Chapter 2. SETS AND FUNCTIONS

\S **1P. Sets**

1. DeMorgan's Laws. Let A, B, and C be sets. Show that

$a) \ (A \cup B) \cup C = A \cup (B \cup C).$	$d) \ (A \cap B) \cap C = A \cap (B \cap C).$
$b) \ A \cup B = B \cup A.$	$e) \ A \cap B = B \cap A.$
$c) \ A \cup \emptyset = A.$	$f) A \cap (B \cup C) = (A \cap B) \cup (A \cap C).$

Proof.

a) To show: aa) $(A \cup B) \cup C \subseteq A \cup (B \cup C)$. ab) $A \cup (B \cup C) \subseteq (A \cup B) \cup C$. aa) Let $x \in (A \cup B) \cup C$. Then $x \in A \cup B$ or $x \in C$. So $x \in A$ or $x \in B$ or $x \in C$. So $x \in A$ or $x \in B \cup C$. So $x \in A \cup (B \cup C)$. So $(A \cup B) \cup C \subseteq A \cup (B \cup C)$. ab) Let $x \in A \cup (B \cup C)$. Then $x \in A$ or $x \in B \cup C$. So $x \in A$ or $x \in B$ or $x \in C$. So $x \in A \cup B$ or $x \in C$. So $x \in (A \cup B) \cup C$. So $A \cup (B \cup C) \subseteq (A \cup B) \cup C$. So $(A \cup B) \cup C = A \cup (B \cup C)$. b) To show: ba) $A \cup B \subseteq B \cup A$. bb) $B \cup A \subseteq A \cup B$. ba) Let $x \in A \cup B$. Then $x \in A$ or $x \in B$. So $x \in B$ or $x \in A$. So $x \in B \cup A$. So $A \cup B \subseteq B \cup A$. bb) Let $x \in B \cup A$. Then $x \in B$ or $x \in A$. So $x \in A$ or $x \in B$. So $x \in A \cup B$. So $B \cup A \subseteq A \cup B$. So $A \cup B = B \cup A$. c) To show: ca) $A \cup \emptyset \subseteq A$. cb) $A \subseteq A \cup \emptyset$. ca) Proof by contradiction. Assume $A \cup \emptyset \not\subseteq A$. Then there exists $x \in A \cup \emptyset$ such that $x \notin A$. So $x \in \emptyset$. This is a contradiction to the definition of empty set. So $A \cup \emptyset \subseteq A$. cb) Let $x \in A$. Then $x \in A$ or $x \in \emptyset$.

So
$$x \in A \cup \emptyset$$
.
So $A \subseteq A \cup \emptyset$.
So $A \cup \emptyset = A$.
d) To show: da) $(A \cap B) \cap C \subseteq A \cap (B \cap C)$.
db) $A \cap (B \cap C) \subseteq (A \cap B) \cap C$.
Then $x \in A \cap B$ and $x \in C$.
So $x \in A$ and $x \in B$ and $x \in C$.
So $x \in A$ and $x \in B$ on C .
So $x \in A$ and $x \in B \cap C$.
So $x \in A \cap (B \cap C)$.
Then $x \in A \cap (B \cap C)$.
Then $x \in A$ and $x \in B \cap C$.
So $x \in A \cap B$ and $x \in C$.
So $x \in A \cap B \cap C$.
Then $x \in A$ and $x \in B \cap C$.
So $x \in A \cap B \cap C$.
So $x \in A \cap B \cap C$.
So $x \in A \cap B \cap C$.
So $x \in A \cap B \cap C$.
So $A \cap B \cap C \subseteq (A \cap B) \cap C$.
So $(A \cap B) \cap C = A \cap (B \cap C)$.
e) To show: ea) $A \cap B \subseteq B \cap A$.
eb) $B \cap A \subseteq A \cap B$.
ea) Let $x \in A \cap B$.
Then $x \in A$ and $x \in B$.
So $x \in B \cap A$.
So $x \in B \cap A$.
So $x \in B \cap A$.
So $x \in A \cap B$.
Then $x \in B$ and $x \in A$.
So $x \in A \cap B$.
f) To show: fa) $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$.
fb) $(A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C)$.
fa) Let $x \in A \cap (B \cup C)$.
Then $x \in A$ and $x \in B \cup C$.
So $x \in A$ and $x \in B$.
So $x \in A \cap B$.
So $x \in A \cap B$.
So $x \in A \cap B = B \cap A$.
f) To show: fa) $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$.
fb) $(A \cap B) \cup (A \cap C)$.
Then $x \in A$ and $x \in B \cup C$.
So $x \in A$ and $x \in B$ or $x \in C$.
So $x \in A$ and $x \in B$, or $x \in A$ and $x \in C$.
So $x \in A \cap B \cup x \in A \cap C$.
So $x \in A \cap B \cup C$.
Then $x \in A \cap B \cup x \in A \cap C$.
So $x \in A$ and $x \in B$ or $x \in C$.
So $x \in A$ and $x \in B$ or $x \in C$.
So $x \in A$ and $x \in B$ or $x \in C$.
So $x \in A$ and $x \in B$ or $x \in C$.
So $x \in A$ and $x \in B$ or $x \in C$.
So $x \in A$ and $x \in B$ or $x \in C$.
So $x \in A$ and $x \in B \cap C$.
So $x \in A$ and $x \in B \cap C$.
So $x \in A$ and $x \in B \cap C$.
So $x \in A$ and $x \in B \cap C$.
So $x \in A$ and $x \in B \cap C$.
So $x \in A$ and $x \in B \cap C$.
So $x \in A$ and $x \in B \cap C$.
So $x \in A$ and $x \in B \cap C$.
So $x \in A$ and $x \in B \cap C$.
So $x \in A$ and $x \in B \cap C$.
So $x \in A$ and $x \in B \cap C$.
So $x \in A$ and $x \in B \cap C$.
So $x \in A$ and $x \in B \cap C$.
So $x \in A \cap (B \cup C)$.
So $(A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C)$.

So $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$. \Box

 $x \in C.$

§2P. Functions

(2.2.3) Proposition. Let $f: S \to T$ be a function. An inverse function to f exists if and only if f is bijective.

Proof.

 \implies : Assume $f: S \to T$ has an inverse function $f^{-1}: T \to S$.

- To show: a) f is injective.
 - b) f is surjective.
 - a) Assume $f(s_1) = f(s_2)$. To show: $s_1 = s_2$.

$$s_1 = f^{-1}(f(s_1)) = f^{-1}(f(s_2)) = s_2$$

So f is injective.

b) Let $t \in T$. To show: There exists $s \in S$ such that f(s) = t. Let $s = f^{-1}(t)$. Then

$$f(s) = f(f^{-1}(t)) = t.$$

So f is surjective.

So f is bijective.

 \iff : Assume $f: S \to T$ is bijective.

To show: f has an inverse function. We need to define a function $\varphi: T \to S$. Let $t \in T$. Since f is surjective there exists $s \in S$ such that f(s) = t. Define $\varphi(t) = s$. To show: a) φ is well defined. b) φ is an inverse function to f.

- a) To show: aa) If $t \in T$ then $\varphi(t) \in S$. ab) If $t_1, t_2 \in T$ and $t_1 = t_2$ then $\varphi(t_1) = \varphi(t_2)$.
 - aa) It is clear from the definition that $\varphi(t) \in S$.
 - ab) To show: If $t_1 = t_2$ then $\varphi(t_1) = \varphi(t_2)$. Assume $t_1, t_2 \in T$ and $t_1 = t_2$. Let $s_1, s_2 \in S$ such that $f(s_1) = t_1$ and $f(s_2) = t_2$. Since $t_1 = t_2$, $f(s_1) = f(s_2)$. Since f is injective this implies that $s_1 = s_2$. So $\varphi(t_1) = s_1 = s_2 = \varphi(t_2)$.

So φ is well defined.

- b) To show: ba) If $s \in S$ then $\varphi(f(s)) = s$. bb) If $t \in T$ then $f(\varphi(t)) = t$.
 - ba) This is immediate from the definition of φ .
 - bb) Assume $t \in T$. Let $s \in S$ be such that f(s) = t. Then

$$f(\varphi(t)) = f(s) = t.$$

So $\varphi \circ f$ and $f \circ \varphi$ are the identity functions on S and T respectively. So φ is an inverse function to f. \Box

(2.2.7) Proposition.

- a) Let S be a set and let \sim be an equivalence relation on S. The set of equivalence classes of the relation \sim is a partition of S.
- b) Let S be a set and let $\{S_{\alpha}\}$ be a partition of S. Then the relation defined by

 $s \sim t$, if s, t are in the same S_{α} ,

is an equivalence relation on S.

Proof.

a) To show: aa) If $s \in S$ then s is in some equivalence class. ab) If $[s] \cap [t] \neq \emptyset$ then [s] = [t]. aa) Let $s \in S$. Since $s \sim s, s \in [s]$. ab) Assume $[s] \cap [t] \neq \emptyset$. To show: [s] = [t]. Since $[s] \cap [t] \neq 0$, there is an $r \in [s] \cap [t]$. So $s \sim r$ and $r \sim t$. By transitivity, $s \sim t$. To show: aba) $[s] \subseteq [t]$ abb) $[t] \subseteq [s]$. aba) Suppose $u \in [s]$. Then $u \sim s$. We know $s \sim t$. So, by transitivity, $u \sim t$. Therefore $u \in [t]$. So $[s] \subseteq [t]$. abb) Suppose $v \in [t]$. Then $v \sim t$. We know $t \sim s$. So, by transitivity, $v \sim s$. Therefore $v \in [s]$. So $[t] \subseteq [s]$. So [s] = [t]. So the equivalence classes form a partition of S. b) We must show that \sim is an equivalence relation, i.e. that \sim is reflexive, symmetric, and transitive.

- To show: ba) $s \sim s$ for all $s \in S$.
 - bb) If $s \sim t$ then $t \sim s$.
 - bc) If $s \sim t$ and $t \sim u$ then $s \sim u$.
 - ba) s and s are in the same S_{α} so $s \sim s$.
 - bb) Assume $s \sim t$. Then s and t are in the same S_{α} . So $t \sim s$.
 - bc) Assume $s \sim t$ and $t \sim u$. Then s and t are in the same S_{α} and t and u are in the same S_{α} . So s and u are in the same S_{α} . So $s \sim u$.

So ~ is an equivalence relation. $\hfill\square$

1. Let S, T, U be sets and let $f: S \to T$ and $g: T \to U$ be functions.

- a) If f and g are injective then $g \circ f$ is injective.
- b) If f and g are surjective then $g \circ f$ is surjective.
- c) If f and g are bijective then $g \circ f$ is bijective.

Proof.

a) Assume f and g are injective.

To show: If $s_1, s_2 \in S$ and $(g \circ f)(s_1) = (g \circ f)(s_2)$ then $s_1 = s_2$. Assume $s_1, s_2 \in S$ and $(g \circ f)(s_1) = (g \circ f)(s_2)$. Then

$$g(f(s_1)) = g(f(s_2)).$$

Thus, since g is injective, $f(s_1) = f(s_2)$. Thus, since f is injective, $s_1 = s_2$.

So $g \circ f$ is injective.

b) Assume f and g are surjective.

To show: If $u \in U$ then there exists $s \in S$ such that $(g \circ f)(s) = u$. Assume $u \in U$. Since g is surjective there exists $t \in T$ such that g(t) = u. Since f is surjective there exists $s \in S$ such that f(s) = t. So

$$(g \circ f)(s) = g(f(s))$$
$$= g(t)$$
$$= u.$$

So there exists $s \in S$ such that $(g \circ f)(s) = u$. So $g \circ f$ is surjective.

- c) Assume f and g are bijective.
 - To show: ca) $g \circ f$ is injective.
 - cb) $g \circ f$ is surjective.
 - ca) Since f and g are bijective, f and g are injective. Thus, by a), $g \circ f$ is injective.
 - cb) Since f and g are bijective, f and g are surjective. Thus, by b), $g \circ f$ is surjective.
 - So $g \circ f$ is bijective. \Box

2. Let $f: S \to T$ be a function. Then the set $F = \{f^{-1}(t) \mid t \in T\}$ of fibers of the map f is a partition of S. *Proof.*

To show: a) If $s' \in S$ then $s' \in f^{-1}(t)$ for some $t \in T$. b) If $f^{-1}(t_1) \cap f^{-1}(t_2) \neq \emptyset$ then $f^{-1}(t_1) = f^{-1}(t_2)$. a) Assume $s' \in S$. Then $f^{-1}(f(s')) = \{s \in S \mid f(s) = f(s')\}$. Since $f(s') = f(s'), s' \in f^{-1}(f(s'))$. b) Assume $f^{-1}(t_1) \cap f^{-1}(t_2) \neq \emptyset$. Let $s \in f^{-1}(t_1) \cap f^{-1}(t_2)$. So $f(s) = t_1$ and $f(s) = t_2$. To show: $f^{-1}(t_1) = f^{-1}(t_2)$. To show: ba) $f^{-1}(t_1) \subseteq f^{-1}(t_2)$. bb) $f^{-1}(t_2) \subseteq f^{-1}(t_1)$.

ba) Let
$$k \in f^{-1}(t_1)$$
.
Then $f(k) = t_1$
 $= f(s)$
 $= t_2$.
So $k \in f^{-1}(t_2)$.
So $f^{-1}(t_1) \subseteq f^{-1}(t_2)$.
bb) Let $h \in f^{-1}(t_2)$.
Then $f(k) = t_2$
 $= f(s)$
 $= t_1$.
So $h \in f^{-1}(t_1)$.
So $f^{-1}(t_2) \subseteq f^{-1}(t_1)$.
So $f^{-1}(t_1) = f^{-1}(t_2)$.
e set $F = \{f^{-1}(t) \mid t \in T\}$ of fibers of the map f is a partition of S .

3. a) Let $f: S \to T$ be a function. Define

$$\begin{array}{rcccc} f' \colon & S & \to & \inf f \\ & s & \mapsto & f(s). \end{array}$$

Then the map f' is well defined and surjective.

b) Let $f: S \to T$ be a function and let $F = \{f^{-1}(t) \mid t \in T\}$ be the set of nonempty fibers of f. Define

$$\begin{array}{ccccc} f\colon & F & \to & T \\ & f^{-1}(t) & \mapsto & t. \end{array}$$

Then the map \hat{f} is well defined and injective.

c) Let $f: S \to T$ be a function and let $F = \{f^{-1}(t) \mid t \in T\}$ be the set of nonempty fibers of f. Define

$$\hat{f}': \begin{array}{ccc} F & \to & \inf f \\ f^{-1}(t) & \mapsto & t. \end{array}$$

Then the map \hat{f}' is well defined and bijective.

Proof.

So th

a) To show: aa) f' is well defined.

ab) f' is surjective.

- aa) To show: aaa) If $s \in S$ then $f'(s) \in \text{im } f$.
 - aab) If $s_1 = s_2$ then $f'(s_1) = f'(s_2)$. aaa) Assume $s \in S$.
 - Then $f'(s) = f(s) \in \text{im } f$ by definition of f' and im f.
 - aab) Assume $s_1 = s_2$. Then, by definition of f',

$$f'(s_1) = f(s_1) = f(s_2) = f'(s_2).$$

So f' is well defined.

ab) To show: If $t \in \inf f$ then there exists $s \in S$ such that f'(s) = t. Assume $t \in \inf f$. Then f(s) = t for some $s \in S$. So f'(s) = f(s) = t. So f' is surjective.

b) To show: ba) \hat{f} is well defined. bb) \hat{f} is injective. ba) To show: baa) If $f^{-1}(t) \in F$ then $\hat{f}(f^{-1}(t)) \in T$. bab) If $f^{-1}(t_1) = f^{-1}(t_2)$ then $\hat{f}(f^{-1}(t_1)) = \hat{f}(f^{-1}(t_2))$. baa) Assume $f^{-1}(t) \in F$. Then $\hat{f}(f^{-1}(t)) = t \in T$, by definition. bab) Assume $f^{-1}(t_1) = f^{-1}(t_2)$. Let $s \in f^{-1}(t_1)$. Then $s \in f^{-1}(t_2)$ also. So $t_1 = f(s) = t_2$. Then $\hat{f}(f^{-1}(t_1)) = t_1 = t_2 = \hat{f}(f^{-1}(t_2))$. So \hat{f} is well defined. bb) To show: If $\hat{f}(f^{-1}(t_1)) = \hat{f}(f^{-1}(t_2))$ then $f^{-1}(t_1) = f^{-1}(t_2)$.

bb) To show: If $f(f^{-1}(t_1)) = f(f^{-1}(t_2))$ then $f^{-1}(t_1) = f^{-1}(t_2)$ Assume $\hat{f}(f^{-1}(t_1)) = \hat{f}(f^{-1}(t_2))$. Then $t_1 = t_2$. To show: $f^{-1}(t_1) = f^{-1}(t_2)$. This is clearly true since $t_1 = t_2$. So \hat{f} is injective.

$$\hat{f} \colon \begin{array}{ccc} F & \to & T \\ f^{-1}(t) & \mapsto & t \end{array}$$

is well defined and injective. By Ex. 2.2.3 a), the function

$$\begin{array}{cccc} \hat{f'} \colon & F & \to & \mathrm{im}\,\hat{f} \\ & f^{-1}(t) & \mapsto & t \end{array}$$

is well defined and surjective.

