REPRESENTATION THEORY

EMILY PETERS

Abstract

Notes from Arun Ram's 2008 course at the University of Melbourne.

6. Week 6

This lecture is given by Richard Brak. He's a combinatorist, and says today's lecture will be very combinatorial.

Definition. Start with $B(\square)=\{\longrightarrow, \longleftarrow\}$, representing unit vectors, or a step to the right or left, and a couple of operators \tilde{e} and \tilde{f} (root operators or Kashiwara operators) given by

$$
\begin{aligned}
& \tilde{e}(\longleftrightarrow)=\longrightarrow \\
& \tilde{e}(\longrightarrow)=0,
\end{aligned}
$$

$$
\tilde{f}(\longleftarrow)=0
$$

$$
\tilde{f}(\longrightarrow)=\longleftarrow
$$

We represent this pictorally as

$$
\overrightarrow{\tilde{f}()_{\tilde{e}}}
$$

The tensor product of two sets of paths will just be the cartesian product of the sets, with concatenation as the product on paths; so for

[^0]Send comments and corrections to E.Peters@ms.unimelb.edu.au.
example

$$
B(\square) \otimes B(\square)=\{\longrightarrow, \longleftrightarrow, \rightleftarrows, \longleftarrow \longleftarrow\}
$$

and

Our convention is to read such a path bottom to top, or, if representing \longrightarrow by 1 and \qquad by 2 , as a word going right to left.

If B_{1} and B_{2} are $\mathfrak{s l}_{2}$ crystals, then \tilde{f} acts on

$$
B_{1} \otimes B_{2}=\left\{p \otimes q \mid p \in B_{1}, q \in B_{2}\right\}
$$

by
$\tilde{f}(p \otimes q)= \begin{cases}(\tilde{f} p) \otimes q & \text { if (last occurence of) leftmost step to the right, in } p \otimes q, \text { is in } p \\ p \otimes(\tilde{f} q) & \text { if (last occurence of) leftmost step to the right, in } p \otimes q, \text { is in } q \\ 0 & \text { no leftmost step to right. }\end{cases}$
and the action of \tilde{e} is defined by $\tilde{e} b=b^{\prime}$ if $b=\tilde{f} b^{\prime}, 0$ otherwise. We will make a more precise definition later.

Let's look at the action of \tilde{e} and \tilde{f} on $B(\square) \otimes B(\square)$. For example,

$$
\begin{aligned}
\tilde{f}(\longrightarrow) & =\tilde{f}(\longrightarrow \otimes \longrightarrow)=\tilde{f}(\longrightarrow) \otimes \longrightarrow \\
& =\longleftrightarrow \otimes \longrightarrow
\end{aligned}
$$

The action of \tilde{e} and \tilde{f} on all of $B(\square) \otimes B(\square)$ are summarized by

Question. I don't understand why \tilde{e} and \tilde{f} act as zero on this last path.

Answer. There's not a leftmost step to the right of the rightmost point here. There's a better definition of \tilde{e} and \tilde{f} action coming later.

So we've shown that as crystals, $B(\square) \otimes B(\square)=B(\square) \sqcup B(\emptyset)$ for

$$
\begin{aligned}
B(\square) & =\{\longrightarrow, \longleftrightarrow \longleftrightarrow \\
B(\emptyset) & =\{\longleftrightarrow\}
\end{aligned}
$$

Now we compute

$$
\begin{aligned}
B(\square)^{\otimes 3} & =(B(\square) \otimes B(\square)) \otimes B(\square) \\
& =B(\square) \otimes B(\square)) \sqcup(B(\emptyset) \otimes B(\square))
\end{aligned}
$$

The crystal structure of $B(\square) \otimes B(\square)$ is

And the structure of $B(\emptyset) \otimes B(\square)$ is

And so $B(\square) \otimes B(\square)=B(\square \square) \sqcup B(\square), B(\emptyset) \otimes B(\square) \simeq B(\square)$, for

Hence $B^{\otimes 3} \simeq B(\square \square) \sqcup B(\square) \sqcup B(\square)$.
So far, we've seen the Bratelli diagram for the decomposition of $B^{\otimes k}$ is

Definition. A crystal is a subset of $B^{\otimes \ell}$ close under the action of \tilde{e} ad \tilde{f}.

Definition. The crystal graph of a crystal B is the graph with vertices B and edges between p and $\tilde{f} p$.

Definition. A crystal is irreducible if its crystal graph is connected.
Definition. Let B be a crystal. The character of B is $\operatorname{ch}(B)=$ $\sum_{p \in B} x^{\mathrm{wt}(p)}$ where $\mathrm{wt}(\mathrm{p})$ is the coordinate of the end point of p.

Definition. A highest weight path is a path which always stays to the right of 0 .

In our examples we've seen that if p is a highest weight path then $\tilde{e} p=0$.

