REPRESENTATION THEORY

EMILY PETERS

Abstract. Notes from Arun Ram's 2008 course at the University
of Melbourne.

5. Week 5

Definition. $\mathfrak{s l}_{2}$ is the Lie algebra consisting of matrices

$$
\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \right\rvert\, a+d=0\right\}
$$

with brackett

$$
[x, y]=x y-y x
$$

$\mathfrak{s l}_{2}$ is presented by e, f, h with relations

$$
[e, f]=h,[h, e]=2 e,[h, f]=-2 f
$$

where

$$
e=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), f=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right), \text { and } h=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

Definition. $\mathcal{U}\left(\mathfrak{s l}_{2}\right)$ is the algebra generated by e, f, h with relations

$$
e f=f e+h, e h=h e-2 e, h f=f h-2 f .
$$

So $\mathcal{U}\left(\mathfrak{s l}_{2}\right)$ has basis $\left\{f^{m_{1}} h^{m_{2}} e^{m_{3}} \mid m_{1}, m_{2}, m_{3} \in \mathbb{Z}_{\geq 0}\right\}$.

If $M=\operatorname{span}\left\{m_{1}, \ldots, m_{r}\right\}$ and $N=\operatorname{span}\left\{n_{1}, \ldots, n_{s}\right\}$ are $\mathcal{U}\left(\mathfrak{s l}_{2}\right)$ modules then $M \otimes N=\operatorname{span}\left\{m_{i} \otimes n_{j}\right\}$ has $\mathcal{U}\left(\mathfrak{s l}_{2}\right)$-action given by

$$
\begin{aligned}
e\left(m_{i} \otimes n_{j}\right) & =e m_{i} \otimes n_{j}+m_{i} \otimes e n_{j} \\
f\left(m_{i} \otimes n_{j}\right) & =f m_{i} \otimes n_{j}+m_{i} \otimes f n_{j} \\
h\left(m_{i} \otimes n_{j}\right) & =h m_{i} \otimes n_{j}+m_{i} \otimes h n_{j}
\end{aligned}
$$

$\mathcal{U}_{q}\left(\mathfrak{S l}_{2}\right)$ is an algebra and a specialization of $\mathcal{U}\left(\mathfrak{s l}_{2}\right)$:

$$
\mathcal{U}_{q}\left(\mathfrak{s l}_{2}\right) \xrightarrow{q=1} \mathcal{U}\left(\mathfrak{s l}_{2}\right)
$$

Definition. $\mathcal{U}_{q}\left(\mathfrak{s l}_{2}\right)$ has generators $E, F, K^{ \pm 1}$ and relations

$$
\begin{aligned}
K K^{-1} & =K^{-1} K=1 \\
K E K^{-1} & =q^{2} E \\
K F K^{-1} & =q^{-2} F \\
E F & =F E+\frac{K-K^{-1}}{q-q^{-1}} .
\end{aligned}
$$

Note: $K E=q^{2} E K, K F=q^{-2} F K$, and $\mathcal{U}_{q}\left(\mathfrak{s l}_{2}\right)$ has basis

$$
\left\{F^{m_{1}} K^{m_{2}} E^{m_{3}} \mid m_{1}, m_{3} \in \mathbb{Z}_{\geq 0}, m_{2} \in \mathbb{Z}\right\}
$$

$\mathcal{U}_{q}\left(\mathfrak{s l}_{2}\right)$ acts on $M \otimes N$ by 1

$$
\begin{aligned}
& E\left(m_{i} \otimes n_{j}\right)=E m_{i} \otimes K n_{j}+m_{i} \otimes E n_{j} \\
& F\left(m_{i} \otimes n_{j}\right)=F m_{i} \otimes n_{j}+K^{-1} m_{i} \otimes F n_{j} \\
& K\left(m_{i} \otimes n_{j}\right)=K m_{i} \otimes K n_{j}
\end{aligned}
$$

5.1. $\mathcal{U}_{q}\left(\mathfrak{s l}_{2}\right)$-modules. Our building block here is the two-dimensional simple $\mathcal{U}_{q}\left(\mathfrak{s l}_{2}\right)$-module $L(\square)$.