To show: ca) $\operatorname{im} \hat{f} = \operatorname{im} f$. cb) \hat{f}' is injective. ca) To show: caa) $\operatorname{im} \hat{f} \subseteq \operatorname{im} f$. cab) im $f \subseteq \operatorname{im} \hat{f}$. caa) Assume $t \in \operatorname{im} \hat{f}$. Then $f^{-1}(t)$ is nonempty. So there exists $s \in S$ such that f(s) = t. So $t \in \text{im } f$. So $\operatorname{im} \hat{f} \subseteq \operatorname{im} f$. cab) Assume $t \in \text{im } f$. Then there exists $s \in S$ such that f(s) = t. So $f^{-1}(t) \neq \emptyset$. So $t \in \operatorname{im} \hat{f}$. So im $f \subseteq \operatorname{im} \hat{f}$. So $\operatorname{im} \hat{f} = \operatorname{im} f$. cb) To show: If $\hat{f}'(f^{-1}(t_1)) = \hat{f}'(f^{-1}t_2)$ then $f^{-1}(t_1) = f^{-1}(t_2)$. Assume $\hat{f}'(f^{-1}(t_1)) = \hat{f}'(f^{-1}(t_2)).$

c) By Ex. 2.2.3 b), the function

So
$$t_1 = t_2$$
.
So $f^{-1}(t_1) = f^{-1}(t_2)$.
So \hat{f}' is injective.
So \hat{f}' is well defined and bijective.

4. Let S be a set and let $\{0,1\}^S$ be the set of all functions $f: S \to \{0,1\}$. Given a subset $T \subseteq S$ define a function $f_T: S \to \{0,1\}$ by

$$f_T(s) = \begin{cases} 0 & \text{if } s \notin T; \\ 1 & \text{if } s \in T. \end{cases}$$

Then the map

$$\begin{array}{rcccc} \psi \colon & 2^S & \to & \{0,1\}^S \\ & T & \mapsto & f_T \end{array}$$

is a bijection.

Proof.

To show: a) ψ is well defined.

b) ψ is bijective.

- a) To show: aa) If $T \in 2^S$ then $\psi(T) = f_T \in \{0, 1\}^S$. ab) If T_1 and T_2 are subsets of S and $T_1 = T_2$ then $\psi(T_1) = \psi(T_2)$.
 - aa) It is clear from the definition of f_T that $zz/psi(T) = f_T$ is a function from S to $\{0, 1\}$.
 - ab) Assume T_1 and T_2 are subsets of S and $T_1 = T_2$.
 - To show: $\psi(T_1) = \psi(T_2)$. To show: $f_{T_1} = f_{T_2}$. To show: If $s \in S$ then $f_{T_1}(s) = f_{T_2}(s)$. Assume $s \in S$. *Case 1*: If $s \in T_1$ then, since $T_1 = T_2$, $s \in T_2$. So

$$f_{T_1}(s) = 1 = f_{T_2}(s).$$

Case 2: If $s \notin T_1$ then, since $T_1 = T_2, s \notin T_2$.
So

$$f_{T_1}(s) = 0 = f_{T_2}(s)$$

So
$$f_{T_1}(s) = f_{T_2}(s)$$
 for all $s \in S$.
So $f_{T_1} = f_{T_2}$.
So $\psi(T_1) = f_{T_1} = f_{T_2} = \psi(T_2)$.

So ψ is well defined.

b) By virtue of Proposition 2.2.3 we would like to show: $\psi: 2^S \to \{0, 1\}^S$ has an inverse function. Given a function $f: S \to \{0, 1\}$ define

$$T_f = \{ s \in S \mid f(s) = 1 \}.$$

Define a function $\varphi \colon \{0,1\}^S \to 2^S$ by

$$\begin{array}{rcccc} \varphi \colon & \{0,1\}^S & \to & 2^S \\ & f & \mapsto & T_f. \end{array}$$

To show: ba) φ is well defined.

bb) φ is an inverse function to ψ .

ba) To show: baa) If $f \in \{0,1\}^S$ then $\varphi(f) = T_f \in 2^S$. bab) If $f_1, f_2 \in \{0,1\}^S$ and $f_1 = f_2$ then

$$\varphi(f_1) = \varphi(f_2)$$

baa) By definition, $T_f = \{s \in S \mid f(s) = 1\}$ is a subset of S. bab) Assume $f_1, f_2 \in \{0, 1\}^S$ and $f_1 = f_2$. To show: $\varphi(f_1) = \varphi(f_2)$. To show: $T_{f_1} = T_{f_2}$. To show: baba) $T_{f_1} \subseteq T_{f_2}$. babb) $T_{f_2} \subseteq T_{f_1}$. baba) Assume $s \in T_{f_1}$. Then $f_1(s) = 1$. Since $f_2(s) = f_1(s), f_2(s) = 1$. Thus $s \in T_{f_2}$. So $T_{f_1} \subseteq T_{f_2}$. babb) Assume $s \in T_{f_2}$. Then $f_2(s) = 1$. Since $f_1(s) = f_2(s), f_1(s) = 1$. Thus $s \in T_{f_1}$. So $T_{f_2} \subseteq T_{f_1}$. So $T_{f_1} = T_{f_2}$. So $\varphi(f_1) = \varphi(f_2)$. So φ is well defined. bb) To show: bba) If $T \in 2^S$ then $\varphi(\psi(T)) = T$. bbb) If $f \in \{0, 1\}^S$ then $\psi(\varphi(f)) = f$. bba) Assume $T \subseteq S$. To show: $\varphi(\psi(T)) = T$. To show: $T_{f_T} = T$. To show: bbaa) $T_{f_T} \subseteq T$. bbab) $T \subseteq T_{f_T}$. bbaa) Assume $t \in T_{f_T}$. Then $f_T(t) = 1$. So $t \in T$. So $T_{f_T} \subseteq T$. bbab) Assume $t \in T$. Then $f_T(t) = 1$. So $t \in T_{f_T}$. So $T \subseteq T_{f_T}$. So $T_{f_T} = T$. So $\varphi(\psi(T)) = T$. bbb) Assume $f \in \{0, 1\}^S$. To show: $\psi(\varphi(f)) = f$. By definition, $\psi(\varphi(f)) = f_{T_f}$. To show: If $s \in S$ then $f_{T_f}(s) = f(s)$. Assume $s \in S$. *Case 1*: f(s) = 1. Then $s \in T_f$.

So
$$f_{T_f}(s) = 1$$
.
So $f_{T_f}(s) = f(s)$.
Case 2: $f(s) = 0$.
Then $s \notin T_f$.
So $f_{T_f}(s) = 0$.
So $f_{T_f}(s) = f(s)$.
So $f_{T_f}(s) = f(s)$.
So $\psi(\varphi(f)) = f$.

So φ is an inverse function to ψ .

So ψ is bijective. \Box

a) Let ∘ be an operation on a set S. If S contains an identity for ∘ then it is unique.
b) Let e be an identity for an associative operation ∘ on a set S. Let s ∈ S. If s has an inverse then it is unique.

Proof.

- a) Let $e, e' \in S$ be identities for \circ . Then $e \circ e' = e$, since e' is an identity, and $e \circ e' = e'$, since e is an identity. So e = e'.
- b) Assume $t, u \in S$ are both inverses for s. By associativity of $\circ, u = (t \circ s) \circ u = t \circ (s \circ u) = t$. \Box
- 6. a) Let S and T be sets and let ι_S and ι_T be the identity maps on S and T respectively. For any function $f: S \to T$,

$$\iota_T \circ f = f, \qquad and$$

 $f \circ \iota_S = f.$

b) Let $f: S \to T$ be a function. If an inverse function to f exists then it is unique.

Proof.

- a) Assume $f: S \to T$ is a function. To show: aa) $\iota_T \circ f = f$. ab) $f \circ \iota_S = f$. To show: aa) If $s \in S$ then $\iota_T(f(s)) = f(s)$. ab) If $s \in S$ then $f(\iota_S(s)) = f(s)$. aa) and ab) follow immediately from the definitions of ι_T and ι_S respectively.
- b) Assume φ and ψ are both inverse functions to f. To show: $\varphi = \psi$. By the definitions if identity functions and inverse f

By the definitions if identity functions and inverse functions,

$$\varphi = \varphi \circ (f \circ \psi) = (\varphi \circ f) \circ \psi = \psi.$$

So, if an inverse function to f exists, then it is unique. \Box

§1P. Groups

(1.1.3) Proposition. Let G be a group and let H be a subgroup of G. Then the cosets of H in G partition G.

Proof.

To show: a) If $g \in G$ then $g \in g'H$ for some $g' \in G$. b) If $g_1H \cap g_2H \neq \emptyset$ then $g_1H = g_2H$. a) Let $g \in G$. Then $g = g \cdot 1 \in gH$ since $1 \in H$. So $g \in gH$. b) Assume $g_1H \cap g_2H \neq \emptyset$. To show: ba) $g_1H \subseteq g_2H$. bb) $g_2H \subseteq g_1H$. Let $k \in g_1 H \cap g_2 H$. Suppose $k = g_1 h_1$ and $k = g_2 h_2$, where $h_1, h_2 \in H$. Then $g_1 = g_1 h_1 h_1^{-1} = k h_1^{-1} = g_2 h_2 h_1^{-1},$ and $g_2 = g_2 h_2 h_2^{-1} = k h_2^{-1} = g_1 h_1 h_2^{-1}.$ ba) Let $q \in q_1 H$. Then $g = g_1 h$ for some $h \in H$. Then $q = q_1 h = q_2 h_2 h_1^{-1} h \in q_2 H,$ since $h_2 h_1^{-1} h \in H$. So $g_1H \subseteq g_2H$. bb) Let $g \in g_2 H$. Then $g = g_2 h$ for some $h \in H$. So $g = g_2 h = g_1 h_1 h_2^{-1} h \in g_1 H$

since $h_1 h_2^{-1} h \in H$. So $g_2 H \subseteq g_1 H$. So $g_1 H = g_2 H$. So the cosets of H in G partition G. \Box

(1.1.4) **Proposition.** Let G be a group and let H be a subgroup of G. Then for any $g_1, g_2 \in G$,

$$\operatorname{Card}(g_1H) = \operatorname{Card}(g_2H).$$

Proof.

To show: There is a bijection from g_1H to g_2H . Define a map φ by

$$\begin{array}{rcccc} \varphi \colon & g_1H & \to & g_2H \\ & x & \mapsto & g_2g_1^{-1}x. \end{array}$$

To show: a) φ is well defined.

b) φ is a bijection.

a) To show: aa) If $x \in g_1 H$ then $\varphi(x) \in g_2 H$. ab) If x = y then $\varphi(x) = \varphi(y)$. aa) Assume $x \in g_1 H$. Then $x = g_1 h$ for some $h \in H$. So $\varphi(x) = g_2 g_1^{-1} g_1 h = g_2 h \in g_2 H$. ab) This is clear from the definition of φ .

So φ is well defined.

b) By virtue of Theorem 2.2.3, Part I, we want to construct an inverse map for φ . Define

$$\begin{array}{rccc} \psi \colon & g_2 H & \to & g_1 H \\ & y & \mapsto & g_1 g_2^{-1} y. \end{array}$$

HW: Show (exactly as in a) above) that ψ is well defined. Then,

$$\psi(\varphi(x)) = g_1 g_2^{-1} \varphi(x) = g_1 g_2^{-1} g_2 g_1^{-1} x = x, \text{ and}$$

$$\varphi(\psi(y)) = g_2 g_1^{-1} \varphi(y) = g_2 g_1^{-1} g_1 g_2^{-1} y = y.$$

So ψ is an inverse function to φ . So φ is a bijection. \Box

(1.1.5) Corollary. Let H be a subgroup of a group G. Then

$$\operatorname{Card}(G) = \operatorname{Card}(G/H) \operatorname{Card}(H).$$

Proof.

By Proposition 1.1.4, all cosets in G/H are the same size as H. Since the cosets of H partition G, the cosets are disjoint subsets of G, and G is a union of these subsets. So G is a union of Card(G/H) disjoint subsets all of which have size Card(H).

(1.1.8) Proposition. Let N be a subgroup of G. N is a normal subgroup of G if and only if G/N with the operation given by (aN)(bN) = abN is a group.

Proof.

 \implies : Assume N is a normal subgroup of G.

To show: a) (aN)(bN) = (abN) is a well defined operation on (G/N).

- b) N is the identity element of G/N.
- c) $g^{-1}N$ is the inverse of gN.

a) We want the operation on G/N given by

$$\begin{array}{rccc} G/N \times G/N & \to & G/N \\ (aN, bN) & \mapsto & abN \end{array}$$

to be well defined.

To show: If $(a_1N, b_1N), (a_2N, b_2N) \in G/N \times G/N$ and $(a_1N, b_1N) = (a_2N, b_2N)$ then $a_1b_1N = a_2b_2N$. Let $(a_1N, b_1N), (a_2N, b_2N) \in (G/N \times G/N)$ such that $(a_1N, b_1N) = (a_2N, b_2N)$. Then $a_1N = a_2N$ and $b_1N = b_2N$. To show: aa) $a_1b_1N \subseteq a_2b_2N$. ab) $a_2b_2N \subseteq a_1b_1N$. aa) We know $a_1 = a_1 \cdot 1 \in a_2N$ since $a_1N = a_2N$. So $a_1 = a_2n_1$ for some $n_1 \in N$. Similary, $b_1 = b_2n_2$ for some $n_2 \in N$. Let $k \in a_1b_1N$. Then $k = a_1b_1n$ for some $n \in N$. So

$$k = a_1 b_1 n$$

= $a_2 n_1 b_2 n_2 n$
= $a_2 b_2 b_2^{-1} n_1 b_2 n_2 n$

Since N is normal, $b_2^{-1}n_1b_2 \in N$, and therefore $(b_2^{-1}n_1b_2)n_2n \in N$. So $k = a_2b_2(b_2^{-1}n_1b_2)n_2n \in a_2b_2N$. So $a_1b_1N \subseteq a_2b_2N$.

ab) Since $a_1N = a_2N$, we know $a_1n_1 = a_2$ for some $n_1 \in N$. Since $b_1N = b_2N$, we know $b_1n_2 = b_2$ for some $n_2 \in N$. Let $k \in a_2b_2N$. Then $k = a_2b_2n$ for some $n \in N$. So

$$k = a_2 b_2 n$$

= $a_1 n_1 b_1 n_2 n$
= $a_1 b_1 b_1^{-1} n_1 b_1 n_2 n$.

Since N is normal $b_1^{-1}n_1b_1 \in N$, and therefore $(b_1^{-1}n_1b_1)n_2n \in N$. So $k = a_1b_1(b_1^{-1}n_1b_1)n_2n \in a_1b_1N$. So $a_2b_2N \subseteq a_1b_1N$.

So $(a_1b_1)N = (a_2b_2)N$. So the operation is well defined.

b) The coset N = 1N is the identity since

$$(N)(gN) = (1g)N$$
$$= gN$$
$$= (g1)N$$
$$= (gN)(N),$$

for all $g \in G$.

c) Given any coset gN its inverse is $g^{-1}N$ since

$$(gN)(g^{-1}N) = (gg^{-1})N$$
$$= N$$
$$= g^{-1}gN$$
$$= (g^{-1}N)(gN).$$

So G/N is a group.

 $\begin{array}{l} \Leftarrow : \text{Assume } (G/N) \text{ is a group with operation } (aN)(bN) = abN. \\ \text{To show: If } g \in G \text{ and } n \in N \text{ then } gng^{-1} \in N. \\ \text{First we show: If } n \in N \text{ then } nN = N. \\ \text{Assume } n \in N. \\ \text{To show: a) } nN \subseteq N. \\ \text{b) } N \subseteq nN. \\ \text{a) Let } x \in nN. \end{array}$

Then x = nm for some $m \in N$. Since N is a subgroup, $nm \in N$. So $x \in N$. So $nN \subseteq N$. b) Assume $m \in N$. Then, since N is a subgroup, $m = nn^{-1}m \in nN$. So $N \subseteq nN$. Now let $g \in G$ and $n \in N$.

Then, by definition of the operation,

$$gng^{-1}N = (gN)(nN)(g^{-1}N)$$

= $(gN)(N)(g^{-1}N)$
= $g1g^{-1}N$
= N .

So $gng^{-1} \in N$. So N is a normal subgroup of G. \Box

(1.1.11) Proposition. Let $f: G \to H$ be a group homomorphism. Let 1_G and 1_H be the identities for G and H respectively. Then

a) $f(1_G) = 1_H$.

b) For any $g \in G$, $f(g^{-1}) = f(g)^{-1}$.

Proof.

a) Multiply both sides of the following equation by $f(1_G)^{-1}$.

$$f(1_G) = f(1_G \cdot 1_G) = f(1_G)f(1_G).$$

b) Since
$$f(g)f(g^{-1}) = f(gg^{-1}) = f(1_G) = 1_H$$
, and $f(g^{-1})f(g) = f(g^{-1}g) = f(1_G) = 1_H$, then

$$f(g)^{-1} = f(g^{-1}).$$

(1.1.13) Proposition. Let $f: G \to H$ be a group homomorphism. Let 1_G and 1_H be the identities for G and H respectively. Then

a) ker f is a normal subgroup of G.

b) $\inf f$ is a subgroup of H.