Some character calculations:

$$
\begin{aligned}
\operatorname{ch}(B(\square)) & =x+x^{-1} \\
\operatorname{ch}(B(\square)) & =x^{2}+1+x \\
\operatorname{ch}(B(\emptyset)) & =1 \\
\operatorname{ch}\left(B(\square)^{\otimes 2}\right) & =\left(x+x^{-1}\right)^{2}=x^{2}+2+x^{-2}=\left(x^{2}+1+x\right)+(1) \\
\operatorname{ch}(B(\square \square)) & =x^{3}+x+x^{-1}+x^{-3} \\
\operatorname{ch}\left(B(\square)^{\otimes 3}\right) & =\left(x+x^{-1}\right)^{3}=\left(x^{3}+x+x^{-1}+x^{-3}\right)^{2}+\left(x+x^{-1}\right)+\left(x+x^{-1}\right)
\end{aligned}
$$

The highest weight paths of $B^{\otimes 2}$ are $\longrightarrow \longrightarrow$ and \longleftrightarrow, and the highest weight paths of $B^{\otimes 3}$ are $\longrightarrow \longrightarrow$, $\longrightarrow \longleftrightarrow$, and

Theorem 6.1 (Classification of irreducible $\mathfrak{s l}_{2}$-crystals). (1) The irreducible $\mathfrak{s l}_{2}$-crystals are

with $\operatorname{ch}(B(\underbrace{\square \square \cdots \square}_{k}))=x^{k}+x^{k-2}+\cdots+x^{-(k-2)}+x^{-k}$.
(2) Every crystal is a disjoint union of irreducible crystals
(3) Each irreducible crystal B has a unique highest weight path, and $B \simeq B(\underbrace{\square \square \cdots \square}_{k})$ if p ends at k.

6.2. $\mathfrak{s l}_{3}$-Crystals.

and operators $\tilde{e}_{1}, \tilde{e}_{2}, \tilde{f}_{1}$ and \tilde{f}_{2}.
Example. $B(\square)=\left\{w_{1}=/, w_{2}-w_{1}=\longleftarrow,-w_{2}=\downarrow\right\}$ and for ease of notation we write 1 for $w_{1}, 2$ for $w_{2}-w_{1}$ and 3 for $-w_{2}$.

The action of \tilde{e}_{i} and \tilde{f}_{i} on a path in $B(\square)^{\otimes k}$ is defined as follows:
(1) Write the path as a word, with first step on the right (and last

step leftmost). For example, the path is 33221 , and the path 13132312223 is, well, you can figure it out.
(2) Take the subword ρ_{2} consisting only of the numbers (i) and $(i+1)$ (eg for $i=2$ the subword of 13132312223 is 33232223 , ie
we delete all 1s). Geometrically this is projection onto one of the root axes.
(3) Recursively delete adjacent pairs $(i+1),(i)$ to leave another subword $\hat{\rho}_{2}$ (in the running example we are left with 23). $\hat{\rho}_{2}$ is always of the form $(i)^{r}(i+1)^{s}$.
(4) $\tilde{f}_{i}\left((i)^{r}(i+1)^{s}\right)= \begin{cases}(i)^{r-1}(i+1)^{s+1} & \text { if } r \geq 1 \\ 0 & \text { otherwise }\end{cases}$

$$
\tilde{e}_{i}\left((i)^{r}(i+1)^{s}\right)= \begin{cases}(i)^{r+1}(i+1)^{s-1} & \text { if } r \geq 1 \\ 0 & \text { otherwise }\end{cases}
$$

(5) Now change the original word by changing its subword $\hat{\rho}_{2}$ as above.
Example. $\tilde{f}_{2}(13132312223)=13132312233$

Here $B^{\otimes 2}$ has 9 paths, of two steps each; its crystal structure (as shown in Figure 1) implies $B^{\otimes 2}=B(\square) \sqcup B(\square)$.

The points of the positive/dominant chamber,

$$
p^{+}=\left\{k w_{1}+\ell w_{2} \mid k, \ell \in \mathbb{Z}_{\geq 0}\right\}
$$

are in bijection with partitions with ≤ 2 rows; $k w_{1}+\ell w_{2}$ corresponds to (ℓ, k) which can represent a Young diagram, which has a 2 by ℓ block, with a 1 by k block tacked on. For example, if $\ell=3$ and $k=4$ we have

And we can define characters for $\mathfrak{s l}_{3}$-crystals too; we have

$$
\begin{aligned}
\operatorname{ch}\left(B^{\otimes 2}\right) & =\left(x_{1}+x_{2}+x_{3}\right)^{2} \\
& =\left(x_{1}^{2}+x_{1} x_{2}+x_{3} x_{1}+x_{2}^{2}+x_{3} x_{2}+x_{3}^{2}\right)+\left(x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}\right) \\
\operatorname{ch}(B(\square)) & =\sum_{1 \leq i \leq j \leq 3} x_{i} x_{j} \\
\operatorname{ch}(B(\square)) & =\sum_{1 \leq i<j \leq 3} x_{i} x_{j}
\end{aligned}
$$

Figure 1. The crystal structure of $B^{\otimes 2}$ for $\mathfrak{s l}_{3}$

[^0]: Date: September 3, 2008.

