REPRESENTATION THEORY

EMILY PETERS

Abstract

Notes from Arun Ram's 2008 course at the University of Melbourne.

8. Week 7

What have we done so far in this course?
(1) Representation Theory $=$ study of A-modules; A is an algebra (first a vector space). ie, representation theory is advanced linear algebra.
(2) Braid-like examples: Temperley-Lieb, Hecke, symmetric group, etcetera. Good control of simple modules from Bratteli diagram techniques.
(3) $\mathcal{U}\left(\mathfrak{s l}_{2}\right)$ and $\mathcal{U}_{q}\left(\mathfrak{s l}_{2}\right)$ are infinite dimensional algebras. Main tool is tensor products. Magic: $\mathfrak{s l}_{2}$ tensor product produces the Bratteli diagram for TL.
(4) Crystals: not algebras or vector spaces, just sets with operators. They do have a tensor product operation. Magic: Bratteli diagram for TL appears again!

Reason: There is an equivalnce of tensor categories

$$
\left\{\mathfrak{s l}_{2} \text { crystals }\right\} \longleftrightarrow\left\{\text { fin } \operatorname{dim} \mathcal{U}_{q}\left(\mathfrak{s l}_{2}\right) \text { modules }\right\}
$$

This type of equivalence is a feature of "semisimple Lie theory" (Lie groups, Lie algebras, algebraic groups, quantum groups).

Next six weeks: Lie Theory. The main theorem is the Weyl character formula and what makes it work.

Date: September 10, 2008.
Send comments and corrections to E.Peters@ms.unimelb.edu.au.

Theorem 8.1 (Amazing Theorem). There is an equivalence of categories

$$
\{\text { connected compact Lie groups }\} \longleftrightarrow\{\mathbb{Z} \text {-reflection groups }\}
$$

Example. Connected compact Lie groups: $\mathbb{R}, G L_{n}(\mathbb{C}), S O_{n}(\mathbb{C}), S^{1}$.
Example. \mathbb{Z}-reflection groups: S_{n}, dihedral groups, signed permutation matrices.

In the next two lectures, we'll discuss reflection groups and characters of crystals.
8.1. Reflection groups. Dual vector spaces. Let R be a commutative ring (ie, my favorite example \mathbb{Z}), \mathbb{F} be a field (the field of fractions of R) (ie, \mathbb{Q}), \mathbb{K} a field containing $\mathbb{F}(i e, \mathbb{R}$ or \mathbb{C} or $\mathbb{Q})$.

Let $\mathfrak{h}_{\mathbb{Z}}^{*}$ be a vector space (over R). $\mathfrak{h}_{\mathbb{Z}}^{*}=\operatorname{span}\left\{\omega_{1}, \ldots, \omega_{n}\right\}$ where $\omega_{1}, \ldots, \omega_{n}$ is a basis. $\mathfrak{h}_{\mathbb{Z}}$ is its dual, $\mathfrak{h}_{\mathbb{Z}}=\operatorname{Hom}\left(\mathfrak{h}_{\mathbb{Z}}, \mathbb{Z}\right)$. It has basis $\alpha_{1}^{\vee}, \ldots, \alpha_{n}^{\vee}$, defined by $\alpha_{i}^{\vee}\left(\omega_{j}\right)=\delta_{i, j}$.

Let $G=G L\left(\mathfrak{h}_{\mathbb{Z}}^{*}\right)$ which we think of as $G L_{n}(\mathbb{Z})\left(G \subset G L_{n}(\mathbb{F})\right) . G$ acts on $\mathfrak{h}_{\mathbb{Z}}^{*}\left(g \omega_{i}=\sum_{j=1}^{n} g_{j, i} \omega_{j}\right)$.

Write $\left\langle\mu, \lambda^{\vee}\right\rangle=\lambda^{\vee}(\mu)$, for $\mu \in \mathfrak{h}_{\mathbb{Z}}^{*}, \lambda^{\vee} \in \mathfrak{h}_{\mathbb{Z}} . G$ acts on $\mathfrak{h}_{\mathbb{Z}}$ by

$$
\left\langle g \mu, \lambda^{\vee}\right\rangle=\left\langle\mu, g^{-1} \lambda^{\vee}\right\rangle
$$

for $\mu \in \mathfrak{h}_{\mathbb{Z}}^{*}, \lambda^{\vee} \in \mathfrak{h}_{\mathbb{Z}}$. Note that $G \neq G L\left(\mathfrak{h}_{\mathbb{Z}}\right)$, in terms of matrices g acting on $\mathfrak{h}_{\mathbb{Z}}$ by the matrix $g^{\vee}=\left(g^{-1}\right)^{t}$.

