REPRESENTATION THEORY

EMILY PETERS

Abstract

Notes from Arun Ram's 2008 course at the University of Melbourne.

4. Week 4

Question. What does ${ }_{q}$ in question 2 of the homework mean?
Answer. $\mathcal{U}_{q}\left(\mathfrak{s l}_{2}\right)$ has generators E, F, and K satisfying certain relations, I think I specified them in the assignment.

Question. Is there a nice way to see that the (half) twist generates the center of the braid group?

Answer. This is related to other questions, like what are the conjugacy classes of the braid group? And the word problem: How do you tell is one braid is conjagate to another? Garside and Deligne solve this, and the center problem, all at once.

Today's lecture is about getting you the tools you need to do the homework.

4.1. Irreducible representations of H_{k}.

Recall. The Iwahori-Hecke algebra H_{k} is generated by T_{1}, \ldots, T_{k-1} (PIC) with relations $T_{i} T_{i+1} T_{i}=T_{i+1} T_{i} T_{i+1}$ and $T_{i}=T_{i}^{-1}=q-q^{-1}$
Remark. If $q=1$ then $H_{k}=\mathbb{C} S_{k}$.

Your goal is to find the irreducible representations of the Hecke algebra.

[^0]Recall. $y^{\varepsilon_{i}^{\vee}}=(-|-|\rceil| |=T_{i-1} T_{i-2} \cdots T_{2} T_{1}^{2} T_{2} \cdots T_{i-1}$. These are good elements because they satisfy $y^{\varepsilon_{i}^{\vee}} y^{\varepsilon_{j}^{\vee}}=y^{\varepsilon_{j}^{\vee}} y^{\varepsilon_{i}^{\vee}}$

We will use $\operatorname{Res}_{H_{k-1}}^{H_{k}}$ and $\operatorname{Ind}_{H_{k-1}}^{H_{k}}$ to study $H_{1} \subset H_{2} \subset H_{3} \subset \cdots$ where

$$
\begin{aligned}
& H_{k} \hookrightarrow H_{k+1} \\
& b \mapsto \left\lvert\, \frac{\ldots}{\frac{b}{\ldots}}\right.
\end{aligned}
$$

By counting dimensions we can see that $H_{1} \simeq M_{1}(\mathbb{C})$ has one irrep, $H_{2} \simeq M_{1}(\mathbb{C}) \oplus M_{1}(\mathbb{C})$ has two irreps, $H_{3} \simeq M_{1}(\mathbb{C}) \oplus M_{1}(\mathbb{C}) \oplus M_{1}(\mathbb{C}) \oplus$ $M_{1}(\mathbb{C}) \oplus M_{1}(\mathbb{C}) \oplus M_{1}(\mathbb{C})$ or $H_{3} \simeq M_{1}(\mathbb{C}) \oplus M_{1}(\mathbb{C}) \oplus M_{2}(\mathbb{C})$.

Let me tell you what the irreducible representations of H_{k} are; your job will be to prove it's correct.

Definition. A partition is a collection of boxes in a corner. We write a partition as $\lambda=\left(\lambda_{1}, \ldots, \lambda_{\ell}\right)$ where $\lambda_{i}=$ number of boxes in row i.

Example. $\lambda=$| | | | |
| :--- | :--- | :--- | :--- |
| | | | |
| | | | |

Now, $\hat{H}_{k}=\{$ partitions λ with k boxes $\}$. (This hat should make you think this set is in one-to-one correspondence with ireducible H_{k} modules.)

Definition. The Bratteli diagram of $H_{1} \subset H_{2} \subset H_{3}$ has vertices on level k corresponding to $\lambda \in \hat{H}_{k}$. The vertices λ and μ are connected by an edge if μ is obtained from λ by adding a box.