Proof.

To show: a) ker f is a normal subgroup of G.

b) $\operatorname{im} f$ is a subgroup of G.

- a) To show: aa) ker f is a subgroup. ab) ker f is normal.
 - aa) To show: aaa) If $k_1, k_2 \in \ker f$ then $k_1k_2 \in \ker f$. aab) $1_G \in \ker f$. aac) If $k \in \ker f$ then $k^{-1} \in \ker f$.
 - aaa) Assume $k_1, k_2 \in \ker f$. Then $f(k_1) = 1_H$ and $f(k_2) = 1_H$. So $f(k_1k_2) = f(k_1)f(k_2) = 1_H$. So $k_1k_2 \in \ker f$.
 - aab) Since $f(1_G) = 1_H$, $1_G \in \ker f$.
 - aac) Assume $k \in \ker f$. So $f(k) = 1_H$.

Then

$$f(k^{-1}) = f(k)^{-1} = 1_H^{-1} = 1_H.$$

So $k^{-1} \in \ker f$.

So ker f is a subgroup.

ab) To show: If $g \in G$ and $k \in \ker f$ then $gkg^{-1} \in \ker f$. Assume $g \in G$ and $k \in \ker f$. Then

$$f(gkg^{-1}) = f(g)f(k)f(g^{-1})$$

= $f(g)f(g^{-1})$
= $f(g)f(g)^{-1}$
= 1.

So $gkg^{-1} \in \ker f$.

So ker f is a normal subgroup of G.

b) To show: $\operatorname{im} f$ is a subgroup of H.

To show: ba) If $h_1, h_2 \in \text{im } f$ then $h_1h_2 \in \text{im } f$.

bb) $1_H \in \operatorname{im} f$.

bc) If $h \in \operatorname{im} f$ then $h^{-1} \in \operatorname{im} f$.

ba) Assume $h_1, h_2 \in \text{im } f$. Then $h_1 = f(g_1)$ and $h_2 = f(g_2)$ for some $g_1, g_2 \in G$. Then

$$h_1h_2 = f(g_1)f(g_2) = f(g_1g_2)$$

since f is a homomorphism. So $h_1h_2 \in \operatorname{im} f$.

- bb) By Proposition 1.1.11 a), $f(1_G) = 1_H$, so $1_H \in \text{im } f$.
- bc) Assume $h \in \text{im } f$. Then h = f(g) for some $g \in G$. Then, by Proposition 1.1.11 b),

$$h^{-1} = f(g)^{-1} = f(g^{-1}).$$

So $h^{-1} \in \operatorname{im} f$.

So im f is a subgroup of H. \Box

(1.1.14) Proposition. Let $f: G \to H$ be a group homomorphism. Let 1_G be the identity in G. Then a) ker $f = (1_G)$ if and only if f is injective.

b) im f = H if and only if f is surjective.

Proof.

a) Let 1_G and 1_H be the identities for G and H respectively.

 $\implies: \text{Assume ker } f = (1_G).$ To show: If $f(g_1) = f(g_2)$ then $g_1 = g_2$. Assume $f(g_1) = f(g_2)$. Then, by Proposition 1.1.11 b) and the fact that f is a homomorphism,

$$1_H = f(g_1)f(g_2)^{-1} = f(g_1g_2^{-1}).$$

So $g_1g_2^{-1} \in \ker f$. But $\ker f = (1_G)$. So $g_1g_2^{-1} = 1_G$.

So $g_1 = g_2$. So f is injective. \Leftarrow : Assume f is injective. To show: aa) $(1_G) \subseteq \ker f$. ab) ker $f \subseteq (1_G)$. aa) Since $f(1_G) = 1_H, 1_G \in \ker f$. So $(1_G) \subseteq \ker f$. ab) Let $k \in \ker f$. Then $f(k) = 1_H$. So $f(k) = f(1_G)$. Thus, since f is injective, $k = 1_G$. So ker $f \subseteq (1_G)$. So ker $f = (1_G)$. b) \implies : Assume im f = H. To show: If $h \in H$ then there exists $g \in G$ such that f(g) = h. Assume $h \in H$. Then $h \in \operatorname{im} f$. So there exists some $g \in G$ such that f(g) = h. So f is surjective. \Leftarrow : Assume f is surjective. To show: ba) im $f \subseteq H$. bb) $H \subseteq \operatorname{im} f$. ba) Let $x \in \operatorname{im} f$. Then x = f(g) for some $g \in G$. By the definition of $f, f(g) \in H$. So $x \in H$. So im $f \subseteq H$. bb) Assume $x \in H$. Since f is surjective there exists a g such that f(g) = x. So $x \in \operatorname{im} f$. So $H \subseteq \operatorname{im} f$. So im f = H.

(1.1.15) Theorem.

a) Let $f: G \to H$ be a group homomorphism and let $K = \ker f$. Define

$$\begin{array}{rccc} \hat{f} \colon & G/\ker f & \to & H \\ & gK & \mapsto & f(g). \end{array}$$

Then \hat{f} is a well defined injective group homomorphism.

b) Let $f: G \to H$ be a group homomorphism and define

$$\begin{array}{rccc} f' \colon & G & \to & \inf f \\ & g & \mapsto & f(g) \end{array}$$

Then f' is a well defined surjective group homomorphism.

c) If $f: G \to H$ is a group homomorphism then

$$G/\ker f \simeq \operatorname{im} f,$$

where the isomorphism is a group isomorphism.

Proof.

a) To show: aa) \hat{f} is well defined.

ab) \hat{f} is injective.

ac) \hat{f} is a homomorphism.

aa) To show: aaa) If $g \in G$ then $\hat{f}(gK) \in H$. aab) If $g_1K = g_2K$ then $\hat{f}(g_1K) = \hat{f}(g_2K)$. aaa) Assume $g \in G$. Then $\hat{f}(gK) = f(g)$ and $f(g) \in H$ by the definition of \hat{f} and f. aab) Assume $g_1 K = g_2 K$. Then $g_1 = g_2 k$ for some $k \in K$. To show: $\hat{f}(g_1K) = \hat{f}(g_2K)$, i.e., To show: $f(g_1) = f(g_2)$. Since $k \in \ker f$, we have f(k) = 1 and so $f(g_1) = f(g_2k) = f(g_2)f(k) = f(g_2).$ So $\hat{f}(g_1K) = \hat{f}(g_2K)$. So \hat{f} is well defined. ab) To show: If $\hat{f}(g_1K) = \hat{f}(g_2K)$ then $g_1K = g_2K$. Assume $\hat{f}(g_1K) = \hat{f}(g_2K)$. Then $f(g_1) = f(g_2)$. So $f(g_1)f(g_2)^{-1} = 1$. So $f(g_1g_2^{-1}) = 1$. So $g_1g_2^{-1} \in \ker f$. So $g_1g_2^{-1} = k$ for some $k \in \ker f$. So $g_1 = g_2 k$ for some $k \in \ker f$. To show: aba) $g_1 K \subseteq g_2 K$. abb) $g_2 K \subseteq g_1 K$. aba) Let $g \in g_1 K$. Then $g = g_1 k_1$ for some $k_1 \in K$. So $g = g_2 k k_1 \in g_2 K$, since $k k_1 \in K$. So $g_1K \subseteq g_2K$. abb) Let $g \in g_2 K$. Then $g = g_2 k_2$ for some $k_2 \in K$. So $g = g_1 k^{-1} k_2 \in g_1 K$ since $k^{-1} k_2 \in K$. So $g_2 K \subseteq g_1 K$. So $g_1K = g_2K$. So \hat{f} is injective. ac) To show: $\hat{f}(g_1K)\hat{f}(g_2K) = \hat{f}((g_1K)(g_2K)).$ Since f is a homomorphism, K) $\hat{f}(a, K) = f(a_1) f(a_2)$ $\hat{f}(q$

$$g_1K)f(g_2K) = f(g_1)f(g_2) = f(g_1g_2) = \hat{f}(g_1g_2K) = \hat{f}((g_1K)(g_2K)).$$

So \hat{f} is a homomorphism.

b) To show: ba) f' is well defined.

bb) f' is surjective.

bc) f' is a homomorphism.

- ba) and bb) are proved in Ex. 2.2.3, Part I.
- bc) Since f is a homomorphism,

$$f'(g)f'(h) = f(g)f(h) = f(gh) = f'(gh).$$

So f' is a homomorphism.

c) Let $K = \ker f$.

By a), the function

$$\begin{array}{cccc} \hat{f} \colon & G/K & \to & H \\ & gK & \mapsto & f(g) \end{array}$$

is a well defined injective homomorphism. By b), the function

$$\begin{array}{rccc} \hat{f'} \colon & G/K & \to & \inf \hat{f} \\ & gK & \mapsto & \hat{f}(gK) = f(g) \end{array}$$

is a well defined surjective homomorphism. To show: ca) $\operatorname{im} \hat{f} = \operatorname{im} f$. cb) \hat{f}' is injective. ca) To show: caa) $\operatorname{im} \hat{f} \subseteq \operatorname{im} f$. cab) im $f \subseteq \operatorname{im} \hat{f}$. caa) Let $h \in \operatorname{im} \hat{f}$. Then there is some $gK \in G/K$ such that $\hat{f}(gK) = h$. Let $g' \in gK$. Then g' = gk for some $k \in K$. Then, since f is a homomorphism and f(k) = 1, f(g') = f(gk)= f(g)f(k)= f(g) $= \hat{f}(gK)$ = h.So $h \in \operatorname{im} f$. So im $\hat{f} \subseteq \operatorname{im} f$. cab) Let $h \in \text{im } f$. Then there is some $g \in G$ such that f(g) = h. So $\hat{f}(gK) = f(g) = h$. So $h \in \operatorname{im} \hat{f}$. So im $f \subseteq \operatorname{im} \hat{f}$. cb) To show: If $\hat{f}'(g_1K) = \hat{f}'(g_2K)$ then $g_1K = g_2K$. Assume $\hat{f}'(g_1K) = \hat{f}'(g_2K)$. Then $\hat{f}(g_1K) = \hat{f}(g_2K)$. Then, since \hat{f} is injective, $g_1 K = g_2 K$. So \hat{f}' is injective. Thus we have

$$\hat{f}': \quad G/K \quad \to \quad \inf \hat{f} \\ gK \quad \mapsto \quad f(g)$$

is a well defined bijective homomorphism. $\hfill\square$

§2P. Group Actions

(1.2.3) Proposition. Suppose G is a group acting on a set S and let $s \in S$ and $g \in G$. Then a) G_s is a subgroup of G. b) $G_{gs} = gG_sg^{-1}$. Proof. a)To showa) If $h_1, h_2 \in G_s$ then $h_1h_2 \in G_s$ ab) $1 \in G_s$. ac) If $h \in G_s$ then $h^{-1} \in G_s$. aa) Assume $h_1, h_2 \in G_s$. Then $(h_1h_2)s = h_1(h_2s) = h_1s = s.$ So $h_1h_2 \in G_s$. ab) Since $1s = s, 1 \in G_s$. ac) Assume $h \in G_s$. Then $h^{-1}s = h^{-1}(hs) = (h^{-1}h)s = 1s = s.$ So $h^{-1} \in G_s$. So G_s is a subgroup of G. b) To show: ba) $G_{gs} \subseteq gG_sg^{-1}$. bb) $gG_sg^{-1} \subseteq G_{gs}$. ba) Assume $h \in G_{gs}$. Then hgs = gs. So $g^{-1}hgs = s$. So $g^{-1}hg \in G_s$. Since $h = g(g^{-1}hg)g^{-1}, h \in gG_sg^{-1}$. So $G_{gs} \subseteq gG_sg^{-1}$. bb) Assume $h \in gG_sg^{-1}$. So $h = gag^{-1}$ for some $a \in G_s$. Then $hgs = (gag^{-1})gs = gas = gs.$

$$\begin{array}{c} \text{So } h \in G_{gs}.\\ \text{So } G_{gs} \subseteq gG_sg^{-1}.\\ \text{So } G_{gs} = gG_sg^{-1}. \quad \Box \end{array}$$

(1.2.4) Proposition. Let G be a group which acts on a set S. Then the orbits partition the set S. Proof.

To show: a) If $s \in S$ then $s \in Gt$ for some $t \in S$. b) If $s_1, s_2 \in S$ and $Gs_1 \cap Gs_2 \neq \emptyset$ then $Gs_1 = Gs_2$. a) Assume $s \in S$. Then, since $s = 1s, s \in Gs$. b) Assume $s_1, s_2 \in S$ and that $Gs_1 \cap Gs_2 \neq \emptyset$. Then let $t \in Gs_1 \cap Gs_2$. So $t = g_1s_1$ and $t = g_2s_2$ for some elements $g_1, g_2 \in G$. So

$$s_1 = g_1^{-1} g_2 s_2$$
 and $s_2 = g_2^{-1} g_1 s_1$.

To show: $Gs_1 = Gs_2$. To show: ba) $Gs_1 \subseteq Gs_2$. bb) $Gs_2 \subseteq Gs_1$. ba) Let $t_1 \in Gs_1$. So $t = h_1s_1$ for some $h_1 \in G$. Then

$$t_1 = h_1 s_1 = h_1 g_1^{-1} g_2 s_2 \in G s_2.$$

So $Gs_1 \subseteq Gs_2$. bb) Let $t_2 \in Gs_s$. So $t_2 = h_2s_2$ for some $h_2 \in G$. Then

$$t_2 = h_2 s_2 = h_2 g_2^{-1} g_1 s_1 \in G s_1.$$

So $Gs_2 \subseteq Gs_1$.

So $Gs_1 = Gs_2$.

So the orbits partition S. \Box

(1.2.5) Corollary. If G is a group acting on a set S and Gs_i denote the orbits of the action of G on S then

$$\operatorname{Card}(S) = \sum_{\substack{\text{distinct}\\ \text{orbits}}} \operatorname{Card}(Gs_i).$$

Proof.

By Proposition 1.2.4, S is a disjoint union of orbits.

So $\operatorname{Card}(S)$ is the sum of the cardinalities of the orbits. \Box

(1.2.6) Proposition. Let G be a group acting on a set S and let $s \in S$. If Gs is the orbit containing s and G_s is the stabilizer of s then

 $|G:G_s| = \operatorname{Card}(Gs).$

where $|G:G_s|$ is the index of $G_s \in G$.

Proof.

Recall that $|G:G_s| = \operatorname{Card}(G/G_s)$. To show: There is a bijective map

$$\varphi: G/G_s \to Gs.$$

Let us define

$$\begin{array}{rcccc} \varphi \colon & G/G_s & \to & Gs \\ & gG_s & \mapsto & gs. \end{array}$$

To show: a) φ is well defined.

b) φ is bijective.

a) To show: aa)
$$\varphi(gG_s) \in Gs$$
 for every $g \in G$.
ab) If $g_1G_s = g_2G_s$ then $\varphi(g_1G_s) = \varphi(g_2G_s)$.

- aa) Is clear from the definition of φ , $\varphi(gG_s) = gs \in Gs$.
- ab) Assume $g_1, g_2 \in G$ and $g_1G_s = g_2G_s$. Then $g_1 = g_2h$ for some $h \in G_s$. To show: $g_1s = g_2s$. Then

 $g_1s = g_2hs = g_2s,$

since
$$h \in G_s$$
.
So $\varphi(g_1G_s) = \varphi(g_2G_s)$.
So φ is well defined.

b) To show: ba) φ is injective, i.e. if $\varphi(g_1G_s) = \varphi(g_2G_2)$ then $g_1G_s = g_2G_s$. bb) φ is surjective, i.e. if $gs \in G_s$ then there exists $hG_s \in G/G_s$ such that $\varphi(hG_s) = gs$.

ba) Assume
$$\varphi(g_1G_s) = \varphi(g_2G_s)$$
.
Then $g_1s = g_2s$.
So $s = g_1^{-1}g_2s$ and $g_2^{-1}g_1 \in G_s$.
To show: φ is injective.
To show: $g_1G_s = g_2G_s$.
To show: baa) $g_1G_s \subseteq g_2G_s$.
bab) $g_2G_s \subseteq g_1G_s$.
baa) Let $k_1 \in g_1G_s$.
So $k_1 = g_1h_1$ for some $h_1 \in G_s$.
Then
 $k_1 = g_1h_1 = g_1g_1^{-1}g_2g_2^{-1}g_1h_1 = g_2(g_2^{-1}g_1h_1) \in g_2G_s$.
So $g_1G_s \subseteq g_2G_s$.
bab) Let $k_2 \in g_2G_s$.
bab) Let $k_2 \in g_2G_s$.
So $k_2 = g_2h_2$ for some $h_2 \in G_s$.
Then
 $k_2 = g_2h_2 = g_2g_2^{-1}g_1g_1^{-1}g_2h_2 = g_1(g_1^{-1}g_2h_2) \in g_1G_s$.
So $g_1G_s \subseteq g_1G_s$.
So $g_1G_s = g_2G_s$.
So φ is injective.
bb) To show: φ is surjective.
Assume $t \in G_s$.
Then $t = gs$ for some $g \in G$.
Thus,
 $\varphi(gG_s) = gs = t$.

