REPRESENTATION THEORY

EMILY PETERS

Abstract

Notes from Arun Ram's 2008 course at the University of Melbourne.

8. Week 8

Setup: We start with a lattice $\mathfrak{h}_{\mathbb{Z}}^{*}\left(\right.$ a \mathbb{Z}-vector space), and $W_{0} \subset G L\left(\mathfrak{h}_{\mathbb{Z}}^{*}\right)$, a finite subgroup generated by reflections: the reflections in W_{0} are s_{α}, $\alpha \in R^{+}$with

$$
s_{\alpha} \mu=m u-\left\langle\mu, \alpha^{\vee}\right\rangle \alpha
$$

for $\mu \in \mathfrak{h}_{\mathbb{Z}}^{*}$.
Fix a fundamental region C for the action of W_{0} on $\mathfrak{h}_{\mathbb{R}}^{*}$. Let $\mathfrak{h}^{\alpha_{1}^{\vee}}, \ldots, \mathfrak{h}^{\alpha_{n}^{\vee}}$ be the walls of C and the reflections in these are s_{1}, \ldots, s_{n}, the simple reflections. Recall $P^{+}=\mathfrak{h}_{\mathbb{Z}}^{*} \cap \bar{C}$ and $P^{++}=\mathfrak{h}_{\mathbb{Z}}^{*} \cap C$.

You should have a picture in your head of this, for example $S L_{3}$, where $\mathfrak{h}_{\mathbb{Z}}^{*}=\operatorname{span}\left\{\omega_{1}, \omega_{2}\right\}:$

Date: September 18, 2008.
Send comments and corrections to E.Peters@ms.unimelb.edu.au.

Recall that

$$
W_{0} \longleftrightarrow\{\text { fundamental regions }\}
$$

and

$$
\begin{aligned}
P^{+} & \stackrel{\sim}{\longrightarrow} P^{++} \\
\lambda & \longmapsto+\rho
\end{aligned}
$$

is an isomorphism of semigroups.
We take $\mathbb{C}[X]=\operatorname{span}\left\{X^{\mu} \mid \mu \in \mathfrak{h}_{\mathbb{Z}}^{*}\right\}$ with $X^{\mu} X^{\nu}=X^{\mu+\nu}$, with W_{0} acting on $\mathbb{C}[X]$ by $w X^{\mu}=X^{w \mu}$, and recall

$$
\begin{aligned}
& \mathbb{C}[X]^{W_{0}}=\left\{f \in \mathbb{C}[X] \mid w f=f \text { for all } w \in W_{0}\right\} \\
& \mathbb{C}[X]^{\text {det }}=\left\{f \in \mathbb{C}[X] \mid w f=\operatorname{det} w \cdot f \text { for all } w \in W_{0}\right\}
\end{aligned}
$$

The second of these has basis

$$
a_{\lambda+\rho}=\sum_{w \in W_{0}} \operatorname{det} w^{-1} \cdot X^{w(\lambda+\rho)}
$$

for $\lambda \in P^{+}, \rho$ the cone point of P^{++}.
Theorem 8.1 (The boson-fermion correspondence). As $\mathbb{C}[X]^{W_{0}}$-modules,

$$
\begin{aligned}
\Phi: \mathbb{C}[X]^{W_{0}} & \xrightarrow{\sim} \mathbb{C}[X]^{\mathrm{det}} \\
f & \longmapsto a_{\rho} f
\end{aligned}
$$

is an isomorphism.

The element a_{ρ} is the Weyl denominator, or the Vandermonde, defined as above; for example, in $S L_{3}$,

$$
a_{\rho}=X^{\rho}-X^{s_{1} \rho}-X^{s_{2} \rho}+X^{s_{1} s_{2} \rho}+X^{s_{2} s_{1} \rho}-X^{s_{1} s_{2} s_{1} \rho} .
$$

