
REPRESENTATION THEORY

EMILY PETERS

Abstract. Notes from Arun Ram’s 2008 course at the University

of Melbourne.

8. Week 7

What have we done so far in this course?

(1) Representation Theory = study of A-modules; A is an algebra
(first a vector space). ie, representation theory is advanced
linear algebra.

(2) Braid-like examples: Temperley-Lieb, Hecke, symmetric group,
etcetera. Good control of simple modules from Bratteli diagram
techniques.

(3) U(sl2) and Uq(sl2) are infinite dimensional algebras. Main tool
is tensor products. Magic: sl2 tensor product produces the
Bratteli diagram for TL.

(4) Crystals: not algebras or vector spaces, just sets with operators.
They do have a tensor product operation. Magic: Bratteli dia-
gram for TL appears again!

Reason: There is an equivalnce of tensor categories

{sl2 crystals} ←→ {fin dim Uq(sl2) modules}

This type of equivalence is a feature of “semisimple Lie theory” (Lie
groups, Lie algebras, algebraic groups, quantum groups).

Next six weeks: Lie Theory. The main theorem is the Weyl character
formula and what makes it work.

Date: September 10, 2008.

Send comments and corrections to E.Peters@ms.unimelb.edu.au.
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Theorem 8.1 (Amazing Theorem). There is an equivalence of cate-

gories

{connected compact Lie groups} ←→ {Z-reflection groups}

Example. Connected compact Lie groups: R, GLn(C), SOn(C), S1.

Example. Z-reflection groups: Sn, dihedral groups, signed permuta-
tion matrices.

In the next two lectures, we’ll discuss reflection groups and characters
of crystals.

8.1. Reflection groups. Dual vector spaces. Let R be a commutative
ring (ie, my favorite example Z), F be a field (the field of fractions of
R) (ie, Q), K a field containing F (ie, R or C or Q̄).

Let h∗
Z

be a vector space (over R). h∗
Z

= span {ω1, . . . , ωn} where
ω1, . . . , ωn is a basis. hZ is its dual, hZ = Hom(hZ, Z). It has basis
α∨

1 , . . . , α∨
n , defined by α∨

i (ωj) = δi,j .

Let G = GL(h∗
Z
) which we think of as GLn(Z) (G ⊂ GLn(F)). G acts

on h∗
Z

(gωi =
∑n

j=1 gj,iωj).

Write 〈µ, λ∨〉 = λ∨(µ), for µ ∈ h∗
Z
, λ∨ ∈ hZ. G acts on hZ by

〈gµ, λ∨〉 =
〈

µ, g−1λ∨
〉

for µ ∈ h∗
Z
, λ∨ ∈ hZ. Note that G 6= GL(hZ), in terms of matrices g

acting on hZ by the matrix g∨ = (g−1)t.

Definition. A reflection is s ∈ GL(h∗
Z
) such that, in GLn(F̂), s is

conjugate to











ξ 0 . . . 0

0 1
. . .

...
...

. . .
. . . 0

0 . . . 0 1











, where ξ ∈ F̂, ξ 6= 1.

s acts on hZ by s∨, which is also a reflection. We can write

h∗

C = hα∨

C ⊕Cα and hC = hα
C ⊕ Cα∨,
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where

hα∨

C
= (h∗

C
)s = {µ ∈ h∗

C
|sµ = µ} (1 eigenspace of s on h∗

C
),

Cα = {µ ∈ h∗

C
|sµ = ξµ} (ξ eigenspace of s on h∗

C
),

hα
C = (hC)s = {λ∨ ∈ hC|sλ

∨ = λ∨} (1 eigenspace of s∨ on hC),

Cα∨ = {λ∨ ∈ hC|sλ
∨ = ξ−1λ∨} (ξ−1 eigenspace of s on hC).

Choose α and α∨ so that 1− 〈α, α∨〉 = ξ. Then

(1) sµ = µ− 〈µ, α∨〉α and s−1λ∨ = λ∨ − 〈λ∨, α〉α∨

You should check that hα∨

C
= (h∗

C
)s = {µ ∈ h∗

C
| 〈µ, α∨〉 = 0}. If µ ∈ hα∨

C

then equation (1) implies

sµ = µ− 〈µ, α∨〉α = µ− 0 = µ and

sα = α− 〈α, α∨〉 = (1− 〈α, α∨〉)α = ξα.

8.2. Weyl groups = Z-reflection groups = crystallographic re-

flection groups. Let h∗
Z

be a Z-vector space.

Definition. A Weyl group is a finite subgroups W0 of GL(h∗
Z
) which

is generated by reflections. Let R+ be an index set so that sα, α ∈ R+

are the reflections in W0. (R+ is the set of positive roots.)

Example. (Type GLn). h∗
Z

= span {ǫ1, . . . , ǫn} and W0 = Sn acts by
permutations of ǫ1, . . . , ǫn. The reflections in Sn are

si,j = sǫ∨
i
−ǫ∨

j
=







































1
. . .

1
0 1

1
. . .

1
1 0

1
. . .

1







































,

for 1 ≤ i < j ≤ n. We have

R+ = {(i, j)|1 ≤ i < j ≤ n} = {ǫ∨i − ǫ∨j |1 ≤ i < j ≤ n}.
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Note: det

(

0 1
1 0

)

= −1 and s2
i,j = 1 ⇔ (si,j + 1)(si,j − 1) = 0.

This is generally true: If g ∈ GLn(Z) then det(g) ∈ Z is invertible so
det(g) = ±1; so, in a Weyl groups, ξ = −1.