So assuming that \hat{H}_{k} is in 1-1 correspondence with irreducible $H_{k^{-}}$ modules via $\lambda \mapsto H_{k}^{\lambda}$, the Bratteli diagram says

$$
\operatorname{Res}_{H_{k-1}}^{H_{k}}\left(H_{k}^{\mu}\right)=\bigoplus_{\substack{\lambda \in \hat{H}_{k-1}, \mu / \lambda=\square}} H_{k-1}^{\lambda}
$$

Example.

$$
\operatorname{Res}_{H_{3}}^{H_{4}}\left(H_{4}^{\square}\right)=H_{3}^{\square} \oplus H_{3}^{\square}
$$

Since $\operatorname{Hom}_{H_{k}}\left(\operatorname{Ind}_{H_{k-1}}^{H_{k}}\left(H_{k-1}^{\lambda}\right), H_{k}^{\mu}\right) \simeq \operatorname{Hom}_{H_{k-1}}\left(H_{-1}^{\lambda}, \operatorname{Res}_{H_{k-1}}^{H_{k}}\left(H_{k}^{\mu}\right)\right)$, by Schur's lemma, we get

$$
\operatorname{Ind}_{H_{k-1}}^{H_{k}}\left(H_{k-1}^{\lambda}\right)=\bigoplus_{\substack{\mu \in \hat{H}_{k}, \mu / \lambda=\square}} H_{k}^{\mu}
$$

But we haven't said what H_{k}^{λ} is. Can we build H_{k}^{λ} ?
Question. Well uh uh what is $\operatorname{dim}\left(H_{k}^{\lambda}\right)$?

As vector spaces,

$$
\begin{aligned}
H_{5}^{\square} & =H_{4}^{\square}+H_{4}^{\square}=H_{3}^{\square}+H_{3}^{\square}+H_{3}^{\square} \\
& =H_{2}^{\square}+H_{2}^{\square}+H_{2}^{\square}+H_{2}^{\square}+H_{2}^{\square} \\
& =H_{1}^{\square}+H_{1}^{\square}+H_{1}^{\square}+H_{1}^{\square}+H_{1}^{\square}
\end{aligned}
$$

so $\operatorname{dim} H_{5}^{\square}=5$.
By tracing where each box in the final lines comes from, we end up getting a path in the Bratteli diagram. That is, $\operatorname{dim} H_{k}^{\lambda}=$ number of paths from \emptyset to λ in the Bratteli diagram.

To count paths on the Bratteli diagram, just do a Pascal triangle type thing.

For example, $H_{4} \simeq M_{1}(\mathbb{C}) \oplus M_{3}(\mathbb{C}) \oplus M_{2}(\mathbb{C}) \oplus M_{3}(\mathbb{C}) \oplus M_{1}(\mathbb{C})$.

Definition. A standard tableau of shape λ is a filling of the boxes with $1,2, \ldots k$ such that the rows increase left to right and the columns increase top to bottom.

Example. $\lambda=(2,2,1)$ has standard tableau

	4	1	3	1	3	1	2			2
2	5	2	5	2	4	3	5			4
3		4		5		4				

It should be obvious that these guys are the same as paths. There is a bijection beween standard tableaux of shape λ and paths from \emptyset to λ.

Note: $k!=\sum_{\lambda \vdash k}\left(\operatorname{dim} H_{k}^{\lambda}\right)^{2}=\sum_{\lambda \vdash k}(\# \text { of standard tableau of shape } \lambda)^{2}$ As a vector space H_{k}^{λ} has basis $\left\{v_{T} \mid T\right.$ is a standard tableau of shape $\left.\lambda\right\}$.

Question. H_{k} acts on H_{k}^{λ} how? $y^{\varepsilon_{i}^{\vee}} v_{T}=$?

Why define the action of $y^{\varepsilon_{i}^{v}}$ instead of T_{i} ? Because the y 's commute with each other, so we can look for a basis in which they're all diagonal.

Theorem 4.1. H_{k} acts on H_{k}^{λ} by $y^{\varepsilon_{i}^{\vee}} v_{T}=q^{c(T(i))} v_{T}$. You can unravel this and get the much nastier formulation

$$
T_{i} v_{T}=\frac{q-q^{-1}}{1-q^{2(c(Y(i))-c(T(i+1)))}} v_{T}+\left(q^{-1}+\frac{q-q^{-1}}{1-q^{2(c(T(i))-c(T(i+1)))}}\right) v_{s_{i} T} .
$$

Here $T(i)$ is the box containing i in T and the content c of a box b is $c(b)=s-r$, where b is in column r, row s. Also $s_{i} T$ is defined to be T except i and $i+1$ are switched, and $v_{s_{i} T}=0$ if $s_{i} T$ is not standard.
4.2. Irreducible representations of Temperley-Lieb. There is a surjective map $H_{k} \rightarrow T L_{k}$ via $T_{i}-q \mapsto e_{i}$. So every $T L_{k}$-module is an H_{k}-module.