(1.2.7) Corollary. Let G be a group acting on a set S. Let $s \in S$, let G_s denote the stabilizer of s, and let Gs denote the orbit of s. Then

$$\operatorname{Card}(G) = \operatorname{Card}(G_s)\operatorname{Card}(G_s).$$

Proof.

Multiply both sides of the identity in Proposition 1.2.6 by $Card(G_s)$ and use Corollary 1.1.5. \Box

(1.2.9) Proposition. Let H be a subgroup of G and let N_H be the normalizer of H in G. Then a) H is a normal subgroup of N_H .

b) If K is a subgroup of G such that $H \subseteq K \subseteq G$ and H is a normal subgroup of K then $K \subseteq N_H$.

Proof.

- b) Let $k \in K$. To show: $k \in N_H$. To show: $khk^{-1} \in H$ for all $h \in H$. This is true since H is normal in K. So $K \subseteq N_H$.
- a) This is the special case of b) when K = H. \Box

(1.2.10) Proposition. Let G be a group and let S be the set of subsets of G. Then

a) G acts on S by

where $gSg^{-1} = \{gsg^{-1} \mid s \in S\}$. We say that G acts on S by conjugation.

b) If S is a subset of G then N_S is the stabilizer of S under the action of G on S by conjugation.

Proof.

a) To show: aa) α is well defined.

- ab) $\alpha(1, S) = S$ for all $S \in S$. ac) $\alpha(g, \alpha(h, S)) = \alpha(gh, S)$ for all $g, h \in G$, and $S \in S$.
- aa) To show: aaa) $gSg^{-1} \in S$. aab) If S = T and g = h then $gSg^{-1} = hTh^{-1}$.
 - Both of these are clear from the definitions.
- ab) Let $S \in \mathcal{S}$. Then

$$\alpha(1,S) = 1S1^{-1} = S.$$

ac) Let $g, h \in G$ and $S \in \mathcal{S}$. Then

$$\alpha(g, \alpha(h, S)) = \alpha(g, hSh^{-1}) = g(hSh^{-1})g^{-1}$$

= $(gh)S(h^{-1}g^{-1}) = (gh)S(gh)^{-1} = \alpha(gh, S).$

- b) This follows immediately from the definitions of N_S and of stabilizer. \Box
- (1.2.12) Proposition. Let G be a group. Then

a) G acts on G by

$$\begin{array}{rccc} G \times G & \to & G \\ (g,s) & \mapsto & gsg^{-1}. \end{array}$$

We say that G acts on itself by conjugation.

- b) Two elements $g_1, g_2 \in G$ are conjugate if and only if they are in the same orbit under the action of G on itself by conjugation.
- c) The conjugacy class, C_g , of $g \in G$ is the orbit of g under the action of G on itself by conjugation.
- d) The centralizer, Z_g , of $g \in G$ is the stabilizer of g under the action of G on itself by conjugation.

Proof.

- a) The proof is exactly the same as the proof of a) in Proposition 1.2.10.
- Replace all the capital S's by lower case s's.
- b), c), and d) follow easily from the definitons. \Box
- (1.2.14) Lemma. Let G_s be the stabilizer of $s \in G$ under the action of G on itself by conjugation. Then a) For each subset $S \subseteq G$,

$$Z_S = \bigcap_{s \in S} G_s.$$

b) $Z(G) = Z_G$, where Z(G) denotes the center of G.

c) $s \in Z(G)$ if and only if $Z_S = G$. d) $s \in Z(G)$ if and only if $C_s = \{s\}$.

Proof.

a) aa) Assume
$$s \in Z_s$$
.
Then $sxs^{-1} = s$ for all $s \in S$.
So $x \in G_s$ for all $s \in S$.
So $x \cap_{s \in S} G_s$.
ab) Assume $x \in \bigcap_{s \in S} G_s$.
Then $xsx^{-1} = s$ for all $s \in S$.
So $x \in Z_s$.
So $\bigcap_{s \in S} G_s$.
b) This is clear from the definitions of Z_G and $Z(G)$.
c) \Longrightarrow : Let $s \in Z(G)$.
To show: $Z_S = G$.
By definiton $Z_S \subseteq G$.
To show: $G \subseteq Z_S$.
Let $g \in G$.
Then $gsg^{-1} = s$ since $s \in Z(G)$.
So $G \subseteq Z_S$.
So $Z_S = G$.
 \Leftrightarrow : Assume $Z_S = G$.
Then $gsg^{-1} = s$ for all $g \in G$.
So $gs = sg$ for all $g \in G$.
So $s \in Z(G)$.
d) \Longrightarrow : Assume $s \in Z(G)$.
Then $gsg^{-1} = s$ for all $s \in G$.
So $\mathcal{C}_s = \{gsg^{-1} \mid g \in G\} = \{s\}$.
 \Leftarrow :: Assume $\mathcal{C}_s = \{s\}$.
Then $gsg^{-1} = s$ for all $g \in G$.
So $s \in Z(g)$. \Box

(1.2.15) Proposition. (The Class Equation) Let C_{g_i} denote the conjugacy classes in a group G and let $|C_{g_i}|$ denote $Card(C_{g_i})$. Then

$$|G| = |Z(G)| + \sum_{|\mathcal{C}_{g_i}| > 1} \operatorname{Card}(\mathcal{C}_{g_i}).$$

Proof.

By Corollary 1.2.5 and the fact that the C_{g_i} are the orbits of G acting on itself by conjugation we know that

$$|G| = \sum_{\mathcal{C}_{g_i}} \operatorname{Card}(\mathcal{C}_{g_i}).$$

By Lemma 1.2.14 d) we know that

$$Z(G) = \bigcup_{|\mathcal{C}_{g_i}|=1} \mathcal{C}_{g_i}.$$

So

$$\begin{split} |G| &= \sum_{|\mathcal{C}_{g_i}|=1} \operatorname{Card}(\mathcal{C}_{g_i}) + \sum_{|\mathcal{C}_{g_i}|>1} \operatorname{Card}(\mathcal{C}_{g_i}) \\ &= \operatorname{Card}(Z(G)) + \sum_{|\mathcal{C}_{g_i}|>1} \operatorname{Card}(\mathcal{C}_{g_i}). \quad \Box \end{split}$$

Chapter 2. RINGS AND MODULES

\S **1P. Rings**

(2.0.4) Proposition. Let R be a ring and let I be an additive subgroup of R. Then the cosets of I in R partition R.

Proof.

To show: a) If $r \in R$ then $r \in r' + I$ for some $r' \in R$. b) If $(r_1 + I) \cap (r_2 + I) \neq \emptyset$ then $r_1 + I = r_2 + I$. a) Let $r \in R$. Then $r = r + 0 \in r + I$, since $0 \in I$. So $r \in r + I$. b) Assume $(r_1 + I) \cap (r_2 + I) \neq \emptyset$. To show: ba) $r_1 + I \subseteq r_2 + I$. bb) $r_2 + I \subseteq r_1 + I$. Let $s \in (r_1 + I) \cap (r_2 + I)$. Suppose $s = r_1 + i_1$ and $s = r_2 + i_2$ where $i_1, i_2 \in I$. Then $r_1 = r_1 + i_1 - i_1 = s - i_1 = r_2 + i_2 - i_1$ and $r_2 = r_2 + i_2 - i_2 = s - i_2 = r_1 + i_1 - i_2.$ ba) Let $r \in r_1 + I$. Then $r = r_1 + i$ for some $i \in I$. Then $r = r_1 + i = r_2 + i_2 - i_1 + i \in r_2 + I,$ since $i_2 - i_1 + i \in I$. So $r_1 + I \subseteq r_2 + I$. bb) Let $r \in r_2 + I$. Then $r = r_2 + i$ for some $i \in I$. So $r = r_2 + i = r_1 + i_1 - i_2 + i \in r_1 + I,$ since $i_1 - i_2 + i \in I$. So $r_2 + I \subseteq r_1 + I$. So $r_1 + I = r_2 + I$. So the cosets of I in R partition R. \Box

(2.0.6) Proposition. Let I be an additive subgroup of a ring R. I is an ideal of R if and only if R/I with operations given by $\binom{n+1}{2} = \binom{n+1}{2} = \binom{n+1}{2} + \binom{n+1}{2} = \binom{n+1}{$

$$(r_1 + I) + (r_2 + I) = (r_1 + r_2) + I$$
 and
 $(r_1 + I)(r_2 + I) = r_1 r_2 + I$

is a ring.

Proof.

 \implies : Assume I is an ideal of R.

$$\begin{array}{ll} \text{To show:} & \text{a)} & (r_1+I)+(r_2+I)=(r_1+r_2)+I \text{ is a well defined operation on } R/I. \\ & \text{b)} & (r_1+I)(r_2+I)=(r_1r_2)+I \text{ is a well defined operation on } R/I. \\ & \text{c)} & ((r_1+I)+(r_2+I))+(r_3+I)=(r_1+I)+((r_2+I)+(r_3+I)) \\ & \text{ for all } r_1+I,r_2+I,r_3+I\in R/I. \\ & \text{d)} & (r_1+I)+(r_2+I)=(r_2+I)+(r_1+I) \text{ for all } r_1+I,r_2+I\in R/I. \end{array}$$

- e) 0 + I = I is the zero in R/I.
- f) -r + I is the additive inverse of r + I.
- g) $((r_1+I)(r_2+I))(r_3+I) = (r_1+I)((r_2+I)(r_3+I))$ for all $r_1+I, r_2+I, r_3+I \in R/I$.
- h) 1 + I is the identity in R/I.
- i) If $r_1 + I$, $r_2 + I$, $r_3 + I \in R/I$ then

$$(r_1 + I)((r_2 + I) + (r_3 + I)) = (r_1 + I)(r_2 + I) + (r_1 + I)(r_3 + I) \text{ and } ((r_2 + I) + (r_3 + I))(r_1 + I) = (r_2 + I)(r_1 + I) + (r_3 + I)(r_1 + I).$$

a) We want the operation on R/I given by

$$\begin{array}{rrr} R/I \times R/I & \to & R/I \\ (r+I,s+I) & \mapsto & (r+s)+I \end{array}$$

to be well defined.

 $\begin{array}{l} \mbox{Let } (r_1+I,s_1+I), (r_2+I,s_2+I) \in R/I \times R/I \mbox{ such that } \\ (r_1+I,s_1+I) = (r_2+I,s_2+I). \\ \mbox{Then } r_1+I = r_2+I \mbox{ and } s_1+I = s_2+I. \\ \mbox{To show: } (r_1+s_1)+I = (r_2+s_2)+I. \\ \mbox{ So we must show: } \mbox{ and } (r_1+s_1)+I \subseteq (r_2+s_2)+I. \\ \mbox{ ab) } (r_2+s_2)+I \subseteq (r_1+s_1)+I. \\ \mbox{ aa) } \mbox{ We know } r_1 = r_1+0 \in r_2+I \mbox{ since } r_1+I = r_2+I. \end{array}$

So $r_1 = r_2 + k_1$ for some $k_1 \in I$. Similarly $s_1 = s_2 + k_2$ for some $k_2 \in I$. Let $t \in (r_1 + s_1) + I$. Then $t = r_1 + s_1 + k$ for some $k \in I$. So

$$t = r_1 + s_1 + k$$

= $r_2 + k_1 + s_2 + k_2 + k$
= $r_2 + s_2 + k_1 + k_2 + k$,

since addition is commutative.

So $t = (r_2 + s_2) + (k_1 + k_2 + k) \in r_2 + s_2 + I$. So $(r_1 + s_1) + I \subseteq (r_2 + s_2) + I$.

ab) Since $r_1 + I = r_2 + I$, we know $r_1 + k_1 = r_2$ for some $k_1 \in I$. Since $s_1 + I = s_2 + I$, we know $s_1 + k_2 = s_2$ for some $k_2 \in I$. Let $t \in (r_2 + s_2) + I$. Then $t = r_2 + s_2 + k$ for some $k \in I$. So

$$t = r_2 + s_2 + k$$

= $r_1 + k_1 + s_1 + k_2 + k$
= $r_1 + s_1 + k_1 + k_2 + k$,

since addition is commutative. So $t = (r_1 + s_1) + (k_1 + k_2 + k) \in (r_1 + s_1) + I$. So $(r_2 + s_2) + I \subseteq (r_1 + s_1) + I$.

So $(r_1 + s_s) + I = (r_2 + s_2) + I$.

So the operation given by $(r_1 + I) + (r_2 + I) = (r_1 + r_2) + I$ is a well defined operation on R/I.

b) We want the operation on R/I given by

$$\begin{array}{rccc} R/I \times R/I & \to & R/I \\ (r+I,s+I) & \mapsto & (rs)+I \end{array}$$

to be well defined.

Let $(r_1 + I, s_1 + I), (r_2 + I, s_2 + I) \in R/I \times R/I$ such that $(r_1 + I, s_1 + I) = (r_2 + I, s_2 + I).$ Then $r_1 + I = r_2 + I$ and $s_2 + I = s_2 + I.$ To show: $r_1s_1 + I = r_2s_2 + I.$ So we must show: ba) $r_1s_1 + I \subseteq r_2s_2 + I.$ bb) $r_2s_2 + I \subseteq r_1s_1 + I.$ ba) Since $r_1 + I = r_2 + I$, we know $r_1 = r_2 + k_1$ for some $k_1 \in I.$ Since $s_1 + I = s_2 + I$, we know $s_1 = s_2 + k_2$ for some $k_2 \in I$.

Since $s_1 + I = s_2 + I$, we know $s_1 = s_2 + k_1$ for some $k_1 \in I$. Since $s_1 + I = s_2 + I$, we know $s_1 = s_2 + k_2$ for some $k_2 \in I$. Let $t \in r_1 s_1 + I$. Then $t = r_1 s_1 + k$ for some $k \in I$. So

$$t = r_1 s_1 + k$$

= $(r_2 + k_1)(s_2 + k_2) + k$
= $r_2 s_2 + k_1 s_2 + r_2 k_2 + k_1 k_2 + k$,

by using the distributive law. $k_1s_2 + r_2k_2 + k_1k_2 + k \in I$ by the definition of ideal. So $t \in r_2s_2 + I$. So $r_1s_1 + I \subseteq r_2s_2 + I$.

bb) Since $r_1 + I = r_2 + I$, we know $r_1 + k_1 = r_2$ for some $k_1 \in I$. Since $s_1 + I = s_2 + I$, we know $s_1 + k_2 = s_2$ for some $k_2 \in I$. Let $t \in r_2s_2 + I$. Then $t = r_2s_2 + k$ for some $k \in I$. So

$$t = r_2 s_2 + k$$

= $(r_1 + k_1)(s_1 + k_2) + k$
= $r_1 s_1 + r_1 k_2 + k_1 s_1 + k_1 k_2 + k$

by using the distributive law. $r_1k_2 + k_1s_1 + k_1k_2 + k \in I$ by the definition of ideal. So $t \in r_1s_1 + I$. So $r_2s_2 + I \subseteq r_1s_1 + I$.

So $r_1s_1 + I = r_2s_2 + I$. So the operation given by (r+I)(s+I) = rs + I is a well defined operation on R/I.

c) By the associativity of addition in R and the definition of the operation in R/I,

$$((r_1 + I) + (r_2 + I)) + (r_3 + I) = ((r_1 + r_2) + I) + (r_3 + I)$$
$$= ((r_1 + r_2) + r_3) + I$$
$$= (r_1 + (r_2 + r_3)) + I$$
$$= (r_1 + I) + ((r_2 + r_3) + I)$$
$$= (r_1 + I) + ((r_2 + I) + (r_3 + I))$$

for all $r_1 + I$, $r_2 + I$, $r_3 + I \in R/I$.

d) By the commutativity of addition in R and the definition of the operation in R/I,

$$(r_1 + I) + (r_2 + I) = (r_1 + r_2) + I$$

= $(r_2 + r_1) + I$
= $(r_2 + I) + (r_1 + I)$

for all $r_1 + I$, $r_2 + I \in R/I$.

e) The coset I = 0 + I is the zero in R/I since

$$I + (r + I) = (0 + r) + I$$

= r + I
= (r + 0) + I = (r + I) + I

for all $r + I \in R/I$.

f) Given any coset r + I, its additive inverse is (-r) + I since

$$(r + I) + (-r + I) = r + (-r) + I$$

= 0 + I
= I
= $(-r + r) + I$
= $(-r + I) + (r + I)$

for all $r + I \in R/I$.

g) By the associativity of multiplication in R and the definition of the operation in R/I,

$$((r_1 + I)(r_2 + I))(r_3 + I) = (r_1r_2 + I)(r_3 + I)$$

= $(r_1r_2)r_3 + I$
= $r_1(r_2r_3) + I$
= $(r_1 + I)(r_2r_3 + I)$
= $(r_1 + I)((r_2 + I)(r_3 + I))$

for all $r_1 + I, r_2 + I, r_3 + I \in R/I$.

h) The coset 1 + I is the identity in R/I since

$$(1+I)(r+I) = 1 \cdot r + I$$
$$= r + I$$
$$= r \cdot 1 + I$$
$$= (r+I)(1+I)$$

for all $r + I \in R/I$.

i) Assume $r, s, t \in \mathbb{R}$. Then by definition of the operations

$$\begin{split} (r+I)\big((s+I) + (t+I)\big) &= (r+I)\big((s+t) + I\big) \\ &= r(s+t) + I \\ &= (rs+rt) + I \\ &= (rs+I) + (rt+I) \\ &= (r+I)(s+I) + (r+I)(t+I), \end{split}$$

and

$$\begin{split} \big((s+I) + (t+I)\big)(r+I) &= \big((s+t) + I\big)(r+I) \\ &= (s+t)r + I \\ &= (sr+tr) + I \\ &= (sr+I) + (tr+I) \\ &= (s+I)(r+I) + (t+I)(r+I). \end{split}$$

So R/I is a ring.

