## **REPRESENTATION THEORY**

## EMILY PETERS

ABSTRACT. Notes from Arun Ram's 2008 course at the University of Melbourne.

## 8. WEEK 8

Setup: We start with a lattice  $\mathfrak{h}_{\mathbb{Z}}^*$  (a  $\mathbb{Z}$ -vector space), and  $W_0 \subset GL(\mathfrak{h}_{\mathbb{Z}}^*)$ , a finite subgroup generated by reflections: the reflections in  $W_0$  are  $s_{\alpha}$ ,  $\alpha \in \mathbb{R}^+$  with

$$s_{\alpha}\mu = mu - \langle \mu, \alpha^{\vee} \rangle \alpha$$

for  $\mu \in \mathfrak{h}_{\mathbb{Z}}^*$ .

Fix a fundamental region C for the action of  $W_0$  on  $\mathfrak{h}_{\mathbb{R}}^*$ . Let  $\mathfrak{h}^{\alpha_1^{\vee}}, \ldots, \mathfrak{h}^{\alpha_n^{\vee}}$  be the walls of C and the reflections in these are  $s_1, \ldots, s_n$ , the simple reflections. Recall  $P^+ = \mathfrak{h}_{\mathbb{Z}}^* \cap \overline{C}$  and  $P^{++} = \mathfrak{h}_{\mathbb{Z}}^* \cap C$ .

You should have a picture in your head of this, for example  $SL_3$ , where  $\mathfrak{h}_{\mathbb{Z}}^* = \operatorname{span} \{\omega_1, \omega_2\}$ :



Date: September 18, 2008.

Send comments and corrections to E.Peters@ms.unimelb.edu.au.

Recall that

$$W_0 \longleftrightarrow \{ \text{fundamental regions} \}$$

and

$$P^{+} \xrightarrow{\sim} P^{++}$$
$$\lambda \longmapsto \lambda + \rho$$

is an isomorphism of semigroups.

We take  $\mathbb{C}[X] = \operatorname{span} \{X^{\mu} | \mu \in \mathfrak{h}_{\mathbb{Z}}^*\}$  with  $X^{\mu}X^{\nu} = X^{\mu+\nu}$ , with  $W_0$  acting on  $\mathbb{C}[X]$  by  $wX^{\mu} = X^{w\mu}$ , and recall

$$\mathbb{C}[X]^{W_0} = \{ f \in \mathbb{C}[X] | wf = f \text{ for all } w \in W_0 \}$$
$$\mathbb{C}[X]^{\det} = \{ f \in \mathbb{C}[X] | wf = \det w \cdot f \text{ for all } w \in W_0 \}$$

The second of these has basis

$$a_{\lambda+\rho} = \sum_{w \in W_0} \det w^{-1} \cdot X^{w(\lambda+\rho)}$$

for  $\lambda \in P^+$ ,  $\rho$  the cone point of  $P^{++}$ .

**Theorem 8.1** (The boson-fermion correspondence). As  $\mathbb{C}[X]^{W_0}$ -modules,

$$\Phi: \mathbb{C}[X]^{W_0} \xrightarrow{\sim} \mathbb{C}[X]^{\det}$$
$$f \longmapsto a_{\rho} f$$

is an isomorphism.

The element  $a_{\rho}$  is the Weyl denominator, or the Vandermonde, defined as above; for example, in  $SL_3$ ,

$$a_{\rho} = X^{\rho} - X^{s_1\rho} - X^{s_2\rho} + X^{s_1s_2\rho} + X^{s_2s_1\rho} - X^{s_1s_2s_1\rho}$$

Proof. (a)  $\Phi$  is a  $\mathbb{C}[X]^{W_0}$ -module homomorphism: If  $g \in \mathbb{C}[X]^{W_0}$  then  $\Phi(gf) = a_{\rho}gf = ga_{\rho}f = g\Phi(f).$ 

(b)  $\Phi$  is well-defined, ie  $\Phi(f) \in \mathbb{C}[X]^{\text{det}}$ : If  $w \in W_0$  then  $w\Phi(f) = w(a_\rho f) = (wa_\rho)(wf) = \det w \cdot a_\rho f = \det w \cdot \Phi(f),$ since  $w(X^\mu X^\nu) = w(X^{\mu+\nu}) = X^{w(\mu+\nu)} = X^{w\mu+w\nu} = (wX^\mu)(wX^\nu)$ 

(c)  $\Phi$  is invertible: We have to show that if  $g \in \mathbb{C}[X]^{\text{det}}$  then g is divisible by  $a_{\rho}$ , and allo that  $\frac{g}{a_{\rho}}$  is symmetric. The second of these

 $\mathbf{2}$ 

is easy to check. To see that  $a_{\rho}|g$ , take  $g \in \mathbb{C}[X]^{\text{det}}$  and let  $s_{\alpha}$  be a reflection in  $W_0$  (so  $s_{\alpha}\mu = \mu - \langle \mu, \alpha^{\vee} \rangle \alpha$ ,  $\langle \mu, \alpha^{\vee} \rangle \in \mathbb{Z}$ ).