For $T L_{1} \subset T L_{2} \subset T L_{3} \subset \cdots$, the Bratteli diagram is

(You can get the second diagram from the first by deleting 2-row columns from all the tableau). Now you have (more than enough) tools to do problem 1 on the homework.
4.3. Representations of $\mathcal{U}_{q}\left(\mathfrak{s l}_{2}\right)$. There's a lie algebra called $\mathfrak{s l}_{2}$. Circa $1985, \mathfrak{s l}_{2}$-irreducible modules were written down by R. Block. $\mathfrak{s l}_{3}$ is thought to be impossible. Arun thinks $\mathcal{U}_{q}\left(\mathfrak{s l}_{2}\right)$ is not done, and also that it's not very hard. So he assigned it as homework.

Note: the relation between $\mathfrak{s l}_{2}$ and $\mathcal{U}_{q}\left(\mathfrak{s l}_{2}\right)$ is the same as the relation between H_{k} and $\mathbb{C} S_{k}$: set $\mathrm{q}=1$ to pass from the first to the second.

Definition. A Lie algebra is a vector space \mathfrak{g} with a bracket

$$
[,]: \mathfrak{g} \oplus \mathfrak{g} \rightarrow \mathfrak{g}
$$

such that
(a) $[x, y]=-[y, x]$ for $x, y \in \mathfrak{g}$;
(b) $[x,[y, z]]=[[x, y], z]+[y,[x, z]]$ for $x, y, z \in \mathfrak{g}$ (this is called the Jacobi identity).

Note that a Lie algebra is not an algebra - Lie is not an adjective maybe we should write it Liealgebra. But seriously, this more than just a grammatical problem, because we don't know how to talk about representations of anything but algebras.
Definition. The enveloping algebra of \mathfrak{g} is the algebra $\mathcal{U}(\mathfrak{g})$ generated by the vector space \mathfrak{g} with relations $x y=y x+[x, y]$ for $x, y \in \mathfrak{g}$
Definition. A \mathfrak{g}-module is a $\mathcal{U}(\mathfrak{g})$-module.

Definition. $\mathfrak{s l}_{2}=\left\{x \in M_{2}(\mathbb{C}) \mid \operatorname{tr}(x)=0\right\}=\left\{\left.\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \right\rvert\, a+d=0\right\}$ with

$$
[x, y]=x y-y x
$$

where the product on the RHS is matrix multiplication.
Proposition 4.2. $\mathfrak{s l}_{2}$ is generated by

$$
e=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), f=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right), \text { and } h=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right),
$$

with relations $[e, f]=h,[h, e]=2 e,[h, f]=-2 f$.

Then $\mathcal{U}\left(\mathfrak{s l}_{2}\right)$ is the algebra generated by e, f, h with relations

$$
e f=f e+h, e h=h e-2 e, h f=f h-2 f .
$$

Thus $\mathcal{U}\left(\mathfrak{s l}_{2}\right)$ has basis $\left\{f^{m_{1}} h^{m_{2}} e^{m_{3}} \mid m_{1}, m_{2}, m_{3} \in \mathbb{Z}_{\geq 0}\right\}$. So $\mathcal{U}\left(\mathfrak{s l}_{2}\right)$ is sort of like the polynomial ring $\mathbb{C}[\epsilon, \phi, \eta]$ (which has relations $\epsilon \phi=\phi \epsilon$, $\epsilon \eta=\eta \epsilon, \eta \phi=\phi \eta$.)

One problem with $\mathcal{U}\left(\mathfrak{s l}_{2}\right)$ is that it's infinite dimensional, so we can't use Artin-Wedderburn. This is why finding its modules was considered a hard problem.

Let's build the modules.
Definition. Let $L(\square)=\operatorname{span}\left\{v_{1}, v_{-1}\right\}$ with

$$
\begin{aligned}
& e v_{1}=0, \quad f v_{1}=v_{-1}, \quad h v_{1}=v, 1 \\
& e v_{-1}=v_{1}, \quad f v_{-1}=0, \quad h v_{-1}=-v_{-1}
\end{aligned}
$$

Note that this is just the representation we get from writing e, f and h as 2-by-2 matrices.