 \iff : Assume R/I is a ring with operations given by

$$(r+I) + (s+I) = (r+s) + I$$
 and
 $(r+I)(s+I) = rs + I$

for all $r + I, s + I \in R/I$. To show: If $k \in I$ and $r \in R$ then $kr \in I$ and $rk \in I$. First we show: If $k \in I$ then k + I = I. To show: a) $k + I \subseteq I$. b) $I \subseteq k + I$. a) Let $i \in k + I$. Then $i = k + k_1$ for some $k_1 \in I$. Then, since I is a subgroup, $i = k + k_1 \in I$. So $k + I \subseteq I$. b) Assume $k_1 \in I$. Since $k_1 - k \in I$, $k_1 = k + (k_1 - k) \in k + I$. So $I \subseteq k + I$.

Now assume $r \in R$ and $k \in I$. Then by definition of the operation

$$rk + I = (r + I)(k + I) = (r + I)I = (r + I)(0 + I) = 0 + I = I,$$

and

$$kr + I = (k + I)(r + I)$$

= $(0 + I)(r + I)$
= $0 + I$
= I .

So $kr \in I$ and $rk \in I$. So I is an ideal of R. \Box

(2.0.9) Proposition. Let $f: R \to S$ be a ring homomorphism. Let 0_R and 0_S be the zeros for R and S respectively. Then

a)
$$f(0_R) = 0_S$$

b) For any $r \in R$, f(-r) = -f(r).

Proof.

a) Add $-f(0_R)$ to each side of the following equation.

$$f(0_R) = f(0_R + 0_R) = f(0_R) + f(0_R).$$

b) Since

$$f(r) + f(-r) = f(r + (-r)) = f(0_R) = 0_S \text{ and}$$

$$f(-r) + f(r) = f((-r) + r) = f(0_R) = 0_S,$$

then f(-r) = -f(r). \Box

(2.0.11) Proposition. Let $f: R \to S$ be a ring homomorphism. Then a) ker f is an ideal of R.

(b) im f is a subring of S.

Proof.

Let 0_R and 0_S be the zeros of R and S respectively.

a) To show: ker f is an ideal of R.

- To show: aa) If $k_1, k_2 \in \ker f$ then $k_1 + k_2 \in \ker f$. ab) $0_R \in \ker f$.
 - ac) If $k \in \ker f$ then $-k \in \ker f$.
 - ad) If $k \in \ker f$ and $r \in R$ then $kr \in \ker f$ and $rk \in \ker f$.
 - aa) Assume $k_1, k_2 \in \ker f$. Then $f(k_1) = 0_S$ and $f(k_2) = 0_S$. So $f(k_1 + k_2) = f(k_1) + f(k_2) = 0_S$. So $k_1 + k_2 \in \ker f$.
 - ab) Since $f(0_R) = 0_S, 0_R \in \ker f$.
 - ac) Assume $k \in \ker f$. So $f(k) = 0_S$. Then

$$f(-k) = -f(k) = 0_S.$$

So $-k \in \ker f$.

ad) Assume $k \in \ker f$ and $r \in R$. Then

$$f(kr) = f(k)f(r) = 0_S \cdot f(r) = 0_S$$
 and
 $f(rk) = f(r)f(k) = f(r) \cdot 0_S = 0_S.$

So $kr \in \ker f$ and $rk \in \ker f$.

So ker f is an ideal of R.

- b) To show: ba) If $s_1, s_2 \in \text{im } f$ then $s_1 + s_2 \in \text{im } f$.
 - bb) $0_S \in \operatorname{im} f$.
 - bc) If $s \in \operatorname{im} f$ then $-s \in \operatorname{im} f$.
 - bd) If $s_1, s_2 \in \operatorname{im} f$ then $s_1 s_2 \in \operatorname{im} f$.
 - be) $1_S \in \operatorname{im} f$.
 - ba) Assume $s_1, s_2 \in \text{im } f$. Then $s_1 = f(r_1)$ and $s_2 = f(r_2)$ for some $r_1, r_2 \in R$. Then

$$s_1 + s_2 = f(r_1) + f(r_2) = f(r_1 + r_2),$$

since f is a homomorphism.

So $s_1 + s_2 \in \operatorname{im} f$.

- bb) By Proposition 2.1.9 a), $f(0_R) = 0_S$, so $0_S \in \text{im } f$.
- bc) Assume $s \in \text{im } f$. Then s = f(r) for some $r \in R$. Then, by Proposition 2.1.9 b),

$$-s = -f(r) = f(-r).$$

So $-s \in \operatorname{im} f$.

bd) Assume $s_1, s_2 \in \text{im } f$. Then $s_1 = f(r_1)$ and $s_2 = f(r_2)$ for some $r_1, r_2 \in R$. Then

$$s_1 s_2 = f(r_1) f(r_2) = f(r_1 r_2),$$

since f is a homomorphism.

So $s_1 s_2 \in \operatorname{im} f$.

be) By the definition of ring homomorphism, $f(1_R) = 1_S$, so $1_S \in \text{im } f$.

So im f is a subring of S. \Box

(2.0.12) Proposition. Let $f: R \to S$ be a ring homomorphism. Let 0_R be the zero in R. Then a) ker $f = (0_R)$ if and only if f is injective.

b) im f = S if and only if f is surjective.

Proof.

a) Let 0_R and 0_S be the zeros in R and S respectively. \implies : Assume ker $f = (0_R)$. To show: If $f(r_1) = f(r_2)$ then $r_1 = r_2$. Assume $f(r_1) = f(r_2)$.

Then, by the fact that f is a homomorphism,

$$0_S = f(r_1) - f(r_2) = f(r_1 - r_2).$$

So
$$r_1 - r_2 \in \ker f$$
.
But $\ker f = (0_S)$.
So $r_1 - r_2 = 0_R$.
So $r_1 = r_2$.
So f is injective.
 \iff : Assume f is injective.
To show: aa) $(0_R) \subseteq \ker f$.
ab) $\ker f \subseteq (0_R)$.
aa) Since $f(0_R) = 0_S$, $0_R \in \ker f$.
So $(0_R) \subseteq \ker f$.
ab) Let $k \in \ker f$.
Then $f(k) = 0_S$.
So $f(k) = f(0_R)$.
Thus, since f is injective, $k = 0_R$.
So $\ker f \subseteq (0_R)$.
So $\ker f = (0_R)$.
b) \implies : Assume im $f = S$.
To show: If $s \in S$ then there exists $r \in R$ such that $f(r) = s$.
Assume $s \in S$.
Then $s \in \inf f$.
So there is some $r \in R$ such that $f(r) = s$.
So f is surjective.

(2.0.13) Theorem.

a) Let $f: R \to S$ be a ring homomorphism and let $K = \ker f$. Define

$$\begin{array}{rccc} \hat{f} \colon & R/\ker f & \to & S \\ & r+K & \mapsto & f(r). \end{array}$$

Then \hat{f} is a well defined injective ring homomorphism.

b) Let $f: R \to S$ be a ring homomorphism and define

$$\begin{array}{rccc} f' \colon & R & \to & \inf f \\ & r & \mapsto & f(r). \end{array}$$

Then f' is a well defined surjective ring homomorphism.

c) If $f: R \to S$ is a ring homomorphism, then

$$R/\ker f \simeq \operatorname{im} f$$

where the isomorphism is a ring isomorphism.

Proof.

Let 1_R and 1_S be the identities in R and S respectively.

- a) To show: aa) \hat{f} is well defined.
 - ab) \hat{f} is injective.
 - ac) f is a ring homomorphism.
 - aa) To show: aaa) If $r \in R$ then $\hat{f}(r+K) \in S$. aab) If $r_1 + K = r_2 + K \in R/K$ then $\hat{f}(r_1 + K) = \hat{f}(r_2 + K)$

aab) If
$$r_1 + K = r_2 + K \in R/K$$
 then $f(r_1 + K) = f(r_2 + K)$

aaa) Assume $r \in R$. Then $\hat{f}(r+K) = f(r)$, and $f(r) \in S$, by the definition of \hat{f} and f.

aab) Assume $r_1 + K = r_2 + K$.

- Then $r_1 = r_2 + k$ for some $k \in K$.
- To show: $\hat{f}(r_1 + K) = \hat{f}(r_2 + K)$, i.e., To show: $f(r_1) = f(r_2)$.

Since $k \in \ker f$, we have f(k) = 0 and so

$$f(r_1) = f(r_2 + k) = f(r_2) + f(k) = f(r_2) + 0 = f(r_2).$$

So
$$\hat{f}(r_1 + K) = \hat{f}(r_2 + K)$$
.

So \hat{f} is well defined.

ab) To show: If $\hat{f}(r_1 + K) = \hat{f}(r_2 + K)$ then $r_1 + K = r_2 + K$.

Assume $\hat{f}(r_1 + K) = \hat{f}(r_2 + K)$. Then $f(r_1) = f(r_2)$. So $f(r_1) - f(r_2) = 0$. So $f(r_1 - r_2) = 0$. So $r_1 - r_2 \in \ker f$. So $r_1 - r_2 = k$, for some $k \in \ker f$. So $r_1 = r_2 + k$, for some $k \in \ker f$. To show: aba) $r_1 + K \subseteq r_2 + K$. abb) $r_2 + K \subseteq r_1 + K$. aba) Let $r \in r_1 + K$. Then $r = r_1 + k_1$, for some $k_1 \in K$. So $r = r_2 + k + k_1 \in r_2 + K$ since $k + k_1 \in K$. So $r_1 + K \subseteq r_2 + K$. abb) Let $r \in r_2 + K$. Then $r = r_2 + k_2$, for some $k_2 \in K$. So $r = r_2 + k_2 = r_1 - k + k_2 \in r_1 + K$ since $-k + k_2 \in K$. So $r_2 + K \subseteq r_1 + K$. So $r_1 + K = r_2 + K$. So \hat{f} is injective. ac) To show: aca) If $r_1 + K, r_2 + K \in R/K$ then $\hat{f}((r_1+k)+(r_2+K)) = \hat{f}(r_1+K) + \hat{f}(r_2+K).$ acb) If $r_1 + K, r_2 + K \in R/K$ then $\hat{f}((r_1 + K)(r_2 + K)) = \hat{f}(r_1 + K)\hat{f}(r_2 + K).$ acc) $\hat{f}(1_R + K) = 1_S$. aca) Let $r_1 + K, r_2 + K \in R/K$. Since f is a homomorphism, $\hat{f}(r_1 + K) + \hat{f}(r_2 + K) = f(r_1) + f(r_2)$ $= f(r_1 + r_2)$ $=\hat{f}\big((r_1+r_2)+K\big)$ $= \hat{f}((r_1 + K) + (r_2 + K)).$ acb) Let $r_1 + K, r_2 + K \in R/K$. Since f is a homomorphism,

$$\hat{f}(r_1 + K)\hat{f}(r_2 + K) = f(r_1)f(r_2) = f(r_1r_2) = \hat{f}(r_1r_2 + K) = \hat{f}((r_1 + K)(r_2 + K)).$$

acc) Since f is a homomorphism,

$$f(1_R + K) = f(1_R)$$
$$= 1_S.$$

So \hat{f} is a ring homomorphism.

So \hat{f} is a well defined injective ring homomorphism.

b) Let 1_R and 1_S be the identities in R and S respectively. To show: ba) f' is well defined.

- bb) f' is surjective.
- bc) f' is a ring homomorphism.
- ba) and bb) are proved in Ex. 2.2.4 a) and b), Part I.
- bc) To show: bca) If $r_1, r_2 \in R$ then $f'(r_1 + r_2) = f'(r_1) + f'(r_2)$. bcb) If $r_1, r_2 \in R$ then $f'(r_1r_2) = f'(r_1)f'(r_2)$. bcc) $f'(1_R) = 1_S$.
 - bca) Let $r_1, r_2 \in R$. Then, since f is a homomorphism,

$$f'(r_1 + r_2) = f(r_1 + r_2) = f(r_1) + f(r_2) = f'(r_1) + f'(r_2).$$

bcb) Let
$$r_1, r_2 \in R$$
.

Then, since f is a homomorphism,

$$f'(r_1r_2) = f(r_1r_2) = f(r_1)f(r_2) = f'(r_1)f'(r_2).$$

bcc) Since f is a homomorphism,

$$f'(1_R) = f(1_R) = 1_S.$$

So f' is a homomorphism.

So f' is a well defined surjective ring homomorphism.

c) Let $K = \ker f$. By a), the function

$$\hat{f} \colon \begin{array}{ccc} R/K & \to & S \\ r+K & \mapsto & f(r) \end{array}$$

is a well defined injective ring homomorphism. By b), the function

$$\begin{array}{rcl} \hat{f}' \colon & R/K & \to & \inf \hat{f} \\ & r+K & \mapsto & \hat{f}(r+K) = f(r) \end{array}$$

is a well defined surjective ring homomorphism.

To show: ca) $\inf \hat{f} = \inf f$. cb) \hat{f}' is injective. ca) To show: caa) $\inf \hat{f} \subseteq \inf f$. cab) $\inf f \subseteq \inf \hat{f}$. caa) Let $s \in \inf \hat{f}$. Then there is some $r + K \in R/K$ such that $\hat{f}(r + K) = s$. Let $r' \in r + K$. Then r' = r + k for some $k \in K$. Then, since f is a homomorphism and f(k) = 0, f(r') = f(r + k) = f(r) + f(k) $= \hat{f}(r)$ $= \hat{f}(r + k)$

$$= f(r)$$

 $= s.$

So $s \in \operatorname{im} f$.

So im
$$\hat{f} \subseteq \text{im } f$$
.
cab) Let $s \in \text{im } \hat{f}$.
Then there is some $r \in R$ such that $f(r) = s$.
So $\hat{f}(r+K) = f(r) = s$.
So $\hat{f}(r+K) = f(r) = s$.
So im $f \subseteq \text{im } \hat{f}$.
So im $f = \text{im } \hat{f}$.
cb) To show: If $\hat{f}'(r_1 + K) = \hat{f}'(r_2 + K)$ then $r_1 + K = r_2 + K$.
Assume $\hat{f}'(r_1 + K) = \hat{f}'(r_2 + K)$.
Then $\hat{f}(r_1 + K) = \hat{f}(r_2 + K)$.
Then, since \hat{f} is injective, $r_1 + K = r_2 + K$.
So \hat{f}' is injective.

Thus we have

$$\hat{f'}: \begin{array}{ccc} R/K & \to & \inf f \\ r+K & \mapsto & f(r) \end{array}$$

is a well defined bijective ring homomorphism. \Box

(2.0.17) Proposition. Let R be a ring. Let 0_R and 1_R be the zero and the identity in R respectively. a) There is a unique ring homomorphism $\varphi: \mathbb{Z} \to R$ given by

$$\varphi(0) = 0_R,$$

$$\varphi(m) = \underbrace{1_R + \dots + 1_R}_{m \text{ times}}, \quad and$$

$$\varphi(-m) = -\varphi(m),$$

for every $m \in \mathbb{Z}$, m > 0.

b) $\ker \varphi = n \mathbb{I} = \{ nk \mid k \in \mathbb{I} \}$ where $n = \operatorname{char}(R)$ is the characteristic of the ring R.

Proof.

