_{i}=T_{i}^{-1}+\left(q-q^{-1}\right)$, for $1 \leq i \leq k-1$.

Remark. If $q=1$, then $H_{k}=\mathbb{C} S_{k}$. The Gram matrix of the form \langle, for H_{k} is a matrix of polynomials. If Artin-Wedderburn works for S_{k} (ie, the hypothesis is satisfied) then it works for H_{k} - if the polynomial in q which is the determinant of the Gram matrix is non-zero for $q=1$ then it's non-zero as a polynomial.

Let $e_{i}=T_{i}-q$ in $H_{k} . \quad$ (Recall that in $T L_{k}, e_{i}=|\ldots|_{\curvearrowleft}^{\smile}|\ldots|$ and $\left.e_{i}^{2}=[2] e_{i}, e_{i} e_{i \pm 1} e_{i}=e_{i}.\right)$
Homework. Assuming that $T_{i}=T_{i}^{-1}+\left(q-q^{-1}\right)$, as it is in H_{k}, then $T_{i} T_{i+1} T_{i}=T_{i+1} T_{i} T_{i+1}$ is equivalent to $e_{i} e_{i+} e_{i}-e_{i+1} e_{i} e_{i+1}=e_{i}-e_{i+1}$ and $T_{i}=T_{i}^{-1}+\left(q+q^{-1}\right)$ is equivalent to $e_{i}^{2}=[2] e_{i}$.
Proposition 3.3. H_{k} is presented by generators e_{1}, \ldots, e_{k-1} and relations $e_{i}^{2}=[2] e_{i}$ and $e_{i} e_{i+} e_{i}-e_{i+1} e_{i} e_{i+1}=e_{i}-e_{i+1}$. So

$$
\begin{aligned}
H_{k} & \rightarrow T L_{k} \\
e_{i} & \mapsto e_{i}
\end{aligned}
$$

is a surjective homomorphism.

So the picture thus far is:

Definition. $T_{w_{0}}=$

Remark. $T_{w_{0}}^{2}$ is a full rotation of all strands. By drawing pictures, it's not hard to convince yourself that $T_{w_{0}}^{2} T_{i} T_{w_{0}}^{2}=T_{i}$, so $T_{w_{0}}^{2} \in Z\left(B_{k}\right)$.
Theorem 3.4. (Arnold or Artin, Garside-Deligne) $Z\left(B_{k}\right)$ is generated by $T_{w_{0}}^{2}$.
 across and then under the others.

Then $T_{w_{0}}^{2}=y^{\varepsilon_{1}^{\vee}} y^{\varepsilon_{2}^{\vee}} \cdots y^{\varepsilon_{k}^{\vee}}$ and $y^{\varepsilon_{i}^{\vee}} y^{\varepsilon_{j}^{\vee}}=y^{\varepsilon_{j}^{\vee}} y^{\varepsilon_{i}^{\vee}}$. So, $\mathbb{C}\left[y^{\varepsilon_{1}^{\vee}}, \ldots, y^{\varepsilon_{k}^{\vee}}\right] \subset$ $\mathbb{C} B_{k}$.

The game for studying the towers is to, inductively, find eigenvalues (and eigenvectors) for $T_{w_{0}}^{2}$ and $y^{\epsilon_{1}^{\vee}}, \ldots, y^{\epsilon_{k}^{\vee}}$ as operators on modules.

3.3. Tools for next week.

Definition (Pullback functors). Let $\phi: A \rightarrow R$ be an algebra homomorphism. Then we get

$$
\begin{aligned}
\phi^{*}: R \text {-modules } & \rightarrow A \text {-modules } \\
M & \mapsto M
\end{aligned}
$$

where A acts on M by $a \cdot m=\phi(a) m$ for $a \in A$.

If $\phi: A \hookrightarrow R(A$ is a subalgebra of $R)$, then $\phi^{*}(M)$ is M with A-action from $A \subset R$ (a forgetful functor). We write $\operatorname{Res}_{A}^{R}(M)$ (an A-module).

Definition (Adjoint functors). Say $F:\{R$-modules $\} \rightarrow\{A$-modules $\}$ is a functor. The adjoint functor is $F^{\vee}:\{A$-modules $\} \rightarrow\{R$-modules $\}$ determined by $\operatorname{Hom}_{R}\left(F^{\vee} M, N\right)=\operatorname{Hom}_{A}(M, F N)$.

Example. If $F=\operatorname{Res}_{A}^{R}$ then $F^{\vee}=\operatorname{Ind}_{A}^{R}$.

Given some tower, for instance $H_{1} \subset H_{2} \subset H_{3} \subset \cdots$, Res moves us down the tower and Ind modes us up the tower.

[^0]: Date: August 19, 2008.
 Send comments and corrections to E.Peters@ms.unimelb.edu.au.