Definition. A reflection is $s \in G L\left(\mathfrak{h}_{\mathbb{Z}}^{*}\right)$ such that, in $G L_{n}(\hat{\mathbb{F}}), s$ is conjugate to $\left(\begin{array}{cccc}\xi & 0 & \ldots & 0 \\ 0 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \ldots & 0 & 1\end{array}\right)$, where $\xi \in \hat{\mathbb{F}}, \xi \neq 1$.
s acts on $\mathfrak{h}_{\mathbb{Z}}$ by s^{\vee}, which is also a reflection. We can write

$$
\mathfrak{h}_{\mathbb{C}}^{*}=\mathfrak{h}_{\mathbb{C}}^{\alpha \vee} \oplus \mathbb{C} \alpha \quad \text { and } \quad \mathfrak{h}_{\mathbb{C}}=\mathfrak{h}_{\mathbb{C}}^{\alpha} \oplus \mathbb{C} \alpha^{\vee},
$$

where

$$
\begin{aligned}
\mathfrak{h}_{\mathbb{C}}^{\alpha^{\vee}} & =\left(\mathfrak{h}_{\mathbb{C}}^{*}\right)^{s}=\left\{\mu \in \mathfrak{h}_{\mathbb{C}}^{*} \mid s \mu=\mu\right\} \quad\left(1 \text { eigenspace of } s \text { on } \mathfrak{h}_{\mathbb{C}}^{*}\right), \\
\mathbb{C} \alpha & =\left\{\mu \in \mathfrak{h}_{\mathbb{C}}^{*} \mid s \mu=\xi \mu\right\} \quad\left(\xi \text { eigenspace of } s \text { on } \mathfrak{h}_{\mathbb{C}}^{*}\right), \\
\mathfrak{h}_{\mathbb{C}}^{\alpha} & =\left(\mathfrak{h}_{\mathbb{C}}\right)^{s}=\left\{\lambda^{\vee} \in \mathfrak{h}_{\mathbb{C}} \mid s \lambda^{\vee}=\lambda^{\vee}\right\} \quad\left(1 \text { eigenspace of } s^{\vee} \text { on } \mathfrak{h}_{\mathbb{C}}\right), \\
\mathbb{C} \alpha^{\vee} & =\left\{\lambda^{\vee} \in \mathfrak{h}_{\mathbb{C}} \mid s \lambda^{\vee}=\xi^{-1} \lambda^{\vee}\right\} \quad\left(\xi^{-1} \text { eigenspace of } s \text { on } \mathfrak{h}_{\mathbb{C}}\right) .
\end{aligned}
$$

Choose α and α^{\vee} so that $1-\left\langle\alpha, \alpha^{\vee}\right\rangle=\xi$. Then

$$
\begin{equation*}
s \mu=\mu-\left\langle\mu, \alpha^{\vee}\right\rangle \alpha \quad \text { and } \quad s^{-1} \lambda^{\vee}=\lambda^{\vee}-\left\langle\lambda^{\vee}, \alpha\right\rangle \alpha^{\vee} \tag{1}
\end{equation*}
$$

You should check that $\mathfrak{h}_{\mathbb{C}}^{\alpha^{\vee}}=\left(\mathfrak{h}_{\mathbb{C}}^{*}\right)^{s}=\left\{\mu \in \mathfrak{h}_{\mathbb{C}}^{*} \mid\left\langle\mu, \alpha^{\vee}\right\rangle=0\right\}$. If $\mu \in \mathfrak{h}_{\mathbb{C}}^{\alpha^{\vee}}$ then equation (1) implies

$$
\begin{aligned}
& s \mu=\mu-\left\langle\mu, \alpha^{\vee}\right\rangle \alpha=\mu-0=\mu \quad \text { and } \\
& s \alpha=\alpha-\left\langle\alpha, \alpha^{\vee}\right\rangle=\left(1-\left\langle\alpha, \alpha^{\vee}\right\rangle\right) \alpha=\xi \alpha .
\end{aligned}
$$

8.2. Weyl groups $=\mathbb{Z}$-reflection groups $=$ crystallographic reflection groups. Let $\mathfrak{h}_{\mathbb{Z}}^{*}$ be a \mathbb{Z}-vector space.

