

620-619 Representation Theory Lecturer: <u>Arun Ram</u> 2010 Semester I

<u>University of Melbourne</u> <u>Mathematics Department</u>

Homework Due 31 May 2010

- 1. Let $\mathbb{C} S_k$ be the group algebra of the symmetric group. Construct explicitly some modules for $\mathbb{C} S_k$ which have a basis of eigenvectors for the m_i . Do this by describing, explicitly, the action of the s_i and the m_i on the basis vectors.
 - a. Be sure to prove that the modules you construct are S_k -modules (by showing that the formulas for the action satisfy the necessary relations).
 - b. Show that the modules you have constructed are irreducible.
 - c. Show that the modules you constructed are pairwise nonisomorphic.
 - d. Show that you have constructed all the irreducible S_k -modules.
- 2. Use the modules constructed in Problem 1 (or find an alternative method) to determine (with proof) the Bratelli diagram for the tower of algebras

 $\mathbb{C} S_1 \subseteq \mathbb{C} S_2 \subseteq \mathbb{C} S_3 \subseteq \cdots.$

- 3. Explicitly verify the Weyl character formula for the \mathfrak{sl}_3 -crystal $B(\rho)$.
- 4. Explicitly decompose the \mathfrak{sl}_3 -crystal $B(\rho) \otimes B(\rho)$.
- 5. Decompose the adjoint representation of SO_5 as an $SU_3 \times SU_2 \times U_1$ -module.