Since  $s_{\alpha}g = \det s_{\alpha} \cdot g = -g$ , we know

$$g = \frac{1}{2}(g - s_{\alpha}g) = \frac{1}{2}(1 - s_{\alpha})g$$

and we can expand g in the  $X^{\mu}$  basis:

$$= \frac{1}{2}(1-s_{\alpha})\sum_{\mu\in\mathfrak{h}_{\mathbb{Z}}^{*}}g_{\mu}X^{\mu} = \frac{1}{2}\sum_{\mu\in\mathfrak{h}_{\mathbb{Z}}^{*}}g_{\mu}(X^{\mu}-X^{s_{\alpha}\mu})$$
$$= \frac{1}{2}\sum_{\mu\in\mathfrak{h}_{\mathbb{Z}}^{*}}g_{\mu}(X^{\mu}-X^{\mu-\langle\mu,\alpha^{\vee}\rangle\alpha}) = \frac{1}{2}\sum_{\mu\in\mathfrak{h}_{\mathbb{Z}}^{*}}g_{\mu}X^{\mu}(1-X^{-\langle\mu,\alpha^{\vee}\rangle\alpha})$$

and, as  $(1-X^{k\alpha})$  is divisible by  $(1-X^{-\alpha})$ ,<sup>1</sup> we get that  $1-X^{-\alpha}$  divides  $g = \frac{1}{2} \sum_{\mu \in \mathfrak{h}_{\mathbb{Z}}^*} g_{\mu} X^{\mu} (1-X^{-\langle \mu, \alpha^{\vee} \rangle \alpha}).$ 

The  $1 - X^{-\alpha}$  are relatively prime in  $\mathbb{C}[X]$  and so g is divisible by  $\prod_{\alpha \in R^+} (1 - X^{-\alpha})$ . In particular,  $a_{\rho} \in \mathbb{C}[X]^{W_0}$  and is divisible by  $\prod_{\alpha \in R^+} (1 - X^{-\alpha})$ .

Claim: 
$$a_{\rho} = (\prod_{\alpha \in R^+} X^{\alpha/2})(\prod_{\alpha \in R^+} (1 - X^{-\alpha}))$$

This is because  $\rho = \frac{1}{2} \sum_{\alpha \in R^+} \alpha$ ,

(For example:)



and also for the following geometric reasons:

(1)  $s_i$  permutes  $R^+ - \{\alpha_i\}$ . (*C* is on the positive side of all hyperplanes;  $s_1C$  is on the positive side of  $\mathfrak{h}^{\alpha^{\vee}}$  for all  $\alpha \in R^+$  except  $\alpha_1$ . Note that this means that this fact is very perculiar to real reflection groups.)

(2)  $w_0$ , the longest element of  $W_0$ , sends  $R^+$  to  $R^- = -R^+$  (This is again a geometric fact;  $w_0C$  is the unique chamber on the negative side of all hyperplanes)

Note that

$$RHS = \prod_{\alpha \in R^+} X^{\alpha/2} + \dots \text{ stuff} + \prod_{\alpha \in R^+} X^{-\alpha/2}$$
$$= X^{\rho} + \dots \text{ stuff} + X^{-\rho}$$
$$= a_{\rho}$$

and so  $a_{\rho} = X^{\rho} \prod_{\alpha \in R^+} (1 - X^{-\alpha})$ ; this is Weyl's denominator formula. Thus our claim is proved.

**Remark.** For type  $GL_n$ , Weyl's denominator formula is

$$a_{\rho} = \det \begin{pmatrix} X_1^{n-1} & X_1^{n-2} & \cdots & X_1 & 1\\ X_2^{n-1} & X_2^{n-2} & \cdots & X_2 & 1\\ \vdots & \vdots & & \vdots & \vdots\\ X_n^{n-1} & X_n^{n-2} & \cdots & X_n & 1 \end{pmatrix} = \prod_{i < j} (X_i - X_j)$$

8.1. Crystals and symmetric functions.  $\mathbb{C}[X]^{W_0}$  are really characters of crystals.

**Definition.** A path is a function  $p : [0, 1] \to \mathfrak{h}_{\mathbb{R}}^*$  (piecewise linear, say) such that p(0) = 0 and  $p(1) \in \mathfrak{h}_{\mathbb{Z}}^*$ .

**Definition.** A *crystal* is a set of paths *B* which is closed under the action of the root operators  $\tilde{e}$  and  $\tilde{f}$ :

4



The process illustrated above is to draw a dotted line (parallel to  $\mathfrak{h}^{\alpha_i^{\vee}}$ ) along the rightmost point of your path, draw another parallel line which is  $d_i$  to the left of it (where  $d_i$  is the distance between parallel lines of lattice points), then pour water into this region and see which portions of the path get wet (the blue segments above). To create a new path, reproduce the old path but reflect the wet (blue) segments, translating the rest of the path as necessary.



