

620-619 Representation Theory Lecturer: <u>Arun Ram</u> 2010 Semester I

<u>University of Melbourne</u> <u>Mathematics Department</u>

Homework Due 7 April 2009

- 1. Classify and construct the finite dimensional simple modules for cyclic groups.
- 2. Classify and construct the finite dimensional simple modules for dihedral groups.
- 3. Classify and construct the finite dimensional simple modules for $U_q \mathfrak{Sl}_2$, where $U_q \mathfrak{Sl}_2$ is the algebra generated by $E, F, K^{\pm 1}$, with relations

$$KEK^{-1} = q^2E$$
, $KFK^{-1} = q^{-2}F$, and $EF - FE = \frac{K - K^{-1}}{q - q^{-1}}$.

- 4. Define the symmetric group (via permutations).
- 5. Show that S_k is generated by s_1, \ldots, s_{k-1} with relations $s_i^2 = 1, \quad s_i s_{i+1} s_i = s_{i+1} s_i s_{i+1}, \quad \text{and} \quad s_i s_j = s_j s_i \text{ for } j \neq i, i \pm 1.$
- 6. In the group algebra of the symmetric group $\mathbb{C} S_k$ define

$$m_j = s_{1j} + s_{2j} + \dots + s_{j-1,j}$$
,

where s_{ij} is the transposition that switches *i* and *j*. Let $m_1 = 0$.

- a. Show that $m_1 + \cdots + m_k$ is an element of the center of $\mathbb{C} S_k$.
- b. Show that $m_i m_j = m_j m_i$ for all $1 \le i, j \le k$.