REPRESENTATION THEORY

EMILY PETERS

ABSTRACT. Notes from Arun Ram's 2008 course at the University of Melbourne.

8. Week 7

What have we done so far in this course?

- (1) Representation Theory = study of A-modules; A is an algebra (first a vector space). ie, representation theory is advanced linear algebra.
- (2) Braid-like examples: Temperley-Lieb, Hecke, symmetric group, etcetera. Good control of simple modules from Bratteli diagram techniques.
- (3) $\mathcal{U}(\mathfrak{sl}_2)$ and $\mathcal{U}_q(\mathfrak{sl}_2)$ are infinite dimensional algebras. Main tool is tensor products. Magic: \mathfrak{sl}_2 tensor product produces the Bratteli diagram for TL.
- (4) Crystals: not algebras or vector spaces, just sets with operators. They do have a tensor product operation. Magic: Bratteli diagram for TL appears again!

Reason: There is an equivalnce of tensor categories

 $\{\mathfrak{sl}_2 \text{ crystals}\} \longleftrightarrow \{\text{fin dim } \mathcal{U}_q(\mathfrak{sl}_2) \text{ modules}\}$

This type of equivalence is a feature of "semisimple Lie theory" (Lie groups, Lie algebras, algebraic groups, quantum groups).

Next six weeks: Lie Theory. The main theorem is the Weyl character formula and what makes it work.

Date: September 10, 2008.

Send comments and corrections to E.Peters@ms.unimelb.edu.au.

EMILY PETERS

Theorem 8.1 (Amazing Theorem). There is an equivalence of categories

{connected compact Lie groups} \longleftrightarrow { \mathbb{Z} -reflection groups}

Example. Connected compact Lie groups: \mathbb{R} , $GL_n(\mathbb{C})$, $SO_n(\mathbb{C})$, S^1 .

Example. \mathbb{Z} -reflection groups: S_n , dihedral groups, signed permutation matrices.

In the next two lectures, we'll discuss reflection groups and characters of crystals.

8.1. Reflection groups. Dual vector spaces. Let R be a commutative ring (ie, my favorite example \mathbb{Z}), \mathbb{F} be a field (the field of fractions of R) (ie, \mathbb{Q}), \mathbb{K} a field containing \mathbb{F} (ie, \mathbb{R} or \mathbb{C} or $\overline{\mathbb{Q}}$).

Let $\mathfrak{h}_{\mathbb{Z}}^*$ be a vector space (over R). $\mathfrak{h}_{\mathbb{Z}}^* = \operatorname{span} \{\omega_1, \ldots, \omega_n\}$ where $\omega_1, \ldots, \omega_n$ is a basis. $\mathfrak{h}_{\mathbb{Z}}$ is its dual, $\mathfrak{h}_{\mathbb{Z}} = \operatorname{Hom}(\mathfrak{h}_{\mathbb{Z}}, \mathbb{Z})$. It has basis $\alpha_1^{\vee}, \ldots, \alpha_n^{\vee}$, defined by $\alpha_i^{\vee}(\omega_j) = \delta_{i,j}$.

Let $G = GL(\mathfrak{h}_{\mathbb{Z}}^{*})$ which we think of as $GL_{n}(\mathbb{Z})$ $(G \subset GL_{n}(\mathbb{F}))$. G acts on $\mathfrak{h}_{\mathbb{Z}}^{*}$ $(g\omega_{i} = \sum_{j=1}^{n} g_{j,i}\omega_{j})$.

Write $\langle \mu, \lambda^{\vee} \rangle = \lambda^{\vee}(\mu)$, for $\mu \in \mathfrak{h}_{\mathbb{Z}}^*$, $\lambda^{\vee} \in \mathfrak{h}_{\mathbb{Z}}$. G acts on $\mathfrak{h}_{\mathbb{Z}}$ by

$$\langle g\mu, \lambda^{\vee} \rangle = \langle \mu, g^{-1} \lambda^{\vee} \rangle$$

for $\mu \in \mathfrak{h}_{\mathbb{Z}}^*$, $\lambda^{\vee} \in \mathfrak{h}_{\mathbb{Z}}$. Note that $G \neq GL(\mathfrak{h}_{\mathbb{Z}})$, in terms of matrices g acting on $\mathfrak{h}_{\mathbb{Z}}$ by the matrix $g^{\vee} = (g^{-1})^t$.