Proof. (a) Φ is a $\mathbb{C}[X]^{W_{0}}$-module homomorphism: If $g \in \mathbb{C}[X]^{W_{0}}$ then

$$
\Phi(g f)=a_{\rho} g f=g a_{\rho} f=g \Phi(f) .
$$

(b) Φ is well-defined, ie $\Phi(f) \in \mathbb{C}[X]^{\text {det }}$: If $w \in W_{0}$ then

$$
w \Phi(f)=w\left(a_{\rho} f\right)=\left(w a_{\rho}\right)(w f)=\operatorname{det} w \cdot a_{\rho} f=\operatorname{det} w \cdot \Phi(f)
$$

since $w\left(X^{\mu} X^{\nu}\right)=w\left(X^{\mu+\nu}\right)=X^{w(\mu+\nu)}=X^{w \mu+w \nu}=\left(w X^{\mu}\right)\left(w X^{\nu}\right)$
(c) Φ is invertible: We have to show that if $g \in \mathbb{C}[X]^{\text {det }}$ then g is divisible by a_{ρ}, and aslo that $\frac{g}{a_{\rho}}$ is symmetric. The second of these
is easy to check. To see that $a_{\rho} \mid g$, take $g \in \mathbb{C}[X]^{\text {det }}$ and let s_{α} be a reflection in W_{0} (so $s_{\alpha} \mu=\mu-\left\langle\mu, \alpha^{\vee}\right\rangle \alpha,\left\langle\mu, \alpha^{\vee}\right\rangle \in \mathbb{Z}$).

Since $s_{\alpha} g=\operatorname{det} s_{\alpha} \cdot g=-g$, we know

$$
g=\frac{1}{2}\left(g-s_{\alpha} g\right)=\frac{1}{2}\left(1-s_{\alpha}\right) g
$$

and we can expand g in the X^{μ} basis:

$$
\begin{aligned}
& =\frac{1}{2}\left(1-s_{\alpha}\right) \sum_{\mu \in \mathfrak{h}_{\mathbb{Z}}^{*}} g_{\mu} X^{\mu}=\frac{1}{2} \sum_{\mu \in \mathfrak{h}_{\mathbb{Z}}^{*}} g_{\mu}\left(X^{\mu}-X^{s_{\alpha} \mu}\right) \\
& =\frac{1}{2} \sum_{\mu \in \mathfrak{h}_{\mathbb{Z}}^{*}} g_{\mu}\left(X^{\mu}-X^{\mu-\left\langle\mu, \alpha^{\vee}\right\rangle \alpha}\right)=\frac{1}{2} \sum_{\mu \in \mathfrak{h}_{\mathbb{Z}}^{*}} g_{\mu} X^{\mu}\left(1-X^{-\left\langle\mu, \alpha^{\vee}\right\rangle \alpha}\right)
\end{aligned}
$$

and, as $\left(1-X^{k \alpha}\right)$ is divisible by $\left(1-X^{-\alpha}\right),{ }^{1}$ we get that $1-X^{-\alpha}$ divides $g=\frac{1}{2} \sum_{\mu \in \mathfrak{h}_{\mathbb{Z}}^{*}} g_{\mu} X^{\mu}\left(1-X^{-\left\langle\mu, \alpha^{\vee}\right\rangle \alpha}\right)$.

The $1-X^{-\alpha}$ are relatively prime in $\mathbb{C}[X]$ and so g is divisible by $\prod_{\alpha \in R^{+}}\left(1-X^{-\alpha}\right)$. In particular, $a_{\rho} \in \mathbb{C}[X]^{W_{0}}$ and is divisible by $\prod_{\alpha \in R^{+}}\left(1-X^{-\alpha}\right)$.

Claim: $a_{\rho}=\left(\prod_{\alpha \in R^{+}} X^{\alpha / 2}\right)\left(\prod_{\alpha \in R^{+}}\left(1-X^{-\alpha}\right)\right)$
This is because $\rho=\frac{1}{2} \sum_{\alpha \in R^{+}} \alpha$,
(For example:)

[^0]and also for the following geometric reasons:
(1) s_{i} permutes $R^{+}-\left\{\alpha_{i}\right\}$. (C is on the positive side of all hyperplanes; $s_{1} C$ is on the positive side of $\mathfrak{h}^{\alpha \vee}$ for all $\alpha \in R^{+}$except α_{1}. Note that this means that this fact is very perculiar to real reflection groups.)
(2) w_{0}, the longest element of W_{0}, sends R^{+}to $R^{-}=-R^{+}$(This is again a geometric fact; $w_{0} C$ is the unique chamber on the negative side of all hyperplanes)

