
REPRESENTATION THEORY

EMILY PETERS

Abstract. Notes from Arun Ram’s 2008 course at the University

of Melbourne.

5. Week 5

Definition. sl2 is the Lie algebra consisting of matrices

{

(

a b

c d

)

|a + d = 0}

with brackett

[x, y] = xy − yx.

sl2 is presented by e, f , h with relations

[e, f ] = h, [h, e] = 2e, [h, f ] = −2f,

where

e =

(

0 1
0 0

)

, f =

(

0 0
1 0

)

, and h =

(

1 0
0 −1

)

.

Definition. U(sl2) is the algebra generated by e, f, h with relations

ef = fe + h, eh = he − 2e, hf = fh − 2f.

So U(sl2) has basis {fm1hm2em3 |m1, m2, m3 ∈ Z≥0}.
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If M = span {m1, . . . , mr} and N = span {n1, . . . , ns} are U(sl2)-
modules then M ⊗ N = span {mi ⊗ nj} has U(sl2)-action given by

e(mi ⊗ nj) = emi ⊗ nj + mi ⊗ enj

f(mi ⊗ nj) = fmi ⊗ nj + mi ⊗ fnj

h(mi ⊗ nj) = hmi ⊗ nj + mi ⊗ hnj .

Uq(sl2) is an algebra and a specialization of U(sl2):

Uq(sl2)
q=1 // U(sl2)

Definition. Uq(sl2) has generators E, F , K±1 and relations

KK−1 = K−1K = 1

KEK−1 = q2E

KFK−1 = q−2F

EF = FE +
K − K−1

q − q−1
.

Note: KE = q2EK, KF = q−2FK, and Uq(sl2) has basis

{F m1Km2Em3 |m1, m3 ∈ Z≥0, m2 ∈ Z}

Uq(sl2) acts on M ⊗ N by1

E(mi ⊗ nj) = Emi ⊗ Knj + mi ⊗ Enj

F (mi ⊗ nj) = Fmi ⊗ nj + K−1mi ⊗ Fnj

K(mi ⊗ nj) = Kmi ⊗ Knj

5.1. Uq(sl2)-modules. Our building block here is the two-dimensional
simple Uq(sl2)-module L( ).

Definition. L( ) = span {v1, v−1} with Uq(sl2)-action

Ev1 = 0, F v1 = v−1, Kv1 = qv1

Ev−1 = v1, F v−1 = 0, Kv−1 = q−1v−1

1Note that this makes use of a slightly different coproduct ∆ than the one we

defined last week.
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In this basis, E, F and K act as

ρ (E) =

(

0 1
0 0

)

, ρ (F ) =

(

0 0
1 0

)

, ρ (K) =

(

q 0
0 q−1

)

We’ll build up more modules from this one by tensoring: L( ) ⊗ L( )
has basis {v1 ⊗ v1, v−1 ⊗ v1, v1 ⊗ v−1, v−1 ⊗ v−1}.

Let’s figure out how F acts here.

v1 ⊗ v1

F
��

v−1 ⊗ v1 + q−1v1 ⊗ v−1

F
��

0 + qv−1 ⊗ v−1 + q−1v−1 ⊗ v−1 + q−20 = [2]v−1 ⊗ v−1

F

��
0

Let b1 = v1⊗v1, b2 = v−1⊗v1 + q−1v1⊗v−1, b3 = v−1⊗v−1, b4 = v−1⊗
v1−qv1⊗v−1. Now we calculate Eb4 = qv1⊗v1 +0−q0−qv1⊗v1 = 0,
Fb4 = 0 and Kb4 = q−1qb4 = b4. So L(∅) = span {b4} is a submodule
of L( ) ⊗ L( ).