Definition. A Weyl group is a finite subgroups W_{0} of $G L\left(\mathfrak{h}_{\mathbb{Z}}^{*}\right)$ which is generated by reflections. Let R^{+}be an index set so that $s_{\alpha}, \alpha \in R^{+}$ are the reflections in $W_{0} .\left(R^{+}\right.$is the set of positive roots.)

Example. (Type $G L_{n}$). $\mathfrak{h}_{\mathbb{Z}}^{*}=\operatorname{span}\left\{\epsilon_{1}, \ldots, \epsilon_{n}\right\}$ and $W_{0}=S_{n}$ acts by permutations of $\epsilon_{1}, \ldots, \epsilon_{n}$. The reflections in S_{n} are

$$
s_{i, j}=s_{\epsilon_{i}^{\vee}-\epsilon_{j}^{\vee}}=\left(\begin{array}{ccccccccccc}
1 & & & & & & & & & & \\
& \ddots & & & & & & & & & \\
& & 1 & & & & & & & & \\
& & & 0 & & & & 1 & & & \\
& & & & 1 & & & & & & \\
& & & & & \ddots & & & & & \\
& & & & & & 1 & & & & \\
& & & 1 & & & & 0 & & & \\
& & & & & & & & 1 & & \\
& & & & & & & & & \ddots & \\
& & & & & & & & & & 1
\end{array}\right)
$$

for $1 \leq i<j \leq n$. We have

$$
R^{+}=\{(i, j) \mid 1 \leq i<j \leq n\}=\left\{\epsilon_{i}^{\vee}-\epsilon_{j}^{\vee} \mid 1 \leq i<j \leq n\right\} .
$$

Note: $\operatorname{det}\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)=-1$ and $s_{i, j}^{2}=1 \Leftrightarrow\left(s_{i, j}+1\right)\left(s_{i, j}-1\right)=0$. This is generally true: If $g \in G L_{n}(\mathbb{Z})$ then $\operatorname{det}(g) \in \mathbb{Z}$ is invertible so $\operatorname{det}(g)= \pm 1$; so, in a Weyl groups, $\xi=-1$.
Example. (Type $\left.S L_{3}\right) \mathfrak{h}_{\mathbb{Z}}^{*}=\operatorname{span}\left\{\omega_{1}, \omega_{2}\right\}$ and

$$
W_{0}=\left\langle s_{i}, s_{2} \mid s_{1}^{2}+s_{2}^{2}=1, s_{1} s_{2} s_{1}=s_{2} s_{1} s_{2}\right\rangle
$$

where s_{1} is reflection in $\mathfrak{h}^{\alpha_{1}^{\vee}}$ and s_{2} is reflection in $\mathfrak{h}^{\alpha_{2}^{\vee}}$.

This lattice is in $\mathfrak{h}_{\mathbb{R}}^{*}$ (lattice means \mathbb{Z}-vector space).
C is a choice of fundamental region for the action of W_{0} on $\mathfrak{h}_{\mathbb{R}}^{*}$ which is the \mathbb{R}-span of ω_{1}, ω_{2}. Ah, let's do this in general. $\mathfrak{h}^{\alpha_{1}^{\vee}}, \ldots, \mathfrak{h}^{\alpha_{n}^{\vee}}$ are the walls (hyperplanes) bounding this fundamental region C. The simple reflections in W_{0} are s_{1}, \ldots, s_{n}, the reflections in $\mathfrak{h}^{\alpha_{1}^{\vee}}, \ldots, \mathfrak{h}^{\alpha_{n}^{\vee}}$
$W_{0} \longleftrightarrow\left\{\right.$ fundamental regions for the action of W on $\left.\mathfrak{h}_{\mathbb{R}}^{*}\right\}$.
8.3. Towards characters. Let $X=\left\{X^{\mu} \mid \mu \in \mathfrak{h}_{\mathbb{Z}}^{*}\right\}$ with $X^{\mu} X^{\nu}=$ $X^{\mu+\nu}$. This is the same group as $\mathfrak{h}_{\mathbb{Z}}^{*}$ except written multiplicatively.

