Representation Theory

Arun Ram
Department of Mathematics and Statistics
University of Melbourne
Parkville, VIC 3010 Australia
aram@unimelb.edu.au

Last updated: 2 October 2014

Lecture 5

Review

The Lie algebra 𝔰𝔩2 = {(abcd)|a+d=0} with bracket [x,y]=xy-yx, for x,y𝔰𝔩2 is presented by generators e=(0100), f=(0010), h=(100-1) and relations [e,f]=h, [h,e]=2e, [h,f]=-2f. The enveloping algebra U𝔰𝔩2 is generated by e,f,h with relations ef=fe+h, eh=he-2e, hf=fh-2f and has basis { fm1 hm2 em3 | m1,m2,m30 } . If M=span{m1,,mr} and N={n1,,ns} are U𝔰𝔩2-modules, then MN=span { minj| 1ir,1js } is a U𝔰𝔩2-module, with e(minj) = eminj+ mienj, f(minj) = fminj+ mifnj, h(minj) = hminj+ mihnj.

The quantum group Uq𝔰𝔩2

Uq𝔰𝔩2 is generated by E,F,K±1 with relations KEK-1=q2E, KFK-1=q-2F, EF=FE+K-K-1q-q-1. The map Δ:UUU given by Δ(E) = EK+1E, Δ(F) = F1+K-1F, Δ(K) = KK, is a coproduct.

U=Uq𝔰𝔩2 at q=1 is U𝔰𝔩2.

U=Uq𝔰𝔩2 has a 2-dimensional simple module V=L()=span {v1,v-1} with Kv1 = qv1, Kv-1 = q-1v-1, Ev1 = 0, Ev-1 = v1, Fv1 = v-1, Fv-1 = 0. So ρ:UEnd(L()) has ρ(K)=(q00q-1), ρ(E)=(0100), ρ(F)=(0010).

Computing VV=L()L()=V2

V2=VV=span {v1v1,v1v-1,v-1v1,v-1v-1} with E(v1v1) = 0, E(v1v-1) = v1v1, K(v1v1) = q2v1v1, K(v1v-1) = v1v-1, F(v1v1) = v-1v1+ q-1v1v-1, F(v1v-1) = v-1v-1, E(v-1v1) = qv1v1, E(v-1v-1) = q-1v1v-1 +v-1v1, K(v-1v-1) = q-2v-1v-1, K(v-1v1) = v-1v1, F(v-1v1) = qv-1v-1, F(v-1v-1) = 0, or, equivalently, (ρρ)(E) = ρ(E) ρ(K)+ ρ(1) ρ(E) = (0100) (q00q-1)+ (1001) (0100) = ( 0·(qq-1) 1·(qq-1) 0·(qq-1) 0·(qq-1) ) + ( 1·(0100) 0·(0100) 0·(0100) 1·(0100) ) = ( q q-1 q-1 aa ) + ( 01 00 01 00 ) = ( 01q0 000q-1 0001 0000 ) . In general, if A= ( a11a1r ar1arr ) andB= ( b11b1s bs1bss ) acting on M=span{m1,,mr} and N=span{n1,,ns} respectively then, if (AB)(minj)= AmiBnj, then the matrix of AB in the basis m1n1, , m1ns, m2n1, , m2ns, , mrm1, , mrns is AB= ( a11Ba12Ba1rB ar1BarrB ) .

Decomposing V2

v1v1 F v-1v1+q-1v1v-1 F [2]v-1v-1 F(v1v1) = v-1v1+ q-1v1v-1, F(v-1v1+q-1v1v-1) = [2]v-1v-1. v-1v1-qv1v-1 E(v-1v1-qv1v-1) = 0, F(v-1v1-qv1v-1) = 0. Let b1=v1v1, b2=v-1v1+q-1v1v-1, b3=v-1v-1, b4=v-1v1-qv1v-1. Then V2=L() L()=L ( ) L() where L ( ) =span{b1,b2,b3} andL()= span{b4}. In the basis b1,b2,b3,b4 the matrices for the action of E,F,K on VV are ρ (E) = ( 0[2] 01 0 0 ) , ρ (F) = ( 0 10 [2]0 0 ) , ρ (K) = ( q2 q0 q-2 1 ) .

Decomposing V3=L()L()L().