Let 1_R and 0_R be the identity and zero of the ring R.

a) Define $\varphi: \mathbb{Z} \to R$ by defining, for each $m > 0, m \in \mathbb{Z}$,

$$\varphi(m) = \underbrace{\mathbf{1}_R + \dots + \mathbf{1}_R}_{m \text{ times}},$$
$$\varphi(-m) = -\varphi(m),$$
$$\varphi(0) = \mathbf{0}_R.$$

To show: aa) φ is unique.

ab) φ is well defined.

ac) φ is a homomorphism.

aa) To show: If $\varphi': \mathbb{Z} \to R$ is a homomorphism then $\varphi' = \varphi$. Assume $\varphi': \mathbb{Z} \to R$ is a homomorphism. To show: If $m \in \mathbb{Z}$ then $\varphi'(m) = \varphi(m)$. If m = 1 then $\varphi'(1) = 1_R = \varphi(1)$. If m > 0 then

$$\varphi'(m) = \varphi'(\underbrace{1 + \dots + 1}_{m \text{ times}}) = \underbrace{\varphi'(1) + \dots + \varphi'(1)}_{m \text{ times}} = \underbrace{1_R + \dots + 1_R}_{m \text{ times}} = \varphi(m).$$
$$\varphi'(-m) = -\varphi'(m) = -\varphi(m) = \varphi(-m).$$
If $m = 0$ then $\varphi'(0) = 0_R = \varphi(0).$

- ab) This is clear from the definitions.
- ac) To show: aca) $\varphi(1) = 1_R$. acb) $\varphi(mn) = \varphi(m)\varphi(n)$. acc) $\varphi(m+n) = \varphi(m) + \varphi(n)$.
 - aca) This follows from the definition of φ .
 - acb) Let m, n > 0. Then, by the distributive law,

$$\varphi(m)\varphi(n) = (\underbrace{1 + \dots + 1}_{m \text{ times}})(\underbrace{1 + \dots + 1}_{n \text{ times}}) = \underbrace{1 + \dots + 1}_{mn \text{ times}} = \varphi(mn).$$

$$\varphi(m)\varphi(-n) = \varphi(m)\big(-\varphi(n)\big) = \varphi(m)(-1_R)\varphi(n) = (-1_R)\varphi(m)\varphi(n)$$
$$= (-1_R)\varphi(mn) = -\varphi(mn) = \varphi\big(m(-n)\big).$$

$$\varphi(-m)\varphi(n) = -\varphi(m)\varphi(n) = (-1_R)\varphi(m)\varphi(n) = (-1_R)\varphi(mn) = -\varphi(mn) = \varphi\big((-m)n\big).$$

$$\varphi(-m)\varphi(-n) = (-1_R)\varphi(m)(-1)_R\varphi(n) = \varphi(m)\varphi(n) = \varphi(mn) = \varphi((-m)(-n)).$$

acc) Let m, n > 0. Then

$$\varphi(m) + \varphi(n) = \underbrace{1 + \dots + 1}_{m \text{ times}} + \underbrace{1 + \dots + 1}_{n \text{ times}} = \underbrace{1 + \dots + 1}_{m+n \text{ times}} = \varphi(m+n).$$

$$\varphi(-m) + \varphi(-n) = -\varphi(m) - \varphi(n) = -(\varphi(m) + \varphi(n)) = -\varphi(m+n)$$
$$= \varphi(-(m+n)) = \varphi((-m) + (-n)).$$

If
$$m \ge n$$
, $\varphi(m) + \varphi(-n) = \varphi(m) - \varphi(n) = \underbrace{(1 + \dots + 1)}_{m \text{ times}} - \underbrace{(1 + \dots + 1)}_{n \text{ times}}$
$$= \underbrace{1 + \dots + 1}_{m-n \text{ times}} = \varphi(m-n).$$

If
$$m < n$$
, $\varphi(m) + \varphi(-n) = \varphi(m) - \varphi(n) = -(\varphi(n) - \varphi(m))$
= $-\varphi(n-m) = \varphi(m-n).$

So φ is a homomorphism.

b) Let $n = \operatorname{char}(R)$. To show: ba) $n \mathbb{I} \subseteq \ker \varphi$. bb) $\ker \varphi \subseteq n \mathbb{I}$. First we show $n \in \ker \varphi$. By the definition of $\operatorname{char}(R)$,

$$\varphi(n) = \underbrace{\mathbf{1}_R + \dots + \mathbf{1}_R}_{n \text{ times}} = \mathbf{0}_R.$$

So $n \in \ker \varphi$.

ba) Let $m \in n \mathbb{Z}$.

Then m = nk for some $k \in \mathbb{Z}$. Since φ is a homomorphism,

$$\varphi(m) = \varphi(nk) = \varphi(n)\varphi(k) = 0 \cdot \varphi(k) = 0.$$

So $\varphi(m) \in \ker \varphi$. So $n \mathbb{Z} \subseteq \ker \varphi$.

bb) Let $m \in \ker \varphi$.

Write m = nr + s where $0 \le s < n$ and $r \in \mathbb{Z}$. Then, since φ is a homomorphism,

$$0_R = \varphi(m) = \varphi(nr+s) = \varphi(n)\varphi(r) + \varphi(s) = 0_R + \varphi(s) = \underbrace{1_R + \dots + 1_R}_{s \text{ times}}.$$

By definition of char(R), n is the smallest positive integer such that $\underbrace{1_R + \cdots + 1_R}_{R} = 0_R$.

n times

So s = 0. So m = nr. So $m \in n \mathbb{I}$. So ker $\varphi \subseteq n \mathbb{I}$.

So ker $\varphi = n \mathbb{Z}$. \Box

(2.0.21) Proposition. Every proper ideal I of a ring R is contained in a maximal ideal of R.

Proof.

The idea is to use Zorn's lemma on the set of proper ideals of R containing I, ordered by inclusion. We will not prove Zorn's lemma, we will assume it. Zorn's lemma is equivalent to the axiom of choice. For a proof see Isaacs book [I].

Zorn's Lemma. If S is a poset such that every chain in S has an upper bound then S has a maximal element.

Let S be the set of proper ideals of R containing I, ordered by inclustion. To show: Given any chain of ideals in S

$$\cdots \subseteq I_{k-1} \subseteq I_k \subseteq I_{k+1} \subseteq \cdots$$

there is a proper ideal J of R containing I that contains all the I_k . Let

$$J = \bigcup_k I_k.$$

To show: a) J is an ideal.

b) J is a proper ideal.

a) To show: aa) If $i, j \in J$ then $i + j \in J$.

ab) If $i \in J$ and $r \in R$ then $ir \in J$ and $ri \in J$.

aa) Assume $i, j \in J$. Then $i \in I_k$ and $j \in I_{k'}$ for some k and k'. So either $i, j \in I_k$ or $i, j \in I_{k'}$ since either $I_k \subseteq I_{k'}$ or $I_{k'} \subseteq I_k$. So either $i + j \in I_k$ or $i + j \in I_{k'}$ since I_k and $I_{k'}$ are ideals. So

$$i+j \in \bigcup_k I_k = J$$

ab) Assume $i \in J$ and $r \in R$.

Then $i \in I_k$ for some k. Since I_k is an ideal, $ri \in I_k$ and $ir \in I_k$. So

$$ri \in \bigcup_k I_k = J$$
 and $ir \in \bigcup_k I_k = J$.

So J is an ideal.

b) To show: $1 \notin J$. Since the I_k are all proper ideals, $1 \notin I_k$ for any k. So

$$1 \notin \bigcup_k I_k = J.$$

So J is a proper ideal of R.

So every chain of proper ideals in R that contain I has an upper bound. Thus, by Zorn's lemma, the set S of proper ideals containing I has a maximal element. So I is contained in a maximal ideal. \Box

§2P. Modules

(2.2.4) Proposition. Let M be a left R-module and let N be a subgroup of M. Then the cosets of N in M partition M.

Proof.

To show: a) If $m \in M$ then $m \in m' + N$ for some $m' \in M$. b) If $(m_1 + N) \cap (m_2 + N) \neq \emptyset$ then $m_1 + N = m_2 + N$. a) Let $m \in M$. Then, since $0 \in N$, $m = m + 0 \in m + N$. So $m \in m + N$. b) Assume $(m_1 + N) \cap (m_2 + N) \neq \emptyset$. To show: ba) $m_1 + N \subseteq m_2 + N$. bb) $m_2 + N \subseteq m_1 + N$. Let $a \in (m_1 + N) \cap (m_2 + N)$. Suppose $a = m_1 + n_1$ and $a = m_2 + n_2$ where $n_1, n_2 \in N$. Then $m_1 = m_1 + n_1 - n_1 = a - n_1 = m_2 + n_2 - n_1$ and $m_2 = m_2 + n_2 - n_2 = a - n_2 = m_1 + n_1 - n_2.$ ba) Let $m \in m_1 + N$. Then $m = m_1 + n$ for some $n \in N$. Then $m = m_1 + n = m_2 + n_2 - n_1 + n \in m_2 + N,$ since $n_2 - n_1 + n \in N$. So $m_1 + N \subseteq m_2 + N$. bb) Let $m \in m_2 + N$. Then $m = m_2 + n$ for some $n \in N$. Then $m = m_2 + n = m_1 + n_1 - n_2 + n \in m_1 + N,$ since $n_1 - n_2 + n \in N$. So $m_2 + N \subseteq m_1 + N$. So $m_1 + N = m_2 + N$. So the cosets of N in M partition M. \Box

(2.2.5) Theorem. Let N be a subgroup of a left R-module M. Then N is a submodule of M if and only if M/N with the operations given by

$$(m_1 + N) + (m_2 + N) = (m_1 + m_2) + N$$
, and
 $r(m_1 + N) = rm_1 + N$,

is a left R-module.

То

Proof.

 \implies : Assume N is a submodule of M.

show: a)
$$(m_1 + N) + (m_2 + N) = (m_1 + m_2) + N$$
 is a well defined operation on M/N .

- b) The operation given by r(m+N) = rm + N is well defined.
- c) $((m_1 + N) + (m_2 + N)) + (m_3 + N) = (m_1 + N) + ((m_2 + N) + (m_3 + N))$ for all $m_1 + N, m_2 + N, m_3 + N \in M/N$.
- d) $(m_1 + N) + (m_2 + N) = (m_2 + N) + (m_1 + N)$ for all $m_1 + N, m_2 + N \in M/N$.

- e) 0 + N = N is the zero in M/N.
- f) -m + N is the additive inverse of m + N.
- g) If $r_1, r_2 \in R$ and $m + N \in M/N$, then $r_1(r_2(m + N)) = (r_1r_2)(m + N)$.
 - h) If $m + N \in M/N$ then 1(m + N) = m + N.
 - i) If $r \in R$ and $m_1 + N, m_2 + N \in M/N$,
 - then $r((m_1 + N) + (m_2 + N)) = r(m_1 + N) + r(m_2 + N).$
 - j) If $r_1, r_2 \in R$ and $m + N \in M/N$, then $(r_1 + r_2)(m + N) = r_1(m + N)$.

then
$$(r_1 + r_2)(m + N) = r_1(m + N) + r_2(m + N).$$

a) We want the operation on M/N given by

$$\begin{array}{rccc} M/N \times M/N & \to & M/N \\ (m_1 + N, m_2 + N) & \mapsto & (m_1 + m_2) + N \end{array}$$

to be well defined. Let $(m_1 + N, m_2 + N), (m_3 + N, m_4 + N) \in M/N \times M/N$ such that $(m_1 + N, m_2 + N) = (m_3 + N, m_4 + N).$ Then $m_1 + N = m_3 + N$ and $m_2 + N = m_4 + N$. To show: $(m_1 + m_2) + N = (m_3 + m_4) + N$. So we must show: aa) $(m_1 + m_2) + N \subseteq (m_3 + m_4) + N$. ab) $(m_3 + m_4) + N \subseteq (m_1 + m_2) + N$. aa) We know $m_1 = m_1 + 0 \in m_3 + N$ since $m_1 + N = m_3 + N$. So $m_1 = m_3 + k_1$ for some $k_1 \in N$. Similarly $m_2 = m_4 + k_2$ for some $k_2 \in N$. Let $t \in (m_1 + m_2) + N$. Then $t = m_1 + m_2 + k$ for some $k \in N$. So $t = m_1 + m_2 + k$ $= m_3 + k_1 + m_4 + k_2 + k_3$ $= m_3 + m_4 + k_1 + k_2 + k,$ since addition is commutative. So $t = (m_3 + m_4) + (k_1 + k_2 + k) \in m_3 + m_4 + N$. So $(m_1 + m_2) + N \subseteq (m_3 + m_4) + N$. ab) Since $m_1 + N = m_3 + N$, we know $m_1 + k_1 = m_3$ for some $k_1 \in N$. Since $m_2 + N = m_4 + N$, we know $m_2 + k_2 = m_4$ for some $k_2 \in N$. Let $t \in (m_3 + m_4) + N$. Then $t = m_3 + m_4 + k$ for some $k \in N$. So $t = m_3 + m_4 + k$ $= m_1 + k_1 + m_2 + k_2 + k_3$ $= m_1 + m_2 + k_1 + k_2 + k,$ since addition is commutative. So $t = (m_1 + m_2) + (k_1 + k_2 + k) \in (m_1 + m_2) + N$. So $(m_3 + m_4) + N \subseteq (m_1 + m_2) + N$. So $(m_1 + m_2) + N = (m_3 + m_4) + N$. So the operation given by $(m_1 + N) + (m_3 + N) = (m_1 + m_3) + N$ is a well defined

operation on M/N.

b) We want the operation given by

$$\begin{array}{rrrr} R \times M/N & \to & M/N \\ (r,m+N) & \mapsto & rm+N \end{array}$$

to be well defined. Let $(r_1, m_1 + N), (r_2, m_2 + N) \in (R \times M/N)$ such that $(r_1, m_1 + N) = (r_2, m_2 + N)$. Then $r_1 = r_2$ and $m_1 + N = m_2 + N$. To show: $r_1m_1 + N = r_2m_2 + N$. To show: ba) $r_1m_1 + N \subseteq r_2m_2 + N$. bb) $r_2m_2 + N \subseteq r_1m_1 + N$. ba) Since $m_1 + N = m_2 + N$, we know $m_1 = m_2 + n_2$ for some $n_2 \in N$. Let $k \in r_1 m_1 + N$. Then $k = r_1 m_1 + n$ for some $n \in N$. So $k = r_1 m_1 + n$ $= r_2(m_2 + n_2) + n$ $= r_2 m_2 + r_2 n_2 + n.$ Since N is a submodule, $r_2n_2 \in N$, and $r_2n_2 + n \in N$. So $k = r_2m_2 + r_2n_2 + n \in r_2m_2 + N$. So $r_1m_1 + N \subseteq r_2m_2 + N$. bb) Since $m_1 + N = m_2 + N$, we know $m_2 = m_1 + n_1$ for some $n_1 \in N$.

Let $k \in r_2 m_2 + N$.

Then $k = r_2 m_2 + n$ for some $n \in N$. So

$$k = r_2 m_2 + n$$

= $r_1(m_1 + n_1) + n$
= $r_1 m_1 + r_1 n_1 + n$.

Since N is a submodule, $r_1n_1 \in N$, and $r_1n_1 + n \in N$. So $k = r_1m_1 + r_1n_1 + n \in r_1m_1 + N$. So $r_2m_2 + N \subseteq r_1m_1 + N$. So $r_1m_1 + N = r_2m_2 + N$.

So the operation is well defined.

c) By the associativity of addition in M and the definition of the operation in M/N,

$$((m_1 + N) + (m_2 + N)) + (m_3 + N) = ((m_1 + m_2) + N) + (m_3 + N)$$

= $((m_1 + m_2) + m_3) + N$
= $(m_1 + (m_2 + m_3)) + N$
= $(m_1 + N) + ((m_2 + m_3) + N)$
= $(m_1 + N) + ((m_2 + N) + (m_3 + N))$

for all $m_1 + N, m_2 + N, m_3 + N \in M/N$.

d) By the commutativity of addition in M and the definition of the operation in M/N,

$$(m_1 + N) + (m_2 + N) = (m_1 + m_2) + N$$

= $(m_2 + m_1) + N$
= $(m_2 + N) + (m_1 + N).$

for all $m_1 + N, m_2 + N \in M/N$.

e) The coset N = 0 + N is the zero in M/N since

$$N + (m + N) = (0 + m) + N$$

= $m + N$
= $(m + 0) + N = (m + N) + N$

for all $m + N \in M/N$.

f) Given any coset m + N, its additive inverse is (-m) + N since

$$(m + N) + (-m + N) = m + (-m) + N$$

= 0 + N
= N
= (-m + m) + N
= (-m + N) + (m + N)

for all $m + N \in M/N$.

g) Assume $r_1, r_2 \in R$ and $m + N \in M/N$. Then, by definition of the operation,

$$r_1(r_2(m+N)) = r_1(r_2m+N) = r_1(r_2m) + N = (r_1r_2)m + N = (r_1r_2)(m+N).$$

h) Assume $m + N \in M/N$. Then, by definition of the operation,

$$1(m+N) = (1m) + N$$
$$= m + N.$$

i) Assume $r \in R$ and $m_1 + N, m_2 + N \in M/N$. Then

$$r((m_1 + N) + (m_2 + N)) = r((m_1 + m_2) + N)$$

= $r(m_1 + m_2) + N$
= $(rm_1 + rm_2) + N$
= $(rm_1 + N) + (rm_2 + N)$
= $r(m_1 + N) + r(m_2 + N)$.

j) Assume $r_1, r_2 \in R$ and $m + N \in M/N$. Then

$$(r_1 + r_2)(m + N) = ((r_1 + r_2)m) + N$$

= $(r_1m + r_2m) + N$
= $(r_1m + N) + (r_2m + N)$
= $r_1(m + N) + r_2(m + N).$

So M/N is a left *R*-module.