L( ) = span {b1, b2, b3} is another Uq(sl2)-submodule of L( ) ⊗ L( )
You can compute the action of each of E, F and K on the basis
{b1, b2, b3} and see

ρ (F ) =





0 0 0
1 0 0
0 [2] 0



 , ρ (E) =





0 [2] 0
0 0 1
0 0 0



 ,

ρ (K) =





q2 0 0
0 q0 0
0 0 q−2




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Up to constants, we picture the action of Uq(sl2) on L( ) as

0

b1

F
��

E

UU

b2

F
��

E

TT

b3

F

��

E

TT

0

and on L( ) as

0

v1

F
��

E

UU

v−1

F
��

E

UU

0

and on L(∅) at

0

b4

F

��

E

UU

0

So we’ve seen L( ) ⊗ L( ) = L( ) ⊕ L(∅).
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Now

L( ) ⊗ L( ) ⊗ L( ) =(L( ) ⊕ L(∅)) ⊗ L( )

=(L( ) ⊗ L( )) ⊕ (L( ) ⊗ L(∅))

=span{b1 ⊗ v1, b2 ⊗ v1, b3 ⊗ v1, b4 ⊗ v1,

b1 ⊗ v−1, b2 ⊗ v−1, b3 ⊗ v−1, b4 ⊗ v−1},

and we calculate

b1 ⊗ v1

F
��

b2 ⊗ v1 + q−2b1 ⊗ v−1

F
��

[2]b3 ⊗ v1 + q−1[2]b2 ⊗ v−1

F

��
[2][3]b3 ⊗ v−1

F

��
0

Letting c1 = b1⊗v1, c2 = b2⊗v1+q−2b1⊗v−1, c3 = b3⊗v1+q−1b2⊗v−1,
and c4 = b3 ⊗ v−1, we have (up to constants)

0

c1

F
��

E

UU

c2

F
��

E

UU

c3

F
��

E

UU

c4

F
��

E

UU

0

and
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ρ (F ) =









0
1 0

[2] 0
[3] 0









, ρ (E) =









0 [3]
0 [2]

0 1
0









,

ρ (K) =









q−3

q−1

q

q3









Letting L( ) = span {c1, c2, c3, c4}, we pick up our previous calcula-
tion:

L( ) ⊗ L( ) ⊗ L( ) = (L( ) ⊕ L(∅)) ⊗ L( )

= (L( ) ⊗ L( )) ⊕ (L( ) ⊗ L(∅))

= L( ) ⊕ L( ) ⊕ L( )

At least by counting dimensions, this seems true. The first L( ) is
span {c5, c6} for c5 = b2 ⊗ v1 − qb1 ⊗ v−1, c6 = [2]b3 ⊗ v−1 − q2b2 ⊗ v−1.
The second L( ) is span {c7, c8} – you work out what c7 and c8 are,
and then compute that these really are irreducible modules isomorphic
to L( ).

At this point, we’ve seen enough of how this process works that we can
build a Bratelli diagram. We’ll put the dimensions of each module in
red, and the number of times it appears in L( )⊗k in blue.
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L(∅) 11

L( ) 21

L( ) 31L(∅) 11

L( ) 22 L( ) 41

L( ) 51L( ) 33L(∅) 12

5.2. Temperley-Lieb, and Schur-Weyl duality. Now of course, if
we add up the product of the red and blue numbers across the kth row,
we get 2k, the dimension of L( )⊗k. But you might also notice that if
we add up the squares of the blue numbers across each row, we get the
Catalan numbers – the dimensions of TLk.

This means we have a theorem coming up. We don’t know what the
theorem says because we don’t know how to prove it yet, but the nu-
merology here suggests there’s some connection between Temperley-
Lieb and Uq(sl2).

We will abreviate L( ) to V when convenient. Define an action of TL2

on

V ⊗2 = L( ) ⊗ L( ) = span {v1 ⊗ v1, v1 ⊗ v−1, v−1 ⊗ v1, v−1 ⊗ v−1}

by

(v1 ⊗ v1) = 0 (v1 ⊗ v−1) = qv1 ⊗ v−1 − v−1 ⊗ v1

(v−1 ⊗ v−1) = 0 (v−1 ⊗ v1) = q−1v−1 ⊗ v1 − v1 ⊗ v−1

Of course we need to verify that this really is an action of Temperley-
Lieb, so we must check some relations, such as
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(

(v1 ⊗ v−1)
)

= (qv1 ⊗ v−1 − v−1 ⊗ v1)

= q(qv1 ⊗ v−1 − v−1 ⊗ v1) − q−1v−1 ⊗ v1 − v1 ⊗ v−1

= [2](qv1 ⊗ v−1 − v−1 ⊗ v1) = [2] (v1 ⊗ v−1)

=
( )2

(v1 ⊗ v−1)

Recall b4 = v−1 ⊗ v1 − qv1 ⊗ v−1. In fact 1
[2]

is a projection onto

L(∅) inside L( )⊗L( ) and the action of TL2 on V ⊗2 commutes with

the Uq(sl2) action on V ⊗2, ie E · = · E, F · = · F ,

K · = · K on V ⊗2.