Example. (Type SL3) h∗
Z

= span {ω1, ω2} and

W0 =
〈

si, s2|s
2
1 + s2

2 = 1, s1s2s1 = s2s1s2

〉

where s1 is reflection in hα∨
1 and s2 is reflection in hα∨

2 .

hα2

hα1

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

ω1ω2

C

s2Cs1C

s1s2C

s1s2s1C = s2s1s2C

s2s1C

This lattice is in h∗
R

(lattice means Z-vector space).

C is a choice of fundamental region for the action of W0 on h∗
R

which is
the R-span of ω1, ω2. Ah, let’s do this in general. hα∨

1 , . . . , hα∨n are the
walls (hyperplanes) bounding this fundamental region C. The simple
reflections in W0 are s1, . . . , sn, the reflections in hα∨

1 , . . . , hα∨n

W0 ←→ {fundamental regions for the action of W on h∗
R
}.

8.3. Towards characters. Let X = {Xµ|µ ∈ h∗
Z
} with XµXν =

Xµ+ν . This is the same group as h∗
Z

except written multiplicatively.

C[X] = span {Xµ|µ ∈ h∗

Z} = C[X±ω1 , . . . , X±ωn],

since Xµ = Xµ1ω1+···+µnωn = Xµ1ω1 · · ·Xµnωn = (Xω1)µ1 · · · (Xωn)µn ,
for µ = µ1ω1 + · · ·+ µnωn, µi ∈ Z.

W0 acts on C[X] by
wXµ = Xwµ
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for µ ∈ h∗
Z
, w ∈W0.

There are two 1-dimensional representations of W0:

W0 → C∗ and W0 → C∗

w 7→ 1 w 7→ det w

The ring of symmetric functions is

C[X]W0 = {f ∈ C[X]|wf = f for all w ∈W0}

The vector space of determinant-symmetric functions is

C[X]det = {f ∈ C[X]|wf = det(w)f for all w ∈W0}.

Example. (Type GLn) h∗
Z

= span {ǫ1, . . . , ǫn} and W0 = Sn.

C[X] = C[X±ǫ1, . . .X±ǫn] = C[x±1
1 , . . . x±1

n ] where xi = Xǫi.

For example, the polynomial

x2
1x

−1
2 x4

3 + x−1
1 x2

2x
4
3 + x4

1x
−1
2 x2

3 + x2
1x

4
2x

−1
3 + x−1

1 x4
2x

2
3 + x4

1x
2
2x

−1
3

is symmetric; the polynomial

x2
1x

−1
2 x4

3 − x−1
1 x2

2x
4
3 − x4

1x
−1
2 x2

3 − x2
1x

4
2x

−1
3 + x−1

1 x4
2x

2
3 + x4

1x
2
2x

−1
3

is determinant-symmetric.

In general,
∑

w∈Sn

det w−1 · w(xµ1

1 . . . xµn

n ) =
∑

w∈Sn

det w−1 · xµ1

w(1) · · ·x
µn

w(n) = det x
µj

i

is in C[X]det.

For example, the Vandermonde determinant:

∑

w∈W0

det w−1 = det









xn−1
1 xn−2

1 · · · x1 1
xn−1

2 xn−2
2 · · · x2 1

...
...

...
...

xn−1
n xn−2

n · · · xn 1









Definition. If µ ∈ h∗
Z

then the orbit sum, the monomial symmetric

function, is mµ :=
∑

γ∈W0µ Xγ, and mwµ = mµ for w ∈W0.

For example, the orbit of ω1 + ω2 in the SL3-type example is in blue
here:
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hα2

hα1

ω1ω2

ω1 + ω2

γ2γ1

γ12

γ121

γ21

And so we have mω1+ω2
= Xω1+ω2 + Xγ1 + Xγ2 + Xγ12 + Xγ21 + Xγ121 .

Definition. The dominant integral weights are the elements of

P+ = h∗

Z
∩ C̄,

where C̄ is the closure of C. These are (distinct) representatives of the
W0 orbits on h∗

Z
.

So, for example, we circle in red the dominant integral weights of our
SL3-type example:

hα2

hα1

ω1ω2

The point is, the mµ, µ ∈ P+ form a basis of C[X]W0 .
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If µ ∈ h∗
Z

define

aµ =
∑

w∈W0

det w−1 ·Xwµ ∈ C[X]det.

If v ∈W0, then

avµ =
∑

w∈W0

det w−1 ·Xwvµ =
∑

w∈W0

det v det (wv)−1 ·Xwvµ = det v · aµ.

So, for example in SL3, aω2−ω1
= det s1 · aω1

= −aω1
.

Another example: as2ω1
= det(s2)aω1

= −aw1
but on the other hand

s2ω1 = ω1, so as2ω1
= aω1

, and thus aω1
= 0.

In general if µ is on a wall, ie sαµ = µ for some reflection, then aµ = 0.

Definition. The strictly dominant weights are elements of

P++ = h∗

Z
∩ C

(C does not include the walls).

For example,

hα2

hα1

ω1ω2

So we see that the aµ, µ ∈ P++ are a basis of C[X]det; and recall that
the mµ, µ ∈ P+ are a basis of C[X]W0.

As sets (or semigroups), P+ is isomorphic to P++, via λ 7→ λ+ρ where
ρ is the vertex of the cone P++.
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The mλ, λ ∈ P+ are a basis of C[X]W0 (these are bosonic); aλ+ρ,
λ ∈ P+ are a basis of C[X]det (fermionic because they’re alternating).

We’re seeing a version of the Boson-Fermion correspondence: C[X]W0

is isomorphic to C[X]det, via f 7→ aρf . We saw only a shadow of this,
the set version, today: P+ and P++ are isomorphic.