Definition. $L(\square)=\operatorname{span}\left\{v_{1}, v_{-1}\right\}$ with $\mathcal{U}_{q}\left(\mathfrak{s l}_{2}\right)$-action

$$
\begin{aligned}
E v_{1} & =0, & F v_{1} & =v_{-1}, \\
E v_{-1} & =v_{1}, & F v_{-1} & =0,
\end{aligned} r v_{1}=q v_{1}{ }_{r l}=v^{-1} v_{-1}
$$

[^0]In this basis, E, F and K act as

$$
\rho^{\square}(E)=\left(\begin{array}{cc}
0 & 1 \\
0 & 0
\end{array}\right), \quad \rho \square(F)=\left(\begin{array}{cc}
0 & 0 \\
1 & 0
\end{array}\right), \quad \rho^{\square}(K)=\left(\begin{array}{cc}
q & 0 \\
0 & q^{-1}
\end{array}\right)
$$

We'll build up more modules from this one by tensoring: $L(\square) \otimes L(\square)$ has basis $\left\{v_{1} \otimes v_{1}, v_{-1} \otimes v_{1}, v_{1} \otimes v_{-1}, v_{-1} \otimes v_{-1}\right\}$.

Let's figure out how F acts here.

$$
\begin{gathered}
v_{1} \otimes v_{1} \\
\int_{F} \\
v_{-1} \otimes v_{1}+q^{-1} v_{1} \otimes v_{-1} \\
\int_{F} \\
0+q v_{-1} \otimes v_{-1}+q^{-1} v_{-1} \otimes v_{-1}+q^{-2} 0=[2] v_{-1} \otimes v_{-1} \\
\int_{0} \\
0
\end{gathered}
$$

Let $b_{1}=v_{1} \otimes v_{1}, b_{2}=v_{-1} \otimes v_{1}+q^{-1} v_{1} \otimes v_{-1}, b_{3}=v_{-1} \otimes v_{-1}, b_{4}=v_{-1} \otimes$ $v_{1}-q v_{1} \otimes v_{-1}$. Now we calculate $E b_{4}=q v_{1} \otimes v_{1}+0-q 0-q v_{1} \otimes v_{1}=0$, $F b_{4}=0$ and $K b_{4}=q^{-1} q b_{4}=b_{4}$. So $L(\emptyset)=\operatorname{span}\left\{b_{4}\right\}$ is a submodule of $L(\square) \otimes L(\square)$.
$L(\square \square)=\operatorname{span}\left\{b_{1}, b_{2}, b_{3}\right\}$ is another $\mathcal{U}_{q}\left(\mathfrak{s l}_{2}\right)$-submodule of $L(\square) \otimes L(\square)$ You can compute the action of each of E, F and K on the basis $\left\{b_{1}, b_{2}, b_{3}\right\}$ and see

$$
\begin{aligned}
\rho^{\square}(F) & =\left(\begin{array}{ccc}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & {[2]} & 0
\end{array}\right), \rho^{\square}(E)=\left(\begin{array}{ccc}
0 & {[2]} & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right), \\
\rho^{\square}(K) & =\left(\begin{array}{ccc}
q^{2} & 0 & 0 \\
0 & q^{0} & 0 \\
0 & 0 & q^{-2}
\end{array}\right)
\end{aligned}
$$

Up to constants, we picture the action of $\mathcal{U}_{q}\left(\mathfrak{s l}_{2}\right)$ on $L(\square)$ as

and on $L(\square)$ as

and on $L(\emptyset)$ at

So we've seen $L(\square) \otimes L(\square)=L(\square) \oplus L(\emptyset)$.