Definition. A reflection is $s \in GL(\mathfrak{h}_{\mathbb{Z}}^*)$ such that, in $GL_n(\hat{\mathbb{F}})$, s is conjugate to $\begin{pmatrix} \xi & 0 & \dots & 0 \\ 0 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & 1 \end{pmatrix}$, where $\xi \in \hat{\mathbb{F}}, \xi \neq 1$.

s acts on $\mathfrak{h}_{\mathbb{Z}}$ by $s^{\vee},$ which is also a reflection. We can write

$$\mathfrak{h}^*_{\mathbb{C}} = \mathfrak{h}^{lpha^{ee}}_{\mathbb{C}} \oplus \mathbb{C} lpha \quad ext{and} \quad \mathfrak{h}_{\mathbb{C}} = \mathfrak{h}^{lpha}_{\mathbb{C}} \oplus \mathbb{C} lpha^{ee},$$

2

where

$$\begin{split} \mathfrak{h}^{\alpha^{\vee}}_{\mathbb{C}} &= (\mathfrak{h}^{*}_{\mathbb{C}})^{s} = \{\mu \in \mathfrak{h}^{*}_{\mathbb{C}} | s\mu = \mu\} \quad (1 \text{ eigenspace of } s \text{ on } \mathfrak{h}^{*}_{\mathbb{C}}), \\ \mathbb{C}\alpha &= \{\mu \in \mathfrak{h}^{*}_{\mathbb{C}} | s\mu = \xi\mu\} \quad (\xi \text{ eigenspace of } s \text{ on } \mathfrak{h}^{*}_{\mathbb{C}}), \\ \mathfrak{h}^{\alpha}_{\mathbb{C}} &= (\mathfrak{h}_{\mathbb{C}})^{s} = \{\lambda^{\vee} \in \mathfrak{h}_{\mathbb{C}} | s\lambda^{\vee} = \lambda^{\vee}\} \quad (1 \text{ eigenspace of } s^{\vee} \text{ on } \mathfrak{h}_{\mathbb{C}}), \\ \mathbb{C}\alpha^{\vee} &= \{\lambda^{\vee} \in \mathfrak{h}_{\mathbb{C}} | s\lambda^{\vee} = \xi^{-1}\lambda^{\vee}\} \quad (\xi^{-1} \text{ eigenspace of } s \text{ on } \mathfrak{h}_{\mathbb{C}}). \end{split}$$

Choose α and α^{\vee} so that $1 - \langle \alpha, \alpha^{\vee} \rangle = \xi$. Then

(1)
$$s\mu = \mu - \langle \mu, \alpha^{\vee} \rangle \alpha$$
 and $s^{-1}\lambda^{\vee} = \lambda^{\vee} - \langle \lambda^{\vee}, \alpha \rangle \alpha^{\vee}$

You should check that $\mathfrak{h}_{\mathbb{C}}^{\alpha^{\vee}} = (\mathfrak{h}_{\mathbb{C}}^*)^s = \{\mu \in \mathfrak{h}_{\mathbb{C}}^* | \langle \mu, \alpha^{\vee} \rangle = 0\}$. If $\mu \in \mathfrak{h}_{\mathbb{C}}^{\alpha^{\vee}}$ then equation (1) implies

$$s\mu = \mu - \langle \mu, \alpha^{\vee} \rangle \alpha = \mu - 0 = \mu \quad \text{and} \\ s\alpha = \alpha - \langle \alpha, \alpha^{\vee} \rangle = (1 - \langle \alpha, \alpha^{\vee} \rangle)\alpha = \xi\alpha.$$

8.2. Weyl groups = \mathbb{Z} -reflection groups = crystallographic reflection groups. Let $\mathfrak{h}_{\mathbb{Z}}^*$ be a \mathbb{Z} -vector space.

Definition. A Weyl group is a finite subgroups W_0 of $GL(\mathfrak{h}_{\mathbb{Z}}^*)$ which is generated by reflections. Let R^+ be an index set so that $s_{\alpha}, \alpha \in R^+$ are the reflections in W_0 . (R^+ is the set of positive roots.)

Example. (Type GL_n). $\mathfrak{h}_{\mathbb{Z}}^* = \operatorname{span} \{\epsilon_1, \ldots, \epsilon_n\}$ and $W_0 = S_n$ acts by permutations of $\epsilon_1, \ldots, \epsilon_n$. The reflections in S_n are

EMILY PETERS

Note: det $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = -1$ and $s_{i,j}^2 = 1 \Leftrightarrow (s_{i,j} + 1)(s_{i,j} - 1) = 0$. This is generally true: If $g \in GL_n(\mathbb{Z})$ then det $(g) \in \mathbb{Z}$ is invertible so det $(g) = \pm 1$; so, in a Weyl groups, $\xi = -1$.

