Representation Theory Lecture 1
Arun Ram 
Department of Mathematics and Statistics 
University of Melbourne 
Parkville, VIC 3010 Australia 
aram@unimelb.edu.au
Last update: 26 May 2013
Lecture 1
A vector space is a set of linear combinations of a basis,
Example:  has basis
An algebra is a vector space  with a product  
such that
| (a) | for  
and | 
| (b) | There exists  such that | 
Example: Define
An  is a vector space  with an 
action of   such that
| (a) | for | 
| (b) | for all | 
Note:  means that we require the distributive laws.
Example: Let  be the vector space with basis 
 
with 
A representation of  is an  
Given  define
where  is the matrix describing the action of  on 
The map  is a homomorphism of algebras.
Categories
A category 
Examples:
| Objects | Morphisms | 
|---|
| Vector spaces | Linear transformations | 
| Algebras | Algebra homomorphisms | 
|  | homomorphisms | 
| Sets | Functions | 
A simple module is a module  such that if  is a submodule of  then
A module is decomposable if
Definition:  has basis
 and 
 determined by  and  
Namely,
Problem 1 Classify the simple modules.
Problem 2 Classify the indecomposable modules.
Consider 
-
-
.
Then
 
(
2
-
-
)
=
2
-
-
=
0
 
(
2
-
-
)
=
2
-
-
=
0
So
P
=
span
{
2
-
-
}
N
=
span
{
,
}
are submodules and M=N⊕P.
P is a simple module since dim(P)=1.
Assume Q⊆N is a submodule.
Assume Q≠0. Let 
a
+
b
∈Q.
Then
·
(
a
+b
)
=
a(q+q-1)
+b
·
(
a
+b
)
=
a
+b(q+q-1)
So 
∈Q
 
if a(q+q-1)+b≠0 and 
∈Q
 
if a+b(q+q-1)≠0.
If a(q+q-1)+b≠0 
and a+b(q+q-1)=0 then 
N=
span
{
,
}
 
and P=span{p} with 
p
=p,
 
p
=0,
 
p
=0,
 
p=
2
-
-
 
are simple modules.
If a(q+q-1)+b=0 
and a+b(q+q-1)=0 then 
b=-a(q+q-1) and 
1-(q+q-1)2=0.
So that (q+q-1)2=1 
or q2+1+q-2=0.
So (q+q-1)=±1 
or q=e±2πi/3.
Generators and relations
Let A be the algebra given by generators e1,e2 
and relations
e1e2e1=e1,
e2e1e2=e2,
e12=(q+q-1)e1
and
e22=(q+q-1)e2.
Then A contains
1,e1,e2,
e1e2,
e2e1
and the multiplication is determined.
Then
A⟶TL3
e1⟼
e2⟼
is an algebra isomorphism.
The Regular representation
A is a vector space and A acts on A by multiplication.
A submodule of A is a left ideal of A.
Example:
TL3=span
{
,
,
,
,
}
.
The left ideal generated by 
 
is 
I(1)=
span
{
,
}
 
and 
I(2)=
span
{
,
}
 
are left ideals. Note: I(1)≃Q and 
I(2)≃Q
Quotients
TL3〈I(1),I(2)〉
=
span
{
‾
}
 
with
·
‾
=0and
·
‾
=0.
If M is a module and N is a submodule 
N has basis
{n1,…,ne}
M has basis
{
n1,…,nℓ,
p1,…,pr
}
.
Then MN has basis 
{
p‾1,…,
p‾r
}
 
and action
a=p‾i=
ap‾i
wheren‾1=
…n‾ℓ=0.
The center
Z(A)=
{
z∈A | za=az 
for all a∈A
}
.
Example: Suppose 
a
+
b
+
c
+
d
∈Z(A).
 
Then
 
(a(q+q-1)+b)
+
(c(q+q-1)+d)
=
(a(q+q-1)+c)
+
(b(q+q-1)+d)
so that b=c and 
c(q+q-1)+d=0. 
So that b=c and d=-c(q+q-1). 
Similarly a=-b(q+q-1).
The center
Z(A)=
{
z∈A | az=za 
for all a∈A
}
.
Example: Suppose
z=a
+d
+b
+c
∈Z(A).
Then
·z
=
(a(q+q-1)+b)
+
(d+c(q+q-1))
=
z·
=
(a(q+q-1)+c)
+(d+b(q+q-1))
so that b=c and 
d+c(q+q-1)=0. 
Also
·z
=
(a+c(q+q-1))
+(d(q+q-1)+b)
z·
=
(a+b(q+q-1))
+(d(q+q-1)+c)
so that b=c and a+c(q+q-1)=0.
So
z=-(q+q-1)
(
+
)
+
(
+
)
.
Then
z2
=
(
+(q+q-1)2
-(q+q-1)2
-(q+q-1)2
+1
)
+…
=
(1-(q+q-1)2)z.
So 
z∅=
11-(q+q-1)2
z
 
satisfies z∅2=z∅, 
(1-z∅)2=1-z∅ 
and 
z
+
z
=1.
Semisimple algebras
An algebra is split semisimple if
A≃⨁λ∈A^
Mdλ^(ℂ)
for some index set A^ and some positive integers 
dλ. 
⨁λ∈A^Mdλ(ℂ) 
has basis {Eijλ | λ∈A^, 1≤i,j≤dλ} 
and multiplication
Eijλ
Ersμ=
δλμ
Eisλ
δjr.
Example: Let
e11∅=
·1q+q-1
and
e22∅=z∅-
e11∅and
e11
=
z
so
(
e11∅=1q+q-1
,
 
e22∅=
11-(q+q-1)2
(
+
)
-
(q+q-1)
1-(q+q-1)2
+
?
)
e12∅=e11∅
1q+q-1
e22∅,
e21∅=
e22∅
1q+q-1
e11∅.
Claim:
A
⟶
M2(ℂ)⊕
M1(ℂ)
e11∅⟼E11∅
e22∅⟼E22∅
e12∅⟼E12∅
e21∅⟼E21∅
e11
⟼
E11
is an isomorphism. Here 
A^=
{
∅,
}
 
and d∅=2, 
d
=1.
 
Alternatively, action of TL3 on N is
(
	
)
=
(q+q-1)
(
	
)
=
(q+q-1)
(
	
)
=
(
	
)
=
so
⟼
(
q+q-11
00
)
and
⟼
(
00
1q+q-1
)
.
So
A⟶
Mr(ℂ)⊕
M1(ℂ)
⟼
(
1001
00
00
1
)
⟼
(
q+q-1100
00
00
0
)
⟼
(
001q+q-1
00
00
0
)
is an isomorphism.
Restriction and Inclusion
TL2=
span
{
,
}
with
(q+q-1)
=
·
.
Simple modules: ℂv∅ and 
ℂ
v
v∅=
(q+q-1)v∅
and
v
=0.
Then
z∅=e11∅=
1q+q-1
and
z
=1-z∅.
⟼
(
q+q-1100
00
00
0
)
,
⟼
(
001q+q-1
00
00
0
)
.
Then
⟼
(
1q+q-100
00
00
0
)
,
⟼
(
00q+q-11
00
00
0
)
.
So
+
⟼
(
1q+q-1
q+q-11
)
,
+
⟼
(
q+q-11
1q+q-1
)
,
+
-(q+q-1)
(
+
)
=
(
1-(q+q-1)20
01-(q+q-1)2
)
.
Notes and References
This is a typed copy of handwritten notes by Arun Ram on 28/7/2008.
page history