$$
\mathbb{C}[X]=\operatorname{span}\left\{X^{\mu} \mid \mu \in \mathfrak{h}_{\mathbb{Z}}^{*}\right\}=\mathbb{C}\left[X^{ \pm \omega_{1}}, \ldots, X^{ \pm \omega_{n}}\right]
$$

since $X^{\mu}=X^{\mu_{1} \omega_{1}+\cdots+\mu_{n} \omega_{n}}=X^{\mu_{1} \omega_{1}} \cdots X^{\mu_{n} \omega_{n}}=\left(X^{\omega_{1}}\right)^{\mu_{1}} \cdots\left(X^{\omega_{n}}\right)^{\mu_{n}}$, for $\mu=\mu_{1} \omega_{1}+\cdots+\mu_{n} \omega_{n}, \mu_{i} \in \mathbb{Z}$.
W_{0} acts on $\mathbb{C}[X]$ by

$$
w X^{\mu}=X^{w \mu}
$$

for $\mu \in \mathfrak{h}_{\mathbb{Z}}^{*}, w \in W_{0}$.
There are two 1-dimensional representations of W_{0} :

$$
\begin{aligned}
W_{0} & \rightarrow \mathbb{C}^{*} & \text { and } & W_{0}
\end{aligned}{\rightarrow \mathbb{C}^{*}}^{w} \mapsto^{w} \gg \operatorname{det} w
$$

The ring of symmetric functions is

$$
\mathbb{C}[X]^{W_{0}}=\left\{f \in \mathbb{C}[X] \mid w f=f \text { for all } w \in W_{0}\right\}
$$

The vector space of determinant-symmetric functions is

$$
\mathbb{C}[X]^{\operatorname{det}}=\left\{f \in \mathbb{C}[X] \mid w f=\operatorname{det}(w) f \text { for all } w \in W_{0}\right\}
$$

Example. (Type $\left.G L_{n}\right) \mathfrak{h}_{\mathbb{Z}}^{*}=\operatorname{span}\left\{\epsilon_{1}, \ldots, \epsilon_{n}\right\}$ and $W_{0}=S_{n}$.
$\mathbb{C}[X]=\mathbb{C}\left[X^{ \pm \epsilon_{1}}, \ldots X^{ \pm \epsilon_{n}}\right]=\mathbb{C}\left[x_{1}^{ \pm 1}, \ldots x_{n}^{ \pm 1}\right]$ where $x_{i}=X^{\epsilon_{i}}$.
For example, the polynomial

$$
x_{1}^{2} x_{2}^{-1} x_{3}^{4}+x_{1}^{-1} x_{2}^{2} x_{3}^{4}+x_{1}^{4} x_{2}^{-1} x_{3}^{2}+x_{1}^{2} x_{2}^{4} x_{3}^{-1}+x_{1}^{-1} x_{2}^{4} x_{3}^{2}+x_{1}^{4} x_{2}^{2} x_{3}^{-1}
$$

is symmetric; the polynomial

$$
x_{1}^{2} x_{2}^{-1} x_{3}^{4}-x_{1}^{-1} x_{2}^{2} x_{3}^{4}-x_{1}^{4} x_{2}^{-1} x_{3}^{2}-x_{1}^{2} x_{2}^{4} x_{3}^{-1}+x_{1}^{-1} x_{2}^{4} x_{3}^{2}+x_{1}^{4} x_{2}^{2} x_{3}^{-1}
$$

is determinant-symmetric.
In general,

$$
\sum_{w \in S_{n}} \operatorname{det} w^{-1} \cdot w\left(x_{1}^{\mu_{1}} \ldots x_{n}^{\mu_{n}}\right)=\sum_{w \in S_{n}} \operatorname{det} w^{-1} \cdot x_{w(1)}^{\mu_{1}} \cdots x_{w(n)}^{\mu_{n}}=\operatorname{det} x_{i}^{\mu_{j}}
$$

is in $\mathbb{C}[X]^{\text {det }}$.
For example, the Vandermonde determinant:

$$
\sum_{w \in W_{0}} \operatorname{det} w^{-1}=\operatorname{det}\left(\begin{array}{ccccc}
x_{1}^{n-1} & x_{1}^{n-2} & \cdots & x_{1} & 1 \\
x_{2}^{n-1} & x_{2}^{n-2} & \cdots & x_{2} & 1 \\
\vdots & \vdots & & \vdots & \vdots \\
x_{n}^{n-1} & x_{n}^{n-2} & \cdots & x_{n} & 1
\end{array}\right)
$$