L() L() L()=span { v1v1v1, v1v1v-1, v1v-1v1, v1v-1v-1, v-1v1v1, v-1v1v-1, v-1v-1v1, v-1v-1v-1 } . Another basis of V3 is { b1v1, b1v-1, v2v1, v2v-1, v3v1, v3v-1, b4v1, b4v-1 } , i.e. V3= ( L() L() ) V= (L()V) (L()V) L()V=span {b4v1,b4v-1} with E(b4v1) = 0, E(b4v-1) = b4v1, F4(b4v1) = b4v-1, F(b4v-1) = 0, K(b4v1) = qb4v1, K(b4v-1) = q-1b4v-1. So L()V L() b4v1 v1 b4v-1 v-1 Then L()V=span { b1v1, b1v-1, b2v1, b2v-1, b3v1, b3v-1 } with F(b1v1)=b2v1+q-2b1v-1, b1v1 F b2v1+q-2b1v-1 F [2]b3v1+b2v-1+q-2b2v-1+q-4b20=[2](b3v1+q-1b2v-1) F 0+[2]q2b3v-1+[2]b3v-1+0+q-2[2]b3v-1+0=[2][3]b3v-1 So, if c1 = b1v1, c2 = b2v1+q-2b1v-1, c3 = b3v1+ q-1b2v-1, c4 = b3v-1 then the action of F on L()V=span {c1,c2,c3,c4} is given by ρ (F)= ( 0 10 [2]0 [3]0 ) and ρ (E) = ( 01 0[2] 0[3] 0 ) , ρ (K) = ( q3 q1 q-1 q-3 ) . Note that 0 E b2v1-qb1v-1 F [2]b3v1+b2v-1-q[2]b2v-1=[2]b3v-1-q2b2v-1 F [2]q2b3v-1-q2[2]b3v-1=0 So that, if c5 = b2v1-qb1v-1, c6 = [2]b3v-1-q2 b2v-1 and L()= span{c5,c6} then L() L(). So V3 = L() L() L() ( L() L() ) L() = (L()V) (L()V) L() L() L() 1 1 1 2 1 2 3 1 5 4 1 1·2 = 2 1·1+1·3 = 4 2·2+1·4 = 8 2·1+3·3+1·5 = 16 5·2+4·4+2·6 = 32

What is the connection between TLk and Vk for Uq𝔰𝔩2?

Define an action of TL2=span{,} on V2=span { v1v1, v1v-1, v-1v1, v-1v-1 } by (v1v1) = 0, (v-1v-1) = 0, (v1v-1) = qv1v-1-v-1v1, (v-1v1) = q-1v-1v1 -v1v-1. In matrices we have ρ2()= ( 0000 0q-10 0-1q-10 0000 ) . Note that (ρ2())2= ( 0000 0q2+1-(q+q-1)0 0-(q+q-1)1-q-20 0000 ) =[2] ρ2() so that this is an action of TL2 on V2.

The TL2 action commutes with the Uq𝔰𝔩2 action on V2, i.e. ρ2(TL2) EndU(V2).

The Temperley-Lieb algebra TLk is generated by ej= 1 2 j j+1 k , 1jk-1. Define an action of TLk on Vk=span { vi1vik | i1,,ik {±1} } by ej(vi1vik)= vi1vij-1 (vijvij+1) vij+2vik.

Claim
(a) This defines a TLk-action on Vk.
(b) This TLk-action commutes with the Uq𝔰𝔩2-action on Vk.

Let A be an algebra and let M be a semisimple A module, M=λAˆ (Aλ)mλ. Let 𝒵=EndA(M). Then 𝒵=λMˆ Mmλ(),and MλMˆ Aλ𝒵λ as an (A,𝒵) bimodule, where MˆAˆ is an index set for the simple A-modules appearing in M.

Proof.

𝒵 = HomA(M,M) = HomA ( λMˆ i=1mλ Aiλ, μMˆ j=1mλ Ajμ ) = λMˆ i,j=1mλ HomA (Aiλ,Ajλ), by Schur's Lemma. Hence 𝒵={eijλ|λMˆ,1i,jmλ} where eijλ:AiλAjλ (choose eiiλ so that (eiiλ)2=eiiλ and eijλ and ejiλ so that eijλejiλ=eiiλ).

Notes and References

These are a typed copy of Lecture 5 from a series of handwritten lecture notes for the class Representation Theory given on August 26, 2008.

page history