Now

$$
\begin{aligned}
L(\square) \otimes L(\square) \otimes L(\square)= & (L(\square) \oplus L(\emptyset)) \otimes L(\square) \\
= & (L(\square) \otimes L(\square)) \oplus(L(\square) \otimes L(\emptyset)) \\
= & \operatorname{span}\left\{b_{1} \otimes v_{1}, b_{2} \otimes v_{1}, b_{3} \otimes v_{1}, b_{4} \otimes v_{1},\right. \\
& \left.b_{1} \otimes v_{-1}, b_{2} \otimes v_{-1}, b_{3} \otimes v_{-1}, b_{4} \otimes v_{-1}\right\},
\end{aligned}
$$

and we calculate

$$
\begin{aligned}
& b_{1} \otimes v_{1} \\
& { }_{F} \\
& b_{2} \otimes v_{1}+q^{-2} b_{1} \otimes v_{-1} \\
& F \\
& {[2] b_{3} \otimes v_{1}+q^{-1}[2] b_{2} \otimes v_{-1}} \\
& F \\
& {[2][3] b_{3} \otimes v_{-1}} \\
& F 1
\end{aligned}
$$

Letting $c_{1}=b_{1} \otimes v_{1}, c_{2}=b_{2} \otimes v_{1}+q^{-2} b_{1} \otimes v_{-1}, c_{3}=b_{3} \otimes v_{1}+q^{-1} b_{2} \otimes v_{-1}$, and $c_{4}=b_{3} \otimes v_{-1}$, we have (up to constants)

and

$$
\begin{aligned}
& \rho^{\square \square}(F)=\left(\begin{array}{cccc}
0 & & & \\
1 & 0 & & \\
& {[2]} & 0 & \\
& & {[3]} & 0
\end{array}\right), \quad \rho^{\square \square}(E)=\left(\begin{array}{cccc}
0 & {[3]} & & \\
& 0 & {[2]} & \\
& & 0 & 1 \\
& & 0
\end{array}\right) \\
& \rho^{\square \square}(K)=\left(\begin{array}{cccc}
q^{-3} & & & \\
& q^{-1} & & \\
& & & q \\
& & & \\
& & q^{3}
\end{array}\right)
\end{aligned}
$$

Letting $L(\square \square)=\operatorname{span}\left\{c_{1}, c_{2}, c_{3}, c_{4}\right\}$, we pick up our previous calculation:

$$
\begin{aligned}
L(\square) \otimes L(\square) \otimes L(\square) & =(L(\square) \oplus L(\emptyset)) \otimes L(\square) \\
& =(L(\square) \otimes L(\square)) \oplus(L(\square) \otimes L(\emptyset)) \\
& =L(\square \square) \oplus L(\square) \oplus L(\square)
\end{aligned}
$$

At least by counting dimensions, this seems true. The first $L(\square)$ is $\operatorname{span}\left\{c_{5}, c_{6}\right\}$ for $c_{5}=b_{2} \otimes v_{1}-q b_{1} \otimes v_{-1}, c_{6}=[2] b_{3} \otimes v_{-1}-q^{2} b_{2} \otimes v_{-1}$. The second $L(\square)$ is span $\left\{c_{7}, c_{8}\right\}$ - you work out what c_{7} and c_{8} are, and then compute that these really are irreducible modules isomorphic to $L(\square)$.

At this point, we've seen enough of how this process works that we can build a Bratelli diagram. We'll put the dimensions of each module in red, and the number of times it appears in $L(\square)^{\otimes k}$ in blue.

5.2. Temperley-Lieb, and Schur-Weyl duality. Now of course, if we add up the product of the red and blue numbers across the k th row, we get 2^{k}, the dimension of $L(\square)^{\otimes k}$. But you might also notice that if we add up the squares of the blue numbers across each row, we get the Catalan numbers - the dimensions of $T L_{k}$.

This means we have a theorem coming up. We don't know what the theorem says because we don't know how to prove it yet, but the numerology here suggests there's some connection between TemperleyLieb and $\mathcal{U}_{q}\left(\mathfrak{s l}_{2}\right)$.