Definition. If $\mu \in \mathfrak{h}_{\mathbb{Z}}^{*}$ then the orbit sum, the monomial symmetric function, is $m_{\mu}:=\sum_{\gamma \in W_{0} \mu} X^{\gamma}$, and $m_{w \mu}=m_{\mu}$ for $w \in W_{0}$.

For example, the orbit of $\omega_{1}+\omega_{2}$ in the $S L_{3}$-type example is in blue here:

And so we have $m_{\omega_{1}+\omega_{2}}=X^{\omega_{1}+\omega_{2}}+X^{\gamma_{1}}+X^{\gamma_{2}}+X^{\gamma_{12}}+X^{\gamma_{21}}+X^{\gamma_{121}}$.
Definition. The dominant integral weights are the elements of

$$
P^{+}=\mathfrak{h}_{\mathbb{Z}}^{*} \cap \bar{C},
$$

where \bar{C} is the closure of C. These are (distinct) representatives of the W_{0} orbits on $\mathfrak{h}_{\mathbb{Z}}^{*}$.

So, for example, we circle in red the dominant integral weights of our $S L_{3}$-type example:

The point is, the $m_{\mu}, \mu \in P^{+}$form a basis of $\mathbb{C}[X]^{W_{0}}$.

If $\mu \in \mathfrak{h}_{\mathbb{Z}}^{*}$ define

$$
a_{\mu}=\sum_{w \in W_{0}} \operatorname{det} w^{-1} \cdot X^{w \mu} \in \mathbb{C}[X]^{\operatorname{det}}
$$

If $v \in W_{0}$, then
$a_{v \mu}=\sum_{w \in W_{0}} \operatorname{det} w^{-1} \cdot X^{w v \mu}=\sum_{w \in W_{0}} \operatorname{det} v \operatorname{det}(w v)^{-1} \cdot X^{w v \mu}=\operatorname{det} v \cdot a_{\mu}$.

So, for example in $S L_{3}, a_{\omega_{2}-\omega_{1}}=\operatorname{det} s_{1} \cdot a_{\omega_{1}}=-a_{\omega_{1}}$.
Another example: $a_{s_{2} \omega_{1}}=\operatorname{det}\left(s_{2}\right) a_{\omega_{1}}=-a_{w_{1}}$ but on the other hand $s_{2} \omega_{1}=\omega_{1}$, so $a_{s_{2} \omega_{1}}=a_{\omega_{1}}$, and thus $a_{\omega_{1}}=0$.

In general if μ is on a wall, ie $s_{\alpha} \mu=\mu$ for some reflection, then $a_{\mu}=0$.
Definition. The strictly dominant weights are elements of

$$
P^{++}=\mathfrak{h}_{\mathbb{Z}}^{*} \cap C
$$

(C does not include the walls).

For example,

So we see that the $a_{\mu}, \mu \in P^{++}$are a basis of $\mathbb{C}[X]^{\text {det }}$; and recall that the $m_{\mu}, \mu \in P^{+}$are a basis of $C[X]^{W_{0}}$.

As sets (or semigroups), P^{+}is isomorphic to P^{++}, via $\lambda \mapsto \lambda+\rho$ where ρ is the vertex of the cone P^{++}.

The $m_{\lambda}, \lambda \in P^{+}$are a basis of $\mathbb{C}[X]^{W_{0}}$ (these are bosonic); $a_{\lambda+\rho}$, $\lambda \in P^{+}$are a basis of $\mathbb{C}[X]^{\text {det }}$ (fermionic because they're alternating).

We're seeing a version of the Boson-Fermion correspondence: $\mathbb{C}[X]^{W_{0}}$ is isomorphic to $\mathbb{C}[X]^{\text {det }}$, via $f \mapsto a_{\rho} f$. We saw only a shadow of this, the set version, today: P^{+}and P^{++}are isomorphic.