 \Leftarrow : Assume N is a subgroup of M and (M/N) is a left R-module with action given by r(m+N) = rm + N. To show: N is a submodule of M. To show: If $r \in R$ and $n \in N$ then $rn \in N$. First we show: If $n \in N$ then n + N = N. To show: a) $n + N \subseteq N$. b) $N \subseteq n + N$. a) Let $k \in n + N$. So $k = n + n_1$ for some $n_1 \in N$. Since N is a subgroup, $k = n + n_1 \in N$. So $n + N \subseteq N$. b) Let $k \in N$. Since $k - n \in N$, $k = n + (k - n) \in n + N$. So $N \subseteq n + N$. Now assume $r \in R$ and $n \in N$. Then, by definition of the R-action on M/N,

$$rn + N = r(n + N)$$
$$= r(0 + N)$$
$$= r \cdot 0 + N$$
$$= 0 + N$$
$$= N.$$

So $rn = rn + 0 \in N$. So N is a submodule of M. \Box

(2.2.9) Proposition. Let $f: M \to N$ be an *R*-module homomorphism. Then

a) ker f is a submodule of M.

b) im f is a submodule of N.

Proof.

a) By condition a) in the definition of R-module homomorphism, f is a group homomorphism. By Proposition 1.1.13 a), ker f is a subgroup of M.

To show: If $r \in R$ and $k \in \ker f$ then $rk \in \ker f$. Assume $r \in R$ and $k \in \ker f$. Then, by the definition of *R*-module homomorphism,

$$f(rk) = rf(k) = r \cdot 0 = 0.$$

So $rk \in \ker f$.

So ker f is a submodule of M.

- b) By condition a) in the definition of R-module homomorphism, f is a group homomorphism. By Proposition 1.1.13 b), im f is a subgroup of N.
 - To show: If $r \in R$ and $a \in \operatorname{im} f$ then $ra \in \operatorname{im} f$.
 - Assume $r \in R$ and $a \in \operatorname{im} f$.

Then a = f(m) for some $m \in M$.

By the definition of R-module homomorphism,

$$ra = rf(m) = f(rm).$$

So $ra \in \operatorname{im} f$. So $\operatorname{im} f$ is a submodule of N. \Box

- (2.2.10) Proposition. Let $f: M \to N$ be an *R*-module homomorphism. Let 0_M be the zero in *M*. Then a) ker $f = (0_M)$ if and only if *f* is injective.
 - b) im f = N if and only if f is surjective.

Proof.

Let 0_M and 0_N be the zeros in M and N respectively. a) \implies : Assume ker $f = (0_M)$. To show: If $f(m_1) = f(m_2)$ then $m_1 = m_2$. Assume $f(m_1) = f(m_2)$. Then, by the fact that f is a homomorphism, $0_N = f(m_1) - f(m_2) = f(m_1 - m_2).$ So $m_1 - m_2 \in \ker f$. But ker $f = (0_M)$. So $m_1 - m_2 = 0_M$. So $m_1 = m_2$. So f is injective. \iff : Assume f is injective. To show: aa) $(0_M) \subseteq \ker f$. ab) ker $f \subseteq (0_M)$. aa) Since $f(0_M) = 0_N, 0_M \in \ker f$. So $(0_M) \subseteq \ker f$. ab) Let $k \in \ker f$. Then $f(k) = 0_N$. So $f(k) = f(0_M)$. Thus, since f is injective, $k = 0_M$. So ker $f \subseteq (0_M)$. So ker $f = (0_M)$. b) \implies : Assume im f = N. To show: If $n \in N$ then there exists $m \in M$ such that f(m) = n. Assume $n \in N$. Then $n \in \operatorname{im} f$. So there is some $m \in M$ such that f(m) = n. So f is surjective. \iff : Assume f is surjective. To show: ba) im $f \subseteq N$. bb) $N \subseteq \operatorname{im} f$. ba) Let $x \in \operatorname{im} f$. Then x = f(m) for some $m \in M$. By the definition of $f, f(m) \in N$. So $x \in N$. So im $f \subseteq N$. bb) Assume $x \in N$. Since f is surjective there is an m such that f(m) = x. So $x \in \operatorname{im} f$. So $N \subseteq \operatorname{im} f$. So im f = N. \Box

(2.2.11) Theorem.

a) Let $f: M \to N$ be an R-module homomorphism and let $K = \ker f$. Define

$$\begin{array}{rccc} f\colon & M/\ker f & \to & N \\ & m+K & \mapsto & f(m). \end{array}$$

Then \hat{f} is a well defined injective *R*-module homomorphism.

b) Let $f: M \to N$ be an R-module homomorphism and define

$$\begin{array}{rccc} f' \colon & M & \to & \inf f \\ & m & \mapsto & f(m) \end{array}$$

Then f' is a well defined surjective R-module homomorphism.

c) If $f: M \to N$ is an *R*-module homomorphism, then

$$M/\ker f \simeq \operatorname{im} f$$

where the isomorphism is an R-module isomorphism.

Proof.

a) To show: aa) \hat{f} is well defined. ab) \hat{f} is injective. ac) f is an *R*-module homomorphism. aa) To show: aaa) If $m \in M$ then $\hat{f}(m+K) \in N$. aab) If $m_1 + K = m_2 + K \in M/K$ then $\hat{f}(m_1 + K) = \hat{f}(m_2 + K)$. aaa) Assume $m \in M$. Then $\hat{f}(m+K) = f(m)$ and $f(m) \in N$, by the definition of \hat{f} and f. aab) Assume $m_1 + K = m_2 + K$. Then $m_1 = m_2 + k$, for some $k \in K$. To show: $\hat{f}(m_1 + K) = \hat{f}(m_2 + K)$, i.e., To show: $f(m_1) = f(m_2)$. Since $k \in \ker f$, we have f(k) = 0 and so $f(m_1) = f(m_2 + k) = f(m_2) + f(k) = f(m_2).$ So $\hat{f}(m_1 + K) = \hat{f}(m_2 + K)$. So \hat{f} is well defined. ab) To show: If $\hat{f}(m_1 + K) = \hat{f}(m_2 + K)$ then $m_1 + K = m_2 + K$. Assume $\hat{f}(m_1 + K) = \hat{f}(m_2 + K)$. Then $f(m_1) = f(m_2)$. So $f(m_1) - f(m_2) = 0$. So $f(m_1 - m_2) = 0$. So $m_1 - m_2 \in \ker f$. So $m_1 - m_2 = k$, for some $k \in \ker f$. So $m_1 = m_2 + k$, for some $k \in \ker f$. To show: aba) $m_1 + K \subseteq m_2 + K$. abb) $m_2 + K \subseteq m_1 + K$. aba) Let $m \in m_1 + K$. Then $m = m_1 + k_1$, for some $k_1 \in K$. So $m = m_2 + k + k_1 \in m_2 + K$, since $k + k_1 \in K$. So $m_1 + K \subseteq m_2 + K$. abb) Let $m \in m_2 + K$. Then $m = m_2 + k_2$, for some $k_2 \in K$. So $m = m_1 - k + k_2 \in m_1 + K$ since $-k + k_2 \in K$. So $m_2 + K \subseteq m_1 + K$. So $m_1 + K = m_2 + K$. So \hat{f} is injective. ac) To show: aca) If $m_1 + K, m_2 + K \in M/K$ then $\hat{f}(m_1 + K) + \hat{f}(m_2 + K) = \hat{f}((m_1 + K) + (m_2 + K)).$ acb) If $r \in R$ and $m + K \in M/K$ then $\hat{f}(r(m+K)) = r\hat{f}(m+K)$.

Since f is a homomorphism,

.

$$\hat{f}(m_1 + K) + \hat{f}(m_2 + K) = f(m_1) + f(m_2)$$

= $f(m_1 + m_2)$
= $\hat{f}((m_1 + m_2) + K)$
= $\hat{f}((m_1 + K) + (m_2 + K))$

acb) Let $r \in R$ and $m + K \in M/K$. Since f is a homomorphism,

$$\hat{f}(r(m+K)) = \hat{f}(rm+K)$$
$$= f(rm)$$
$$= rf(m)$$
$$= r\hat{f}(m+K).$$

So \hat{f} is an *R*-module homomorphism.

So \hat{f} is a well defined injective *R*-module homomorphism.

- b) To show: ba) f' is well defined.
 - bb) f' is surjective.

.

bc) f' is an *R*-module homomorphism.

ba) and bb) are proved in Ex. 2.2.3 a), Part I.

- bc) To show: bca) If $m_1, m_2 \in M$ then $f'(m_1 + m_2) = f'(m_1) + f'(m_2)$. bcb) If $r \in R$ and $m \in M$ then f'(rm) = rf'(m).
 - bca) Let $m_1, m_2 \in M$. Then, since f is a homomorphism,

$$f'(m_1 + m_2) = f(m_1 + m_2) = f(m_1) + f(m_2) = f'(m_1) + f'(m_2).$$

bcb) Let $m_1, m_2 \in M$. Then, since f is an R-module homomorphism,

$$f'(rm) = f(rm) = rf(m) = rf'(m).$$

So f' is an R-module homomorphism.

So f' is a well defined surjective R-module homomorphism.

c) Let $K = \ker f$. By a) the function

By a), the function

$$\hat{f} \colon \begin{array}{ccc} M/K & \to & N \\ m+K & \mapsto & f(m) \end{array}$$

is a well defined injective R-module homomorphism. By b), the function

$$\hat{f}': \quad M/K \quad \to \quad \inf \hat{f} \\ m+K \quad \mapsto \quad \hat{f}(m+K) \quad = f(m)$$

is a well defined surjective R-module homomorphism.

To show: ca)
$$\operatorname{im} \hat{f} = \operatorname{im} f$$
.
cb) \hat{f}' is injective.

ca) To show: caa) $\operatorname{im} \hat{f} \subseteq \operatorname{im} f$. cab) $\operatorname{im} f \subseteq \operatorname{im} \hat{f}$.

caa) Let $n \in \operatorname{im} \hat{f}$. Then there is some $m + K \in M/K$ such that $\hat{f}(m + K) = n$. Let $m' \in m + K$. Then m' = m + k for some $k \in K$. Then, since f is a homomorphism and f(k) = 0, f(m') = f(m+k)= f(m) + f(k)= f(m) $=\hat{f}(m+k)$ = n.So $n \in \operatorname{im} f$. So $\operatorname{im} \hat{f} \subseteq \operatorname{im} f$. cab) Let $n \in \operatorname{im} f$. Then there is some $m \in M$ such that f(m) = n. So $\hat{f}(m+K) = f(m) = n$. So $n \in \operatorname{im} \hat{f}$. So im $f \subseteq \operatorname{im} \hat{f}$. So im $f = \operatorname{im} \hat{f}$. cb) To show: If $\hat{f}'(m_1 + K) = \hat{f}'(m_2 + K)$ then $m_1 + K = m_2 + K$. Assume $\hat{f}'(m_1 + K) = \hat{f}'(m_2 + K).$ Then $\hat{f}(m_1 + K) = \hat{f}(m_2 + K)$. Then, since \hat{f} is injective, $m_1 + K = m_2 + K$. So \hat{f}' is injective.

Thus we have

$$\hat{f'}: \quad M/K \quad \to \quad \inf f \\ m+K \quad \mapsto \quad f(m)$$

is a well defined bijective R-module homomorphism. \Box

Chapter 3. FIELDS AND VECTOR SPACES

\S **1P. Fields**

(3.1.3) **Proposition.** If $f: K \to F$ is a field homomorphism then f is injective.

Proof.

To show: $f: K \to F$ is injective. Assume $f: K \to F$ is a field homomorphism. To show: If $x_1, x_2 \in K$ and $f(x_1) = f(x_2)$ then $x_1 = x_2$. Assume $x_1, x_2 \in K$ and $f(x_1) = f(x_2)$. To show: $x_1 = x_2$. Proof by contradiction: Assume $x_1 \neq x_2$. Let 0_K and 0_F be the additive identities in K and F respectively. Let 1_K and 1_F be the multiplicative identities in K and F respectively. Then $f(x_1) - f(x_2) = 0_F$ and $x_1 - x_2 \neq 0_K$. Let $y = (x_1 - x_2)^{-1}$, which exists by property h) in the definition of a field. Then, since $f: K \to F$ is a homomorphism and $f(x_1) - f(x_2) = 0_F$,

$$1_F = f(1_K) = f((x_1 - x_2)y) = f(x_1 - x_2)f(y) = (f(x_1) - f(x_2))f(y) = 0_F \cdot f(y) = 0_F.$$

This is a contradiction to property g) in the definition of a field.

So $x_1 = x_2$. So $f: K \to F$ is injective. \Box

\S **2P. Vector Spaces**

(3.2.4) Proposition. Let V be a vector space over a field F and let W be a subgroup of V. Then the cosets of W in V partition V.

Proof.

To show: a) If $v \in V$ then $v \in v' + W$ for some $v' \in V$. b) If $(v_1 + W) \cap (v_2 + W) \neq \emptyset$ then $v_1 + W = v_2 + W$. a) Let $v \in V$. Then, since $0 \in W$, $v = v + 0 \in v + W$. So $v \in v + W$. b) Assume $(v_1 + W) \cap (v_2 + W) \neq \emptyset$. To show: ba) $v_1 + W \subseteq v_2 + W$. bb) $v_2 + W \subseteq v_1 + W$. Let $a \in (v_1 + W) \cap (v_2 + W)$. Suppose $a = v_1 + w_1$ and $a = v_2 + w_2$ where $w_1, w_2 \in W$. Then $v_1 = v_1 + w_1 - w_1 = a - w_1 = v_2 + w_2 - w_1$ and $v_2 = v_2 + w_2 - w_2 = a - w_2 = v_1 + w_1 - w_2.$ ba) Let $v \in v_1 + W$. Then $v = v_1 + w$ for some $w \in W$. Then $v = v_1 + w = v_2 + w_2 - w_1 + w \in v_2 + W,$ since $w_2 - w_1 + w \in W$. So $v_1 + W \subseteq v_2 + W$. bb) Let $v \in v_2 + W$. Then $v = v_2 + w$ for some $w \in W$. Then $v = v_2 + w = v_1 + w_1 - w_2 + w \in v_1 + W,$ since $w_1 - w_2 + w \in W$. So $v_2 + W \subseteq v_1 + W$. So $v_1 + W = v_2 + W$. So the cosets of W in V partition V. \Box

(3.2.5) Theorem. Let W be a subgroup of a vector space V over a field F. Then W is a subspace of V if and only if V/W with operations given by

$$(v_1 + W) + (v_2 + W) = (v_1 + v_2) + W$$
, and
 $c(v + W) = cv + W$,

is a vector space over F.

Proof.

 \implies : Assume W is a subspace of V.

To show: a)
$$(v_1 + W) + (v_2 + W) = (v_1 + v_2) + W$$
 is a well defined operation on V/W .

- b) The operation given by c(v+W) = cv + W is well defined.
- c) $((v_1 + W) + (v_2 + W)) + (v_3 + W) = (v_1 + W) + ((v_2 + W) + (v_3 + W))$ for all $v_1 + W, v_2 + W, v_3 + W \in V/W$.
- d) $(v_1 + W) + (v_2 + W) = (v_2 + W) + (v_1 + W)$ for all $v_1 + W, v_2 + W \in V/W$.