Starting with the path  $\phi$ , we can build a crystal:



The *character* of a crystal B is

$$\operatorname{char}(B) = \sum_{p \in B} X^{\operatorname{wt}(p)},$$

where wt(p) is the endpoint of p.

For example, the character of the above crystal is  $X^{\rho} + X^{s_1\rho} + X^{s_2\rho} + X^{s_1s_2\rho} + X^{s_1s_2s_1\rho} + 2X^0$ .

So we're seeing that symmetric functions are shadows of crystals.

We want to see if  $\operatorname{char}(B) \in \mathbb{C}[X]^{W_0}$  in more than just this example.

**Definition.** Let  $p \in B$ . The *i*-string of p is

$$\tilde{f}_i^r p - \dots - \tilde{f}_i^2 p - \tilde{f}_i p - p - \tilde{e}_i p - \tilde{e}_i^2 p - \dots - \tilde{e}_i^s p$$

(read "edge" not "minus" for –) where  $\tilde{f}_i^{r+1}p = 0$  and  $\tilde{e}_i^{s+1}p = 0$ .

 $\tilde{e}_i^s p$  is the head of the i-string of p; if  $h=\tilde{e}_i^s p$  then we rewrite the string as

$$\tilde{f}_i^{\langle \mu, \alpha_i^{\vee} \rangle} h - \dots - \tilde{f}_i^2 h - \tilde{f}_i h - h.$$

If the weight of h is  $\mu$  then the elements of this string have weights  $s_i \mu = \mu - \langle \mu, \alpha_i^{\vee} \rangle, \ldots, \mu - 2\alpha_1, \mu - \alpha_i, \mu$ .

Define an actions of  $W_0$  on B by  $s_i p$  is the opposite of p in its *i*-string. So  $s_i$  flips the whole crystal.

Then wt $(s_i p) = s_i$ wt(p); So  $s_i$ char(B) =char $(s_i B) =$ char(B) and char $(B) \in \mathbb{C}[X]^{W_0}$ .

An irreducible crystal is a crystal B such that the crystal graph is connected.

What are the characters of irreducibles?

**Definition.** The Weyl characters, or Schur functions, are  $s_{\lambda} = a_{\lambda+\rho}/a_{\rho}$ ,  $\lambda \in P^+$ .

So the  $s_{\lambda}$  are the images of  $a_{\lambda+\rho}$  under the "divide by  $a_{\rho}$ " isomorphism,

$$\mathbb{C}[X]^{\det} \xrightarrow{\sim} \mathbb{C}[X]^{W_0}$$
$$a_{\lambda+\rho} \longmapsto s_{\lambda}.$$

**Definition.** The dot action of  $W_0$  on  $\mathfrak{h}_{\mathbb{Z}}^*$  is

$$w \circ \mu := w(\mu + \rho) - \rho$$
 for  $\mu \in \mathfrak{h}_{\mathbb{Z}}^*, w \in W_0$ .

We can see  $w \circ (-\rho) = w(-\rho + \rho) - \rho = 0 - \rho = -\rho$ , so the planes of reflection pass through  $-\rho$ , for example:



Recall  $s_{\mu} = \frac{a_{\mu+\rho}}{a_{\rho}}$  for all  $\mu \in \mathfrak{h}_{\mathbb{Z}}^*$ . Then  $s_{w\circ\mu} = s_{w(\mu+\rho)-\rho} = \frac{a_{w(\mu+\rho)}-\rho+\rho}{a_{\rho}} = \frac{a_{w(\mu+\rho)}}{a_{\rho}} = \det w \frac{a_{\mu+\rho}}{a_{\rho}} = \det w \cdot s_{\mu}.$ Definition. A highest weight path is  $p \subset C - \rho$ .



p is highest weight if and only if  $\tilde{e}_i p = 0$  for all i. Each irreducible crystal has a unique highest weight path.

Theorem 8.2. Let B be a crystal. Then

$$char(B) = \sum_{p \in B, p \subset C-\rho} s_{wt(p)}.$$

We'll prove this next week. Meanwhile please enjoy the following corollaries:

**Corollary 8.3** (Weyl character formula). Let  $p_{\lambda}^+$  be a highest weight path with  $wt(p_{\lambda}^+) = \lambda$ . Let  $B(\lambda)$  be the crystal generated by  $p_{\lambda}^+$ . Then  $char(B(\lambda)) = s_{\lambda}$ .

**Corollary 8.4** (Littlewood-Richardson rule). (1994 in this generality; L-R 1935)

 $char(B(\lambda) \otimes B(\mu)) = \sum_{p_{\lambda}^{+} \otimes q \subset C-\rho} s_{wt(p_{\lambda}^{+} \otimes q)} = \sum_{q \in B(\mu), p_{\lambda}^{+} \otimes q \subset C-\rho} s_{\lambda+wt(q)}$ where  $B(\lambda) \otimes B(\mu) = \{p \otimes q | p \in B(\lambda), q \in B(\mu)\}$