How can we build more modules? Luckily $\mathcal{U}=\mathcal{U}\left(\mathfrak{s l}_{2}\right)$ is a Hopf algebra! What does this mean? Let M and N be \mathcal{U}-modules. M has basis $\left\{m_{1}, \ldots, m_{r}\right\}, N$ has basis $\left\{n_{1}, \ldots, n_{s}\right\} . M \otimes N$ has basis $\left\{m_{i} \otimes n_{j}\right\}$ and $\operatorname{dim} M \otimes N=r s$. Saying \mathcal{U} is a Hopf algebra means that \mathcal{U} comes with a map $\Delta: \mathcal{U} \rightarrow \mathcal{U} \otimes \mathcal{U}$, called the coproduct, which makes \mathcal{U} act on $M \otimes N$. Define Δ by

$$
\Delta(e)=e \otimes 1+1 \otimes e, \Delta(f)=f \otimes 1+1 \otimes f, \Delta(h)=h \otimes 1+1 \otimes h
$$

Now $L(\square) \otimes L(\square)$ has basis $\left\{v_{1} \otimes v_{1}, v_{-1} \otimes v_{1}, v_{1} \otimes v_{-1}, v_{-1} \otimes v_{-1}\right\}$. So, for example,

$$
\begin{aligned}
e\left(v_{1} \otimes v_{1}\right) & =\Delta(e)\left(v_{1} \otimes v_{1}\right)=(e \otimes 1+1 \otimes e)\left(v_{1} \otimes v_{1}\right) \\
& =e v_{1} \otimes v_{1}+v_{1} \otimes e v_{1}=0
\end{aligned}
$$

A more interesting example is

$$
\begin{aligned}
f\left(v_{1} \otimes v_{1}\right) & =\Delta(f)\left(v_{1} \otimes v_{1}\right)=(f \otimes 1+1 \otimes f)\left(v_{1} \otimes v_{1}\right) \\
& =f v_{1} \otimes v_{1}+v_{1} \otimes f v_{1}=v_{-1} \otimes v_{1}+v_{1} \otimes v_{-1}
\end{aligned}
$$

and

$$
f^{2}\left(v_{1} \otimes v_{1}\right)=v_{-1} \otimes v_{-1}+v_{-1} \otimes v_{-1}=2 v_{-1} \otimes v_{-1}
$$

Let $v_{2}=v_{1} \otimes v_{1}, v_{0}=f v_{2}, 2 v_{-2}=f^{2} v_{2}\left(v_{-2}=v_{-1} \otimes v_{-1}\right)$ and $v^{0}=v_{1} \times v_{-1}-v_{-1} \otimes v_{1}$. Then $e v^{0}=0, f v^{0}=0$.
Definition. Let $L(\square \square)=\operatorname{span}\left\{v_{2}, v_{0}, v_{-2}\right\}, L(\emptyset)=\operatorname{span}\left\{v^{0}\right\}$.

Then $L(\square) \otimes L(\square)=L(\square)+L(\emptyset)$.
Define $\rho \square: \mathcal{U}\left(\mathfrak{s l}_{2}\right) \rightarrow \operatorname{End}(L(\square))$ by

$$
e \mapsto\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 2 \\
0 & 0 & 0
\end{array}\right), f \mapsto\left(\begin{array}{ccc}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 2 & 0
\end{array}\right), h \mapsto\left(\begin{array}{ccc}
2 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -2
\end{array}\right)
$$

and define $\rho^{\emptyset}: \mathcal{U}\left(\mathfrak{s l}_{2}\right) \rightarrow \operatorname{End}(L(\emptyset))$ by

$$
e \mapsto 0, f \mapsto 0, h \mapsto 0
$$

Did I give you the coproduct on $\mathcal{U}_{q}\left(\mathfrak{s l}_{2}\right)$? Maybe not. OK:
Definition. The coproduct $\Delta: \mathcal{U}_{q}\left(\mathfrak{s l}_{2}\right) \otimes \mathcal{U}_{q}\left(\mathfrak{s l}_{2}\right) \rightarrow \mathcal{U}_{q}\left(\mathfrak{s l}_{2}\right)$ is defined by

$$
\begin{aligned}
\Delta(E) & =E \otimes 1+K \otimes E \\
\Delta(F) & =F \otimes K^{-1}+1 \otimes F \\
\Delta(K) & =K \otimes K
\end{aligned}
$$

[^0]: Date: August 20, 2008.
 Send comments and corrections to E.Peters@ms.unimelb.edu.au.