Example. (Type SL_3) $\mathfrak{h}_{\mathbb{Z}}^* = \operatorname{span} \{\omega_1, \omega_2\}$ and

$$W_0 = \left\langle s_i, s_2 | s_1^2 + s_2^2 = 1, s_1 s_2 s_1 = s_2 s_1 s_2 \right\rangle$$

where s_1 is reflection in $\mathfrak{h}^{\alpha_1^{\vee}}$ and s_2 is reflection in $\mathfrak{h}^{\alpha_2^{\vee}}$.

This lattice is in $\mathfrak{h}_{\mathbb{R}}^*$ (lattice means $\mathbb{Z}\text{-vector space}).$

C is a choice of fundamental region for the action of W_0 on $\mathfrak{h}_{\mathbb{R}}^*$ which is the \mathbb{R} -span of ω_1, ω_2 . Ah, let's do this in general. $\mathfrak{h}^{\alpha_1^{\vee}}, \ldots, \mathfrak{h}^{\alpha_n^{\vee}}$ are the walls (hyperplanes) bounding this fundamental region *C*. The simple reflections in W_0 are s_1, \ldots, s_n , the reflections in $\mathfrak{h}^{\alpha_1^{\vee}}, \ldots, \mathfrak{h}^{\alpha_n^{\vee}}$

 $W_0 \longleftrightarrow$ {fundamental regions for the action of W on $\mathfrak{h}_{\mathbb{R}}^*$ }.

8.3. Towards characters. Let $X = \{X^{\mu} | \mu \in \mathfrak{h}_{\mathbb{Z}}^*\}$ with $X^{\mu}X^{\nu} = X^{\mu+\nu}$. This is the same group as $\mathfrak{h}_{\mathbb{Z}}^*$ except written multiplicatively.

$$\mathbb{C}[X] = \operatorname{span} \{ X^{\mu} | \mu \in \mathfrak{h}_{\mathbb{Z}}^* \} = \mathbb{C}[X^{\pm \omega_1}, \dots, X^{\pm \omega_n}],$$

since $X^{\mu} = X^{\mu_1\omega_1 + \dots + \mu_n\omega_n} = X^{\mu_1\omega_1} \cdots X^{\mu_n\omega_n} = (X^{\omega_1})^{\mu_1} \cdots (X^{\omega_n})^{\mu_n}$, for $\mu = \mu_1\omega_1 + \dots + \mu_n\omega_n$, $\mu_i \in \mathbb{Z}$.

 W_0 acts on $\mathbb{C}[X]$ by

$$wX^{\mu} = X^{w\mu}$$

4

for $\mu \in \mathfrak{h}_{\mathbb{Z}}^*$, $w \in W_0$.

There are two 1-dimensional representations of W_0 :

 $\begin{aligned} W_0 \to \mathbb{C}^* & \text{and} & W_0 \to \mathbb{C}^* \\ w \mapsto 1 & w \mapsto \det w \end{aligned}$

The ring of symmetric functions is

$$\mathbb{C}[X]^{W_0} = \{ f \in \mathbb{C}[X] | wf = f \text{ for all } w \in W_0 \}$$

The vector space of *determinant-symmetric functions* is

$$\mathbb{C}[X]^{\det} = \{ f \in \mathbb{C}[X] | wf = \det(w)f \text{ for all } w \in W_0 \}.$$

Example. (Type GL_n) $\mathfrak{h}_{\mathbb{Z}}^* = \operatorname{span} \{\epsilon_1, \ldots, \epsilon_n\}$ and $W_0 = S_n$.

$$\mathbb{C}[X] = \mathbb{C}[X^{\pm \epsilon_1}, \dots X^{\pm \epsilon_n}] = \mathbb{C}[x_1^{\pm 1}, \dots x_n^{\pm 1}] \text{ where } x_i = X^{\epsilon_i}.$$

For example, the polynomial

 $x_1^2 x_2^{-1} x_3^4 + x_1^{-1} x_2^2 x_3^4 + x_1^4 x_2^{-1} x_3^2 + x_1^2 x_2^4 x_3^{-1} + x_1^{-1} x_2^4 x_3^2 + x_1^4 x_2^2 x_3^{-1}$ is symmetric; the polynomial

$$x_1^2 x_2^{-1} x_3^4 - x_1^{-1} x_2^2 x_3^4 - x_1^4 x_2^{-1} x_3^2 - x_1^2 x_2^4 x_3^{-1} + x_1^{-1} x_2^4 x_3^2 + x_1^4 x_2^2 x_3^{-1}$$
 is determinant-symmetric.