We will abreviate $L(\square)$ to V when convenient. Define an action of $T L_{2}$ on

$$
V^{\otimes 2}=L(\square) \otimes L(\square)=\operatorname{span}\left\{v_{1} \otimes v_{1}, v_{1} \otimes v_{-1}, v_{-1} \otimes v_{1}, v_{-1} \otimes v_{-1}\right\}
$$

by

$$
\begin{aligned}
\left(v_{1} \otimes v_{1}\right)=0 & \left(v_{1} \otimes v_{-1}\right)=q v_{1} \otimes v_{-1}-v_{-1} \otimes v_{1} \\
\left(v_{-1} \otimes v_{-1}\right)=0 & \left(v_{-1} \otimes v_{1}\right)=q^{-1} v_{-1} \otimes v_{1}-v_{1} \otimes v_{-1}
\end{aligned}
$$

Of course we need to verify that this really is an action of TemperleyLieb, so we must check some relations, such as

$$
\begin{aligned}
\left.\left(v_{1} \otimes v_{-1}\right)\right) & =\left(q v_{1} \otimes v_{-1}-v_{-1} \otimes v_{1}\right) \\
& =q\left(q v_{1} \otimes v_{-1}-v_{-1} \otimes v_{1}\right)-q^{-1} v_{-1} \otimes v_{1}-v_{1} \otimes v_{-1} \\
& =[2]\left(q v_{1} \otimes v_{-1}-v_{-1} \otimes v_{1}\right)=[2] \quad\left(v_{1} \otimes v_{-1}\right) \\
& =\left(\begin{array}{c}
\\
\end{array}\right)^{2}\left(v_{1} \otimes v_{-1}\right)
\end{aligned}
$$

Recall $b_{4}=v_{-1} \otimes v_{1}-q v_{1} \otimes v_{-1}$. In fact $\frac{1}{[2]} \quad$ is a projection onto $L(\emptyset)$ inside $L(\square) \otimes L(\square)$ and the action of $T L_{2}$ on $V^{\otimes 2}$ commutes with the $\mathcal{U}_{q}\left(\mathfrak{s l}_{2}\right)$ action on $V^{\otimes 2}$, ie $E \cdot=\cdot E, F \cdot \quad=\quad \cdot F$, $K \cdot=\quad=K$ on $V^{\otimes 2}$.

Recall. $T L_{k}$ is generated by $e_{j}=|\ldots|_{\curvearrowleft}^{\smile}|\ldots|$, with relations $e_{i}^{2}=$ $[2] e_{i}$ and $e_{i} e_{i \pm 1} e_{1}=e_{i}$
Definition. We define an action of $T L_{k}$ on

$$
\begin{aligned}
& V^{\otimes k}=L(\square) \otimes L(\square) \otimes \cdots \otimes L(\square)= \\
& \quad \operatorname{span}\left\{v_{i_{1}} \otimes v_{i_{2}} \otimes \cdots \otimes v_{i_{k}} \mid i_{1}, \ldots, i_{k} \in\{1,-1\}\right\}
\end{aligned}
$$

a 2^{k}-dimensional module, by letting

$$
\begin{aligned}
& e_{j}\left(v_{i_{1}} \otimes v_{i_{2}} \otimes \cdots \otimes v_{i_{k}}\right)= \\
& v_{i_{1}} \otimes \cdots \otimes v_{i_{j-1}} \otimes \quad\left(v_{i_{j}} \otimes v_{i_{j+1}}\right) \otimes v_{i_{j+2}} \otimes \cdots \otimes v_{i_{k}}
\end{aligned}
$$

You should check that this really is an action of $T L_{k}$.
This $T L_{k}$-action on $V^{\otimes k}$ commutes with the $\mathcal{U}_{q}\left(\mathfrak{s l}_{2}\right)$-action. Why is this good? Let A be an algebra and let M be a semisimple A-module, so

$$
M=\bigoplus_{\lambda \in \hat{M}}\left(A^{\lambda}\right)^{\oplus m_{\lambda}}
$$

Consider the centralizer algebra of M, ie let $Z=\operatorname{End}_{A}(M)=\{z \in$ $\operatorname{End}(M) \mid z a=a z$ for all $a \in A\}$. (So $Z=T L_{k}$ in this particular example).