- e) 0 + W = W is the zero in V/W.
- f) -v + W is the additive inverse of v + W.
- g) If $c_1, c_2 \in F$ and $v + W \in V/W$, then $c_1(c_2(v + W)) = (c_1c_2)(v + W)$.
- h) If $v + W \in V/W$ then 1(v + W) = v + W.
- i) If $c \in F$ and $v_1 + W, v_2 + W \in V/W$,
 - then $c((v_1 + W) + (v_2 + W)) = c(v_1 + W) + c(v_2 + W).$
- j) If $c_1, c_2 \in F$ and $v + W \in V/W$, then $(a_1 + c_2)(v + W) = c_1(v + W)$.

then
$$(c_1, c_2 \in F)$$
 and $v + w \in V/W$,
then $(c_1 + c_2)(v + W) = c_1(v + W) + c_2(v + W)$.

a) We want the operation on V/W given by

$$\begin{array}{rcl} V/W \times V/W & \to & V/W \\ (v_1 + W, v_2 + W) & \mapsto & (v_1 + v_2) + W \end{array}$$

to be well defined. Let $(v_1 + W, v_2 + W), (v_3 + W, v_4 + W) \in V/W \times V/W$ such that $(v_1 + W, v_2 + W) = (v_3 + W, v_4 + W).$ Then $v_1 + W = v_3 + W$ and $v_2 + W = v_4 + W$. To show: $(v_1 + v_2) + W = (v_3 + v_4) + W$. So we must show: aa) $(v_1 + v_2) + W \subseteq (v_3 + v_4) + W$. ab) $(v_3 + v_4) + W \subseteq (v_1 + v_2) + W.$ aa) We know $v_1 = v_1 + 0 \in v_3 + W$ since $v_1 + W = v_3 + W$. So $v_1 = v_3 + w_1$ for some $w_1 \in W$. Similarly $v_2 = v_4 + w_2$ for some $w_2 \in W$. Let $t \in (v_1 + v_2) + W$. Then $t = v_1 + v_2 + w$ for some $w \in W$. So $t = v_1 + v_2 + w$ $= v_3 + w_1 + v_4 + w_2 + w_3$ $= v_3 + v_4 + w_1 + w_2 + w_1$ since addition is commutative. So $t = (v_3 + v_4) + (w_1 + w_2 + w) \in v_3 + v_4 + W$. So $(v_1 + v_2) + W \subseteq (v_3 + v_4) + W$. ab) Since $v_1 + W = v_3 + W$, we know $v_1 + w_1 = v_3$ for some $w_1 \in W$. Since $v_2 + W = v_4 + W$, we know $v_2 + w_2 = v_4$ for some $w_2 \in W$. Let $t \in (v_3 + v_4) + W$. Then $t = v_3 + v_4 + w$ for some $w \in W$. So $t = v_3 + v_4 + w$ $= v_1 + w_1 + v_2 + w_2 + w_3$ $= v_1 + v_2 + w_1 + w_2 + w,$ since addition is commutative. So $t = (v_1 + v_2) + (w_1 + w_2 + w) \in (v_1 + v_2) + W$. So $(v_3 + v_4) + W \subseteq (v_1 + v_2) + W$. So $(v_1 + v_2) + W = (v_3 + v_4) + W$. So the operation given by $(v_1 + W) + (v_3 + W) = (v_1 + v_3) + W$ is a well defined operation on V/W.

b) We want the operation given by

$$\begin{array}{rccc} F\times V/W & \to & V/W \\ (c,v+W) & \mapsto & cv+W \end{array}$$

to be well defined. Let $(c_1, v_1 + W), (c_2, v_2 + W) \in (F \times V/W)$ such that $(c_1, v_1 + W) = (c_2, v_2 + W)$. Then $c_1 = c_2$ and $v_1 + W = v_2 + W$. To show: $c_1v_1 + W = c_2v_2 + W$. To show: ba) $c_1v_1 + W \subseteq c_2v_2 + W$. bb) $c_2v_2 + W \subseteq c_1v_1 + W$. ba) Since $v_1 + W = v_2 + W$, we know $v_1 = v_2 + w_1$ for some $w_1 \in W$. Let $t \in c_1 v_1 + W$. Then $t = c_1 v_1 + w$ for some $w \in W$. So $t = c_1 v_1 + w$ $= c_2(v_2 + w_1) + w$ $= c_2 v_2 + c_2 w_1 + w,$ since $c_1 = c_2$. Since W is a subspace, $c_2w_1 \in W$, and $c_2w_1 + w \in W$. So $t = c_2 v_2 + c_2 w_1 + w \in c_2 v_2 + W$. So $c_1v_1 + W \subseteq c_2v_2 + W$. bb) Since $v_1 + W = v_2 + W$, we know $v_2 = v_1 + w_2$ for some $w_2 \in W$. Let $t \in c_2 v_2 + W$. Then $t = c_2 v_2 + w$ for some $w \in W$. So $t = c_2 v_2 + w$ $= c_1(v_1 + w_2) + w$ $= c_1 v_1 + c_1 w_2 + w,$ since $c_2 = c_1$. Since W is a subspace, $c_1w_2 \in W$, and $c_1w_2 + w \in W$. So $t = c_1 v_1 + c_1 w_2 + w \in c_1 v_1 + W$. So $c_2v_2 + W \subseteq c_1v_1 + W$. So $c_1v_1 + W = c_2v_2 + W$. So the operation is well defined. c) By the associativity of addition in V and the definition of the operation in V/W, -----17

$$((v_1 + W) + (v_2 + W)) + (v_3 + W) = ((v_1 + v_2) + W) + (v_3 + W)$$

= $((v_1 + v_2) + v_3) + W$
= $(v_1 + (v_2 + v_3)) + W$
= $(v_1 + W) + ((v_2 + v_3) + W)$
= $(v_1 + W) + ((v_2 + W) + (v_3 + W))$

for all $v_1 + W, v_2 + W, v_3 + W \in V/W$.

d) By the commutativity of addition in V and the definition of the operation in V/W,

$$(v_1 + W) + (v_2 + W) = (v_1 + v_2) + W$$

= $(v_2 + v_1) + W$
= $(v_2 + W) + (v_1 + W).$

for all $v_1 + W, v_2 + W \in V/W$.

e) The coset W = 0 + W is the zero in V/W since

$$W + (v + W) = (0 + v) + W$$
$$= v + W$$
$$= (v + 0) + W$$
$$= (v + W) + W$$

for all $v + W \in V/W$.

f) Given any coset v + W, its additive inverse is (-v) + W since

$$(v + W) + (-v + W) = v + (-v) + W$$

= 0 + W
= W
= (-v + v) + W
= (-v + W) + v + W

for all $v + W \in V/W$.

g) Assume $c_1, c_2 \in F$ and $v + W \in V/W$. Then, by definition of the operation,

$$c_1(c_2(v+W)) = c_1(c_2v+W) = c_1(c_2v) + W = (c_1c_2)v + W = (c_1c_2)(v+W).$$

h) Assume $v + W \in V/W$. Then, by definition of the operation,

$$1(v+W) = (1v) + W$$
$$= v + W.$$

i) Assume $c \in F$ and $v_1 + W, v_2 + W \in V/W$. Then

$$c((v_1 + W) + (v_2 + W)) = c((v_1 + v_2) + W)$$

= $c(v_1 + v_2) + W$
= $(cv_1 + cv_2) + W$
= $(cv_1 + W) + (cv_2 + W)$
= $c(v_1 + W) + c(v_2 + W)$.

j) Assume $c_1, c_2 \in F$ and $v + W \in V/W$. Then

$$(c_1 + c_2)(v + W) = ((c_1 + c_2)v) + W$$

= $(c_1v + c_2v) + W$
= $(c_1v + W) + (c_2v + W)$
= $c_1(v + W) + c_2(v + W).$

So V/W is a vector space over F.

 \Leftarrow : Assume W is a subgroup of V and V/W is a vector space over F with action given by

c(v+W) = cv + W.To show: W is a subspace of V. To show: If $c \in F$ and $w \in W$ then $cw \in W$. First we show: If $w \in W$ then w + W = W. To show: a) $w + W \subseteq W$. b) $W \subseteq w + W$. a) Let $k \in w + W$. So $k = w + w_1$ for some $w_1 \in W$. Since W is a subgroup, $w + w_1 \in W$. So $w + W \subseteq W$. b) Let $k \in W$. Since $k - w \in W$, $k = w + (k - w) \in w + W$. So $W \subseteq w + W$. Now assume $c \in F$ and $w \in W$. Then, by definition of the operation on V/W, cw + W = c(w + W)= c(0 + W)

= c(0 + W) $= c \cdot 0 + W$ = 0 + W= W.

So $cw = cw + 0 \in W$. So W is a subspace of V. \Box

(3.2.8) Proposition. Let $T: V \to W$ be a linear transformation. Let 0_V and 0_W be the zeros for V and W respectively. Then

a) $T(0_V) = 0_W.$ b) For any $v \in V$, T(-v) = -T(v).

Proof.

a) Add $-T(0_V)$ to both sides of the following equation.

$$T(0_V) = T(0_V + 0_V) = T(0_V) + T(0_V).$$

b) Since $T(v) + T(-v) = T(v + (-v)) = T(0_V) = 0_W$ and $T(-v) + T(v) = T((-v) + v) + T(0_V) = 0_W$, then

$$-T(v) = T(-v). \quad \Box$$

(3.2.10) Proposition. Let $T: V \to W$ be a linear transformation. Then

- a) ker T is a subspace of V.
- b) im T is a subspace of W.

Proof.

a) By condition a) in the definition of linear transformation, T is a group homomorphism. By Proposition 1.1.13 a), ker T is a subgroup of V.

To show: If $c \in F$ and $k \in \ker T$ then $ck \in \ker T$. Assume $c \in F$ and $k \in \ker T$. Then, by the definition of linear transformation,

$$T(ck) = cT(k) = c \cdot 0 = 0.$$

So $ck \in \ker T$.

So ker T is a subspace of V.

- b) By condition a) in the definition of linear transformation, T is a group homomorphism. By Proposition 1.1.13 b), im T is a subgroup of W.
 - To show: If $c \in F$ and $a \in \operatorname{im} T$ then $ca \in \operatorname{im} T$. Assume $c \in F$ and $c \in \operatorname{im} T$. Then a = T(v) for some $v \in V$.

By the definition of linear transformation,

$$ca = cT(v) = T(cv).$$

So $ca \in \operatorname{im} T$. So $\operatorname{im} T$ is a subspace of W. \Box

(3.2.11) Proposition. Let $T: V \to W$ be a linear transformation. Let 0_V be the zero in V. Then a) ker $T = (0_V)$ if and only if T is injective.

b) im T = W if and only if T is surjective.

Proof.

Let 0_V and 0_W be the zeros in V and W respectively.

a) \implies : Assume ker $T = (0_V)$. To show: If $T(v_1) = T(v_2)$ then $v_1 = v_2$. Assume $T(v_1) = T(v_2)$. Then, by the fact that T is a homomorphism,

$$0_W = T(v_1) - T(v_2) = T(v_1 - v_2)$$

So $v_1 - v_2 \in \ker T$. But ker $T = (0_V)$. So $v_1 - v_2 = 0_V$. So $v_1 = v_2$. So T is injective. \iff : Assume T is injective. To show: aa) $(0_V) \subseteq \ker T$. ab) ker $T \subseteq (0_V)$. aa) Since $T(0_V) = 0_W, 0_V \in \ker T$. So $(0_V) \subseteq \ker T$. ab) Let $k \in \ker T$. Then $T(k) = 0_W$. So $T(k) = T(0_V)$. Thus, since T is injective, $k = 0_V$. So ker $T \subseteq (0_V)$. So ker $T = (0_V)$. b) \implies : Assume im T = W. To show: If $w \in W$ then there exists $v \in V$ such that T(v) = w. Assume $w \in W$. Then $w \in \operatorname{im} T$. So there is some $v \in V$ such that T(v) = w. So T is surjective. \iff : Assume T is surjective. To show: ba) im $T \subseteq W$. bb) $W \subseteq \operatorname{im} T$.

> ba) Let $x \in \operatorname{im} T$. Then x = T(v) for some $v \in V$.

By the definition of T, $T(v) \in W$. So $x \in W$. So im $T \subseteq W$. bb) Assume $x \in W$. Since T is surjective there is a v such that T(v) = x. So $x \in \operatorname{im} T$. So $W \subseteq \operatorname{im} T$. So im T = W. \Box

(3.2.12) Theorem.

a) Let $T: V \to W$ be a linear transformation and let $K = \ker T$. Define

$$\hat{T}: \quad V/\ker T \quad \to \quad W \\ v+K \quad \mapsto \quad T(v).$$

Then \hat{T} is a well defined injective linear transformation.

b) Let $T: V \to W$ be a linear transformation and define

$$\begin{array}{rcccc} T' \colon V & \to & \operatorname{im} T \\ v & \mapsto & T(v). \end{array}$$

Then T' is a well defined surjective linear transformation.

c) If $T: V \to W$ is a linear transformation, then

$$V/\ker T \simeq \operatorname{im} T$$

where the isomorphism is a vector space isomorphism.

Proof.

a) To show: aa) \hat{T} is well defined.

- ab) \hat{T} is injective.
- ac) \hat{T} is a linear transformation.
- aa) To show: aaa) If $v \in V$ then $\hat{T}(v+K) \in W$.
 - aab) If $v_1 + K = v_2 + K \in V/K$ then $\hat{T}(v_1 + K) = \hat{T}(v_2 + K)$.
 - aaa) Assume $v \in V$.

Then
$$T(v+K) = T(v)$$
 and $T(v) \in W$, by the definition of T and T

- aab) Assume $v_1 + K = v_2 + K$.
 - Then $v_1 = v_2 + K$, for some $k \in K$.
 - To show: $\hat{T}(v_1 + K) = \hat{T}(v_2 + K)$, i.e.,
 - To show: $T(v_1) = T(v_2)$.
 - Since $K \in \ker T$, we have T(k) = 0 and so

$$T(v_1) = T(v_2 + k) = T(v_2) + T(k) = T(v_2).$$

So $\hat{T}(v_1 + K) = \hat{T}(v_2 + K)$. So \hat{T} is well defined.

ab) To show: If $\hat{T}(v_1 + K) = \hat{T}(v_2 + K)$ then $v_1 + K = v_2 + K$. Assume $\hat{T}(v_1 + K) = \hat{T}(v_2 + K)$. Then $T(v_1) = T(v_2)$. So $T(v_1) - T(v_2) = 0$. So $T(v_1 - v_2) = 0$. So $v_1 - v_2 \in \ker T$. So $v_1 - v_2 = k$, for some $k \in \ker T$. So $v_1 = v_2 + k$, for some $k \in \ker T$.

To show: aba) $v_1 + K \subseteq v_2 + K$. abb) $v_2 + K \subseteq v_1 + K$. aba) Let $v \in v_1 + K$. Then $v = v_1 + k_1$, for some $k_1 \in K$. So $v = v_2 + k + k_1 \in v_2 + K$, since $k + k_1 \in K$. So $v_1 + K \subseteq v_2 + K$. abb) Let $v \in v_2 + K$. Then $v = v_2 + k_2$, for some $k_2 \in K$. So $v = v_1 - k + k_2 \in v_1 + K$ since $-k + k_2 \in K$. So $v_2 + K \subseteq v_1 + K$. So $v_1 + K = v_2 + K$. So \hat{T} is injective. ac) To show: aca) If $v_1 + K, v_2 + K \in V/K$ then $\hat{T}(v_1 + K) + \hat{T}(v_2 + K) = \hat{T}((v_1 + K) + (v_2 + K)).$ acb) If $c \in F$ and $v + K \in V/K$ then $\hat{T}(c(v+K)) = c\hat{T}(v+K)$. aca) Let $v_1 + K, v_2 + K \in V/K$. Since T is a homomorphism, $\hat{T}(v_1 + K) + \hat{T}(v_2 + K) = T(v_1) + T(v_2)$ $=T(v_1+v_2)$ $=\hat{T}((v_1+v_2)+K)$ $= \hat{T}((v_1 + K) + (v_2 + K)).$ acb) Let $c \in F$ and $v + K \in V/K$.

Since T is a homomorphism,

$$T(c(v+K)) = T(cv+K)$$

= T(cv)
= cT(v)
= cT(v+K).

So \hat{T} is a linear transformation.

So \hat{T} is a well defined injective linear transformation.

- b) To show: ba) T' is well defined.
 - bb) T' is surjective.
 - bc) T' is a linear transformation.
 - ba) and bb) are proved in Ex. 2.2.3 b), Part I.
 - bc) To show: bca) If $v_1, v_2 \in V$ then $T'(v_1 + v_2) = T'(v_1) + T'(v_2)$. bcb) If $c \in F$ and $v \in V$ then T'(cv) = cT'(v).

bca) Let $v_1, v_2 \in V$. Then, since T is a linear transformation,

$$T'(v_1 + v_2) = T(v_1 + v_2) = T(v_1) + T(v_2) = T'(v_1) + T'(v_2).$$

bcb) Let $v_1, v_2 \in V$. Then, since T is a linear transformation,

$$T'(cv) = T(cv) = cT(v) = cT'(v).$$

So T' is a linear transformation.

So T' is a well defined surjective linear transformation.

c) Let $K = \ker T$.

By a), the function

$$\begin{array}{rccc} \hat{T} \colon & V/K & \to & W \\ & v+K & \mapsto & T(v) \end{array}$$

is a well defined injective linear transformation.

By b), the function

$$\begin{array}{rccc} \hat{T}' \colon & V/K & \to & \operatorname{im} \hat{T} \\ & v+K & \mapsto & \hat{T}(v+K) & = T(v) \end{array}$$

is a well defined surjective linear transformation.

To show: ca) $\operatorname{im} \hat{T} = \operatorname{im} T$. cb) \hat{T}' is injective. ca) To show: caa) $\operatorname{im} \hat{T} \subseteq \operatorname{im} T$. ${\rm cab}) \ {\rm im}\, T\subseteq {\rm im}\, \hat T.$ caa) Let $w \in \operatorname{im} \hat{T}$. Then there is some $v + K \in V/K$ such that $\hat{T}(v + K) = w$. Let $v' \in v + K$. Then v' = v + k for some $k \in K$. Then, since T is a linear transformation and T(k) = 0, T(v') = T(v+k)=T(v)+T(k)=T(v) $=\hat{T}(v+k)$ = w.So $w \in \operatorname{im} T$. So $\operatorname{im} \hat{T} \subseteq \operatorname{im} T$. cab) Let $w \in \operatorname{im} T$. Then there is some $v \in V$ such that T(v) = w. So $\hat{T}(v+K) = T(v) = w$. So $w \in \operatorname{im} \hat{T}$. So im $T \subseteq \operatorname{im} \hat{T}$. So im $T = \operatorname{im} \hat{T}$. cb) To show: If $\hat{T}'(v_1 + K) = \hat{T}'(v_2 + K)$ then $v_1 + K = v_2 + K$. Assume $\hat{T}'(v_1 + K) = \hat{T}'(v_2 + K).$ Then $\hat{T}(v_1 + K) = \hat{T}(v_2 + K)$. Then, since \hat{T} is injective, $v_1 + K = v_2 + K$. So \hat{T}' is injective. Thus we have

$$\begin{array}{rccc} \hat{T}' \colon & V/K & \to & \operatorname{im} \hat{T} \\ & v+K & \mapsto & T(v) \end{array}$$

is a well defined bijective linear transformation. $\hfill\square$