
REPRESENTATION THEORY

EMILY PETERS

Abstract. Notes from Arun Ram’s 2008 course at the University

of Melbourne.

4. Week 4

Question. What does q in question 2 of the homework mean?

Answer. Uq(sl2) has generators E, F , and K satisfying certain rela-
tions, I think I specified them in the assignment.

Question. Is there a nice way to see that the (half) twist generates
the center of the braid group?

Answer. This is related to other questions, like what are the conjugacy
classes of the braid group? And the word problem: How do you tell is
one braid is conjagate to another? Garside and Deligne solve this, and
the center problem, all at once.

Today’s lecture is about getting you the tools you need to do the home-
work.

4.1. Irreducible representations of Hk.

Recall. The Iwahori-Hecke algebra Hk is generated by T1, . . . , Tk−1

(PIC) with relations TiTi+1Ti = Ti+1TiTi+1 and Ti = T−1
i = q − q−1

Remark. If q = 1 then Hk = CSk.

Your goal is to find the irreducible representations of the Hecke algebra.

Date: August 20, 2008.

Send comments and corrections to E.Peters@ms.unimelb.edu.au.
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Recall. yε∨i = = Ti−1Ti−2 · · ·T2T
2
1 T2 · · ·Ti−1. These

are good elements because they satisfy yε∨i yε∨j = yε∨j yε∨i

We will use ResHk

Hk−1
and IndHk

Hk−1
to study H1 ⊂ H2 ⊂ H3 ⊂ · · · where

Hk →֒ Hk+1

b 7→ b

...

...

By counting dimensions we can see that H1 ≃ M1(C) has one irrep,
H2 ≃ M1(C)⊕M1(C) has two irreps, H3 ≃ M1(C)⊕M1(C)⊕M1(C)⊕
M1(C) ⊕ M1(C) ⊕ M1(C) or H3 ≃ M1(C) ⊕ M1(C) ⊕ M2(C).

Let me tell you what the irreducible representations of Hk are; your
job will be to prove it’s correct.

Definition. A partition is a collection of boxes in a corner. We write
a partition as λ = (λ1, . . . , λℓ) where λi = number of boxes in row i.

Example. λ = = (5, 3, 1, 1)

Now, Ĥk = {partitions λ with k boxes}. (This hat should make you
think this set is in one-to-one correspondence with ireducible Hk mod-
ules.)

Definition. The Bratteli diagram of H1 ⊂ H2 ⊂ H3 has vertices on
level k corresponding to λ ∈ Ĥk. The vertices λ and µ are connected
by an edge if µ is obtained from λ by adding a box.
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∅

··
·

So assuming that Ĥk is in 1-1 correspondence with irreducible Hk-
modules via λ 7→ Hλ

k , the Bratteli diagram says

ResHk

Hk−1
(Hµ

k ) =
⊕

λ∈Ĥk−1,

µ/λ=

Hλ
k−1

Example.

ResH4

H3
(H4 ) = H3 ⊕ H3

Since HomHk
(IndHk

Hk−1
(Hλ

k−1), H
µ
k ) ≃ HomHk−1

(Hλ
−1, ResHk

Hk−1
(Hµ

k )), by
Schur’s lemma, we get

IndHk

Hk−1
(Hλ

k−1) =
⊕

µ∈Ĥk ,

µ/λ=

H
µ
k

But we haven’t said what Hλ
k is. Can we build Hλ

k ?

Question. Well uh uh what is dim(Hλ
k )?
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As vector spaces,

H5 = H4 + H4 = H3 + H3 + H3

= H2 + H2 + H2 + H2 + H2

= H1 + H1 + H1 + H1 + H1

so dim H5 = 5.

By tracing where each box in the final lines comes from, we end up
getting a path in the Bratteli diagram. That is, dimHλ

k = number of
paths from ∅ to λ in the Bratteli diagram.

To count paths on the Bratteli diagram, just do a Pascal triangle type
thing.

∅ 1

1

11

121

13231

For example, H4 ≃ M1(C) ⊕ M3(C) ⊕ M2(C) ⊕ M3(C) ⊕ M1(C).

Definition. A standard tableau of shape λ is a filling of the boxes with
1, 2, . . . k such that the rows increase left to right and the columns
increase top to bottom.
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Example. λ = (2, 2, 1) has standard tableau

1 4
2 5
3

,

1 3
2 5
4

,

1 3
2 4
5

,

1 2
3 5
4

,

1 2
3 4
5

,

It should be obvious that these guys are the same as paths. There is a
bijection beween standard tableaux of shape λ and paths from ∅ to λ.

Example.

1 3
2 4
5

corresponds to ∅ → → → → →

Note: k! =
∑

λ⊢k(dim Hλ
k )2 =

∑

λ⊢k(# of standard tableau of shape λ)2

As a vector space Hλ
k has basis {vT |T is a standard tableau of shape λ}.

Question. Hk acts on Hλ
k how? yε∨i vT =?

Why define the action of yε∨i instead of Ti? Because the y’s commute
with each other, so we can look for a basis in which they’re all diagonal.

Theorem 4.1. Hk acts on Hλ
k by yε∨i vT = qc(T (i))vT . You can unravel

this and get the much nastier formulation

TivT =
q − q−1

1 − q2(c(Y (i))−c(T (i+1)))
vT + (q−1 +

q − q−1

1 − q2(c(T (i))−c(T (i+1)))
)vsiT .

Here T (i) is the box containing i in T and the content c of a box b is

c(b) = s − r, where b is in column r, row s. Also siT is defined to be

T except i and i + 1 are switched, and vsiT = 0 if siT is not standard.