Recall. TLk is generated by ej = · · · · · · , with relations e2
i =

[2]ei and eiei±1e1 = ei

Definition. We define an action of TLk on

V ⊗k = L( ) ⊗ L( ) ⊗ · · · ⊗ L( ) =

span {vi1 ⊗ vi2 ⊗ · · · ⊗ vik |i1, . . . , ik ∈ {1,−1}} ,

a 2k-dimensional module, by letting

ej(vi1 ⊗ vi2 ⊗ · · · ⊗ vik) =

vi1 ⊗ · · · ⊗ vij−1
⊗ (vij ⊗ vij+1

) ⊗ vij+2
⊗ · · · ⊗ vik .

You should check that this really is an action of TLk.

This TLk-action on V ⊗k commutes with the Uq(sl2)-action. Why is
this good? Let A be an algebra and let M be a semisimple A-module,
so

M =
⊕

λ∈M̂

(Aλ)⊕mλ .

Consider the centralizer algebra of M , ie let Z = EndA(M) = {z ∈
End(M)|za = az for all a ∈ A}. (So Z = TLk in this particular
example).
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Theorem 5.1. Z =
⊕

λ∈M̂ Mmλ
(C), which has irreducible Z-modules

Zλ. As an (A, Z) bimodule (or an A ⊗ Z module),

M ≃
⊕

λ∈M̂

Aλ ⊗ Zλ.

The above is sometimes called Schur-Weyl duality (A centralizer pair
commuting with each other on the same module.)

So why is this true?

Proof. By definition

Z = EndA(M) = HomA(M, M)

= HomA(
⊕

λ

mλ
⊕

i−1

Aλ
i ,

⊕

λ

mλ
⊕

i−1

Aλ
i )

=
⊕

µ,λ

mλ
⊕

i=1

mλ
⊕

j=1

HomA(Aλ
i , A

µ
i )

but by Schur’s lemma,

=
⊕

λ∈M̂

mλ
⊕

i,j=1

HomA(Aλ
i , A

λ
i )

up to constants, eλ
i,j : Aλ

i → Aλ
j is the unique element of HomA(Aλ

i , A
λ
j ),

so

=
⊕

λ∈M̂

mλ
⊕

i,j=1

Ceλ
i,j =

⊕

λ∈M̂

Mmλ
(C)

�

One example of Schur-Weyl duality is what we just saw, where Uq(sl2)
commutes with TLk on V ⊗k.

Another example is given by GLn and Sk. Let GLn = {g ∈ Mn|g is invertible}.
V = span {v1, . . . , vn} with gvi =

∑n
j=1 gj,ivj and GLn acts on V ⊗k by

g(vi1 ⊗ · · · ⊗ vik) = gvi1 ⊗ · · · ⊗ gvik . We also have the action of Sk on
V ⊗k by permuting the tensor entries.
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The Sk action commutes with the GLn-action. (This is the classical
case of Schur-Weyl duality.) After this week’s homework you know
everything about Sk representations, so you should be able to figure
out everything about GLn representations.

Question. Did we prove the second statement in the theorem?

Answer. Z acts on M , 1 =
∑

λ∈M̂

∑mλ

i=1 eλ
i,i so

M =
∑

λ

∑

i

eλ
i,iM

=
∑

λ

∑

i

Aλ
i

=
∑

λ

∑

i

eλ
1,iM

and because span
{

eλ
1,i|1 ≤ i ≤ mλ

}

= Zλ,

=
∑

λ

Zλ ⊗ Aλ

Next week, R. Brak will be lecturing about crystals.