Note that

$$
\begin{aligned}
R H S & =\prod_{\alpha \in R^{+}} X^{\alpha / 2}+\cdots \text { stuff }+\prod_{\alpha \in R^{+}} X^{-\alpha / 2} \\
& =X^{\rho}+\cdots \text { stuff }+X^{-\rho} \\
& =a_{\rho}
\end{aligned}
$$

and so $a_{\rho}=X^{\rho} \prod_{\alpha \in R^{+}}\left(1-X^{-\alpha}\right)$; this is Weyl's denominator formula. Thus our claim is proved.

Remark. For type $G L_{n}$, Weyl's denominator formula is

$$
a_{\rho}=\operatorname{det}\left(\begin{array}{ccccc}
X_{1}^{n-1} & X_{1}^{n-2} & \cdots & X_{1} & 1 \\
X_{2}^{n-1} & X_{2}^{n-2} & \cdots & X_{2} & 1 \\
\vdots & \vdots & & \vdots & \vdots \\
X_{n}^{n-1} & X_{n}^{n-2} & \cdots & X_{n} & 1
\end{array}\right)=\prod_{i<j}\left(X_{i}-X_{j}\right)
$$

8.1. Crystals and symmetric functions. $\mathbb{C}[X]^{W_{0}}$ are really characters of crystals.

Definition. A path is a function $p:[0,1] \rightarrow \mathfrak{h}_{\mathbb{R}}^{*}$ (piecewise linear, say) such that $p(0)=0$ and $p(1) \in \mathfrak{h}_{\mathbb{Z}}^{*}$.

Definition. A crystal is a set of paths B which is closed under the action of the root operators \tilde{e} and \tilde{f} :

The process illustrated above is to draw a dotted line (parallel to $\mathfrak{h}^{\alpha_{i}^{\vee}}$) along the rightmost point of your path, draw another parallel line which is d_{i} to the left of it (where d_{i} is the distance between parallel lines of lattice points), then pour water into this region and see which portions of the path get wet (the blue segments above). To create a new path, reproduce the old path but reflect the wet (blue) segments, translating the rest of the path as necessary.

Starting with the path ϕ, we can build a crystal:

The character of a crystal B is

$$
\operatorname{char}(B)=\sum_{p \in B} X^{\mathrm{wt}(p)}
$$

where $\mathrm{wt}(p)$ is the endpoint of p.
For example, the character of the above crystal is $X^{\rho}+X^{s_{1} \rho}+X^{s_{2} \rho}+$ $X^{s_{1} s_{2} \rho}+X^{s_{2} s_{1} \rho}+X^{s_{1} s_{2} s_{1} \rho}+2 X^{0}$.

So we're seeing that symmetric functions are shadows of crystals.

We want to see if $\operatorname{char}(B) \in \mathbb{C}[X]^{W_{0}}$ in more than just this example.
Definition. Let $p \in B$. The i-string of p is

$$
\tilde{f}_{i}^{r} p-\cdots-\tilde{f}_{i}^{2} p-\tilde{f}_{i} p-p-\tilde{e}_{i} p-\tilde{e}_{i}^{2} p-\cdots-\tilde{e}_{i}^{s} p
$$

(read "edge" not "minus" for -) where $\tilde{f}_{i}^{r+1} p=0$ and $\tilde{e}_{i}^{s+1} p=0$.
$\tilde{e}_{i}^{s} p$ is the head of the i-string of p; if $h=\tilde{e}_{i}^{s} p$ then we rewrite the string as

$$
\tilde{f}_{i}^{\left\langle\mu, \alpha_{i}^{\vee}\right\rangle} h-\cdots-\tilde{f}_{i}^{2} h-\tilde{f}_{i} h-h
$$

If the weight of h is μ then the elements of this string have weights $s_{i} \mu=\mu-\left\langle\mu, \alpha_{i}^{\vee}\right\rangle, \ldots, \mu-2 \alpha_{1}, \mu-\alpha_{i}, \mu$.