4.2. Irreducible representations of Temperley-Lieb. There is a
surjective map Hk → TLk via Ti − q 7→ ei. So every TLk-module is an
Hk-module.

For TL1 ⊂ TL2 ⊂ TL3 ⊂ · · · , the Bratteli diagram is
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∅ ∅

∅

∅

(You can get the second diagram from the first by deleting 2-row
columns from all the tableau). Now you have (more than enough)
tools to do problem 1 on the homework.

4.3. Representations of Uq(sl2). There’s a lie algebra called sl2. Circa
1985, sl2-irreducible modules were written down by R. Block. sl3 is
thought to be impossible. Arun thinks Uq(sl2) is not done, and also
that it’s not very hard. So he assigned it as homework.

Note: the relation between sl2 and Uq(sl2) is the same as the relation
between Hk and CSk: set q=1 to pass from the first to the second.

Definition. A Lie algebra is a vector space g with a bracket

[, ] : g ⊕ g → g

such that
(a) [x, y] = −[y, x] for x, y ∈ g;
(b) [x, [y, z]] = [[x, y], z] + [y, [x, z]] for x, y, z ∈ g (this is called the
Jacobi identity).

Note that a Lie algebra is not an algebra – Lie is not an adjective –
maybe we should write it Liealgebra. But seriously, this more than
just a grammatical problem, because we don’t know how to talk about
representations of anything but algebras.

Definition. The enveloping algebra of g is the algebra U(g) generated
by the vector space g with relations xy = yx + [x, y] for x, y ∈ g

Definition. A g-module is a U(g)-module.
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Definition. sl2 = {x ∈ M2(C)|tr(x) = 0} = {

(

a b

c d

)

|a + d = 0}

with

[x, y] = xy − yx

where the product on the RHS is matrix multiplication.

Proposition 4.2. sl2 is generated by

e =

(

0 1
0 0

)

, f =

(

0 0
1 0

)

, and h =

(

1 0
0 −1

)

,

with relations [e, f ] = h, [h, e] = 2e, [h, f ] = −2f .

Then U(sl2) is the algebra generated by e, f, h with relations

ef = fe + h, eh = he − 2e, hf = fh − 2f.

Thus U(sl2) has basis {fm1hm2em3 |m1, m2, m3 ∈ Z≥0}. So U(sl2) is
sort of like the polynomial ring C[ǫ, φ, η] (which has relations ǫφ = φǫ,
ǫη = ηǫ, ηφ = φη.)

One problem with U(sl2) is that it’s infinite dimensional, so we can’t
use Artin-Wedderburn. This is why finding its modules was considered
a hard problem.

Let’s build the modules.

Definition. Let L( ) = span {v1, v−1} with

ev1 = 0, fv1 = v−1, hv1 = v,1

ev−1 = v1, fv−1 = 0, hv−1 = −v−1

Note that this is just the representation we get from writing e, f and
h as 2-by-2 matrices.

How can we build more modules? Luckily U = U(sl2) is a Hopf algebra!
What does this mean? Let M and N be U-modules. M has basis
{m1, . . . , mr}, N has basis {n1, . . . , ns}. M ⊗ N has basis {mi ⊗ nj}
and dim M ⊗ N = rs. Saying U is a Hopf algebra means that U comes
with a map ∆ : U → U ⊗ U , called the coproduct, which makes U act
on M ⊗ N . Define ∆ by

∆(e) = e ⊗ 1 + 1 ⊗ e, ∆(f) = f ⊗ 1 + 1 ⊗ f, ∆(h) = h ⊗ 1 + 1 ⊗ h
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Now L( )⊗L( ) has basis {v1 ⊗ v1, v−1 ⊗ v1, v1 ⊗ v−1, v−1 ⊗ v−1}. So,
for example,

e(v1 ⊗ v1) = ∆(e)(v1 ⊗ v1) = (e ⊗ 1 + 1 ⊗ e)(v1 ⊗ v1)

= ev1 ⊗ v1 + v1 ⊗ ev1 = 0

A more interesting example is

f(v1 ⊗ v1) = ∆(f)(v1 ⊗ v1) = (f ⊗ 1 + 1 ⊗ f)(v1 ⊗ v1)

= fv1 ⊗ v1 + v1 ⊗ fv1 = v−1 ⊗ v1 + v1 ⊗ v−1

and

f 2(v1 ⊗ v1) = v−1 ⊗ v−1 + v−1 ⊗ v−1 = 2v−1 ⊗ v−1.

Let v2 = v1 ⊗ v1, v0 = fv2, 2v−2 = f 2v2 (v−2 = v−1 ⊗ v−1) and
v0 = v1 × v−1 − v−1 ⊗ v1. Then ev0 = 0, fv0 = 0.

Definition. Let L( ) = span {v2, v0, v−2}, L(∅) = span {v0}.

Then L( ) ⊗ L( ) = L( ) + L(∅).

Define ρ : U(sl2) → End(L( )) by

e 7→





0 1 0
0 0 2
0 0 0



 , f 7→





0 0 0
1 0 0
0 2 0



 , h 7→





2 0 0
0 0 0
0 0 −2





and define ρ∅ : U(sl2) → End(L(∅)) by

e 7→ 0, f 7→ 0, h 7→ 0.

Did I give you the coproduct on Uq(sl2)? Maybe not. OK:

Definition. The coproduct ∆ : Uq(sl2) ⊗ Uq(sl2) → Uq(sl2) is defined
by

∆(E) = E ⊗ 1 + K ⊗ E

∆(F ) = F ⊗ K−1 + 1 ⊗ F

∆(K) = K ⊗ K