Theorem 5.1. $Z=\bigoplus_{\lambda \in \hat{M}} M_{m_{\lambda}}(\mathbb{C})$, which has irreducible Z-modules Z^{λ}. As an (A, Z) bimodule (or an $A \otimes Z$ module),

$$
M \simeq \bigoplus_{\lambda \in \hat{M}} A^{\lambda} \otimes Z^{\lambda}
$$

The above is sometimes called Schur-Weyl duality (A centralizer pair commuting with each other on the same module.)

So why is this true?

Proof. By definition

$$
\begin{aligned}
Z & =\operatorname{End}_{A}(M)=\operatorname{Hom}_{A}(M, M) \\
& =\operatorname{Hom}_{A}\left(\bigoplus_{\lambda} \bigoplus_{i-1}^{m_{\lambda}} A_{i}^{\lambda}, \bigoplus_{\lambda} \bigoplus_{i-1}^{m_{\lambda}} A_{i}^{\lambda}\right) \\
& =\bigoplus_{\mu, \lambda} \bigoplus_{i=1}^{m_{\lambda}} \bigoplus_{j=1}^{m_{\lambda}} \operatorname{Hom}_{A}\left(A_{i}^{\lambda}, A_{i}^{\mu}\right)
\end{aligned}
$$

but by Schur's lemma,

$$
=\bigoplus_{\lambda \in \hat{M}} \bigoplus_{i, j=1}^{m_{\lambda}} \operatorname{Hom}_{A}\left(A_{i}^{\lambda}, A_{i}^{\lambda}\right)
$$

up to constants, $e_{i, j}^{\lambda}: A_{i}^{\lambda} \rightarrow A_{j}^{\lambda}$ is the unique element of $\operatorname{Hom}_{A}\left(A_{i}^{\lambda}, A_{j}^{\lambda}\right)$, so

$$
=\bigoplus_{\lambda \in \hat{M}} \bigoplus_{i, j=1}^{m_{\lambda}} \mathbb{C} e_{i, j}^{\lambda}=\bigoplus_{\lambda \in \hat{M}} M_{m_{\lambda}}(\mathbb{C})
$$

One example of Schur-Weyl duality is what we just saw, where $\mathcal{U}_{q}\left(\mathfrak{s l}_{2}\right)$ commutes with $T L_{k}$ on $V^{\otimes k}$.

Another example is given by $G L_{n}$ and S_{k}. Let $G L_{n}=\left\{g \in M_{n} \mid g\right.$ is invertible $\}$. $V=\operatorname{span}\left\{v_{1}, \ldots, v_{n}\right\}$ with $g v_{i}=\sum_{j=1}^{n} g_{j, i} v_{j}$ and $G L_{n}$ acts on $V^{\otimes k}$ by $g\left(v_{i_{1}} \otimes \cdots \otimes v_{i_{k}}\right)=g v_{i_{1}} \otimes \cdots \otimes g v_{i_{k}}$. We also have the action of S_{k} on $V^{\otimes k}$ by permuting the tensor entries.

The S_{k} action commutes with the $G L_{n}$-action. (This is the classical case of Schur-Weyl duality.) After this week's homework you know everything about S_{k} representations, so you should be able to figure out everything about $G L_{n}$ representations.

Question. Did we prove the second statement in the theorem?
Answer. Z acts on $M, 1=\sum_{\lambda \in \hat{M}} \sum_{i=1}^{m_{\lambda}} e_{i, i}^{\lambda}$ so

$$
\begin{aligned}
M & =\sum_{\lambda} \sum_{i} e_{i, i}^{\lambda} M \\
& =\sum_{\lambda} \sum_{i} A_{i}^{\lambda} \\
& =\sum_{\lambda} \sum_{i} e_{1, i}^{\lambda} M
\end{aligned}
$$

and because span $\left\{e_{1, i}^{\lambda} \mid 1 \leq i \leq m_{\lambda}\right\}=Z^{\lambda}$,

$$
=\sum_{\lambda} Z^{\lambda} \otimes A^{\lambda}
$$

Next week, R. Brak will be lecturing about crystals.

[^0]: ${ }^{1}$ Note that this makes use of a slightly different coproduct Δ than the one we defined last week.