Define an actions of W_{0} on B by $s_{i} p$ is the opposite of p in its i-string. So s_{i} flips the whole crystal.

Then $\mathrm{wt}\left(s_{i} p\right)=s_{i} \mathrm{wt}(p)$; So $s_{i} \operatorname{char}(B)=\operatorname{char}\left(s_{i} B\right)=\operatorname{char}(B)$ and $\operatorname{char}(B) \in \mathbb{C}[X]^{W_{0}}$.

An irreducible crystal is a crystal B such that the crystal graph is connected.

What are the characters of irreducibles?
Definition. The Weyl characters, or Schur functions, are $s_{\lambda}=a_{\lambda+\rho} / a_{\rho}$, $\lambda \in P^{+}$.

So the s_{λ} are the images of $a_{\lambda+\rho}$ under the "divide by a_{ρ} " isomorphism,

$$
\begin{aligned}
\mathbb{C}[X]^{\text {det }} & \sim \\
a_{\lambda+\rho} & \longmapsto s_{\lambda} .
\end{aligned}
$$

Definition. The dot action of W_{0} on $\mathfrak{h}_{\mathbb{Z}}^{*}$ is

$$
w \circ \mu:=w(\mu+\rho)-\rho \text { for } \mu \in \mathfrak{h}_{\mathbb{Z}}^{*}, w \in W_{0} .
$$

We can see $w \circ(-\rho)=w(-\rho+\rho)-\rho)=0-\rho=-\rho$, so the planes of reflection pass through $-\rho$, for example:

Recall $s_{\mu}=\frac{a_{\mu+\rho}}{a_{\rho}}$ for all $\mu \in \mathfrak{h}_{\mathbb{Z}}^{*}$. Then
$s_{w \circ \mu}=s_{w(\mu+\rho)-\rho}=\frac{a_{w(\mu+\rho)}-\rho+\rho}{a_{\rho}}=\frac{a_{w(\mu+\rho)}}{a_{\rho}}=\operatorname{det} w \frac{a_{\mu+\rho}}{a_{\rho}}=\operatorname{det} w \cdot s_{\mu}$.
Definition. A highest weight path is $p \subset C-\rho$.

p is highest weight if and only if $\tilde{e}_{i} p=0$ for all i. Each irreducible crystal has a unique highest weight path.
Theorem 8.2. Let B be a crystal. Then

$$
\operatorname{char}(B)=\sum_{p \in B, p \subset C-\rho} s_{w t(p)} .
$$

We'll prove this next week. Meanwhile please enjoy the following corollaries:

Corollary 8.3 (Weyl character formula). Let p_{λ}^{+}be a highest weight path with $w t\left(p_{\lambda}^{+}\right)=\lambda$. Let $B(\lambda)$ be the crystal generated by p_{λ}^{+}. Then $\operatorname{char}(B(\lambda))=s_{\lambda}$.

Corollary 8.4 (Littlewood-Richardson rule). (1994 in this generality; L-R 1935)

$$
\operatorname{char}(B(\lambda) \otimes B(\mu))=\sum_{p_{\lambda}^{+} \otimes q \subset C-\rho} s_{w t\left(p_{\lambda}^{+} \otimes q\right)}=\sum_{q \in B(\mu), p_{\lambda}^{+} \otimes q \subset C-\rho} s_{\lambda+w t(q)}
$$

where $B(\lambda) \otimes B(\mu)=\{p \otimes q \mid p \in B(\lambda), q \in B(\mu)\}$

[^0]: ${ }^{1}$ for example, $\left(1-X^{-4 \alpha}\right)=\left(1-X^{-\alpha}\right)\left(1+X^{-\alpha}+X^{-2 \alpha}+X^{-3 \alpha}\right)$ and $\left(1-X^{4 \alpha}\right)=$ $-X^{4 \alpha}\left(1-X^{-4 \alpha}\right)=-X^{4 \alpha}\left(1-X^{-\alpha}\right)\left(1+X^{-\alpha}+X^{-2 \alpha}+X^{-3 \alpha}\right)$