In general,

$$\sum_{w \in S_n} \det w^{-1} \cdot w(x_1^{\mu_1} \dots x_n^{\mu_n}) = \sum_{w \in S_n} \det w^{-1} \cdot x_{w(1)}^{\mu_1} \cdots x_{w(n)}^{\mu_n} = \det x_i^{\mu_j}$$

is in $\mathbb{C}[X]^{\det}$.

For example, the Vandermonde determinant:

$$\sum_{w \in W_0} \det w^{-1} = \det \begin{pmatrix} x_1^{n-1} & x_1^{n-2} & \cdots & x_1 & 1\\ x_2^{n-1} & x_2^{n-2} & \cdots & x_2 & 1\\ \vdots & \vdots & & \vdots & \vdots\\ x_n^{n-1} & x_n^{n-2} & \cdots & x_n & 1 \end{pmatrix}$$

Definition. If $\mu \in \mathfrak{h}_{\mathbb{Z}}^*$ then the orbit sum, the monomial symmetric function, is $m_{\mu} := \sum_{\gamma \in W_0 \mu} X^{\gamma}$, and $m_{w\mu} = m_{\mu}$ for $w \in W_0$.

For example, the orbit of $\omega_1 + \omega_2$ in the SL_3 -type example is in blue here:

And so we have $m_{\omega_1+\omega_2} = X^{\omega_1+\omega_2} + X^{\gamma_1} + X^{\gamma_2} + X^{\gamma_{12}} + X^{\gamma_{21}} + X^{\gamma_{121}}$.

Definition. The *dominant integral weights* are the elements of

$$P^+ = \mathfrak{h}^*_{\mathbb{Z}} \cap \bar{C}_{\mathfrak{Z}}$$

where \overline{C} is the closure of C. These are (distinct) representatives of the W_0 orbits on $\mathfrak{h}_{\mathbb{Z}}^*$.

So, for example, we circle in red the dominant integral weights of our SL_3 -type example:

The point is, the $m_{\mu}, \mu \in P^+$ form a basis of $\mathbb{C}[X]^{W_0}$.

If $\mu \in \mathfrak{h}_{\mathbb{Z}}^*$ define

$$a_{\mu} = \sum_{w \in W_0} \det w^{-1} \cdot X^{w\mu} \in \mathbb{C}[X]^{\det}$$

If $v \in W_0$, then

$$a_{v\mu} = \sum_{w \in W_0} \det w^{-1} \cdot X^{wv\mu} = \sum_{w \in W_0} \det v \det (wv)^{-1} \cdot X^{wv\mu} = \det v \cdot a_{\mu}.$$

So, for example in SL_3 , $a_{\omega_2-\omega_1} = \det s_1 \cdot a_{\omega_1} = -a_{\omega_1}$.

Another example: $a_{s_2\omega_1} = \det(s_2)a_{\omega_1} = -a_{w_1}$ but on the other hand $s_2\omega_1 = \omega_1$, so $a_{s_2\omega_1} = a_{\omega_1}$, and thus $a_{\omega_1} = 0$.

In general if μ is on a wall, ie $s_{\alpha}\mu = \mu$ for some reflection, then $a_{\mu} = 0$. **Definition.** The *strictly dominant weights* are elements of

$$P^{++} = \mathfrak{h}^*_{\mathbb{Z}} \cap C$$

(C does not include the walls).

For example,

So we see that the a_{μ} , $\mu \in P^{++}$ are a basis of $\mathbb{C}[X]^{\text{det}}$; and recall that the $m_{\mu}, \mu \in P^{+}$ are a basis of $C[X]^{W_0}$.

As sets (or semigroups), P^+ is isomorphic to P^{++} , via $\lambda \mapsto \lambda + \rho$ where ρ is the vertex of the cone P^{++} .

EMILY PETERS

The m_{λ} , $\lambda \in P^+$ are a basis of $\mathbb{C}[X]^{W_0}$ (these are bosonic); $a_{\lambda+\rho}$, $\lambda \in P^+$ are a basis of $\mathbb{C}[X]^{\text{det}}$ (fermionic because they're alternating).

We're seeing a version of the Boson-Fermion correspondence: $\mathbb{C}[X]^{W_0}$ is isomorphic to $\mathbb{C}[X]^{det}$, via $f \mapsto a_{\rho}f$. We saw only a shadow of this, the set version, today: P^+ and P^{++} are isomorphic.

8