
Chapter 2. SETS AND FUNCTIONS

§1P. Sets

1. DeMorgan’s Laws. Let A, B, and C be sets. Show that

a) (A ∪B) ∪ C = A ∪ (B ∪ C).
b) A ∪B = B ∪A.
c) A ∪ ∅ = A.

d) (A ∩B) ∩ C = A ∩ (B ∩ C).
e) A ∩B = B ∩A.
f) A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C).

Proof.
a) To show: aa) (A ∪B) ∪ C ⊆ A ∪ (B ∪ C).

ab) A ∪ (B ∪ C) ⊆ (A ∪B) ∪ C.
aa) Let x ∈ (A ∪B) ∪ C.

Then x ∈ A ∪B or x ∈ C.
So x ∈ A or x ∈ B or x ∈ C.
So x ∈ A or x ∈ B ∪ C.
So x ∈ A ∪ (B ∪ C).
So (A ∪B) ∪ C ⊆ A ∪ (B ∪ C).

ab) Let x ∈ A ∪ (B ∪ C).
Then x ∈ A or x ∈ B ∪ C.
So x ∈ A or x ∈ B or x ∈ C.
So x ∈ A ∪B or x ∈ C.
So x ∈ (A ∪B) ∪ C.
So A ∪ (B ∪ C) ⊆ (A ∪B) ∪ C.

So (A ∪B) ∪ C = A ∪ (B ∪ C).

b) To show: ba) A ∪B ⊆ B ∪A.
bb) B ∪A ⊆ A ∪B.

ba) Let x ∈ A ∪B.
Then x ∈ A or x ∈ B.
So x ∈ B or x ∈ A.
So x ∈ B ∪A.
So A ∪B ⊆ B ∪A.

bb) Let x ∈ B ∪A.
Then x ∈ B or x ∈ A.
So x ∈ A or x ∈ B.
So x ∈ A ∪B.
So B ∪A ⊆ A ∪B.

So A ∪B = B ∪A.

c) To show: ca) A ∪ ∅ ⊆ A.
cb) A ⊆ A ∪ ∅.

ca) Proof by contradiction.
Assume A ∪ ∅ 6⊆ A.
Then there exists x ∈ A ∪ ∅ such that x 6∈ A.
So x ∈ ∅.
This is a contradiction to the definition of empty set.
So A ∪ ∅ ⊆ A.

cb) Let x ∈ A.
Then x ∈ A or x ∈ ∅.
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So x ∈ A ∪ ∅.
So A ⊆ A ∪ ∅.

So A ∪ ∅ = A.

d) To show: da) (A ∩B) ∩ C ⊆ A ∩ (B ∩ C).
db) A ∩ (B ∩ C) ⊆ (A ∩B) ∩ C.

da) Let x ∈ (A ∩B) ∩ C.
Then x ∈ A ∩B and x ∈ C.
So x ∈ A and x ∈ B and x ∈ C.
So x ∈ A and x ∈ B ∩ C.
So x ∈ A ∩ (B ∩ C).
So (A ∩B) ∩ C ⊆ A ∩ (B ∩ C).

db) Let x ∈ A ∩ (B ∩ C).
Then x ∈ A and x ∈ B ∩ C.
So x ∈ A and x ∈ B and x ∈ C.
So x ∈ A ∩B and x ∈ C.
So x ∈ (A ∩B) ∩ C.
So A ∩ (B ∩ C) ⊆ (A ∩B) ∩ C.

So (A ∩B) ∩ C = A ∩ (B ∩ C).

e) To show: ea) A ∩B ⊆ B ∩A.
eb) B ∩A ⊆ A ∩B.

ea) Let x ∈ A ∩B.
Then x ∈ A and x ∈ B.
So x ∈ B and x ∈ A.
So x ∈ B ∩A.
So A ∩B ⊆ B ∩A.

eb) Let x ∈ B ∩A.
Then x ∈ B and x ∈ A.
So x ∈ A and x ∈ B.
So x ∈ A ∩B.
So B ∩A ⊆ A ∩B.

So A ∩B = B ∩A.

f) To show: fa) A ∩ (B ∪ C) ⊆ (A ∩B) ∪ (A ∩ C).
fb) (A ∩B) ∪ (A ∩ C) ⊆ A ∩ (B ∪ C).

fa) Let x ∈ A ∩ (B ∪ C).
Then x ∈ A and x ∈ B ∪ C.
So x ∈ A and x ∈ B or x ∈ C.
So x ∈ A and x ∈ B, or x ∈ A and x ∈ C.
So x ∈ A ∩B or x ∈ A ∩ C.
So x ∈ (A ∩B) ∪ (A ∩ C).
So A ∩ (B ∪ C) ⊆ (A ∩B) ∪ (A ∩ C).

fb) Let x ∈ (A ∩B) ∪ (A ∩ C).
Then x ∈ A ∩B or x ∈ A ∩ C.
So x ∈ A and x ∈ B, or x ∈ A and x ∈ C.
So x ∈ A and, x ∈ B or x ∈ C.
So x ∈ A and x ∈ B ∪ C.
So x ∈ A ∩ (B ∪ C).
So (A ∩B) ∪ (A ∩ C) ⊆ A ∩ (B ∪ C).

So A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C).
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§2P. Functions

(2.2.3) Proposition. Let f :S → T be a function. An inverse function to f exists if and only if f is
bijective.

Proof.
=⇒: Assume f :S → T has an inverse function f−1:T → S.

To show: a) f is injective.
b) f is surjective.

a) Assume f(s1) = f(s2).
To show: s1 = s2.

s1 = f−1
(
f(s1)

)
= f−1

(
f(s2)

)
= s2.

So f is injective.
b) Let t ∈ T .

To show: There exists s ∈ S such that f(s) = t.
Let s = f−1(t).
Then

f(s) = f
(
f−1(t)

)
= t.

So f is surjective.
So f is bijective.

⇐=: Assume f :S → T is bijective.
To show: f has an inverse function.

We need to define a function ϕ:T → S.
Let t ∈ T .
Since f is surjective there exists s ∈ S such that f(s) = t.
Define ϕ(t) = s.
To show: a) ϕ is well defined.

b) ϕ is an inverse function to f .

a) To show: aa) If t ∈ T then ϕ(t) ∈ S.
ab) If t1, t2 ∈ T and t1 = t2 then ϕ(t1) = ϕ(t2).

aa) It is clear from the definition that ϕ(t) ∈ S.
ab) To show: If t1 = t2 then ϕ(t1) = ϕ(t2).

Assume t1, t2 ∈ T and t1 = t2.
Let s1, s2 ∈ S such that f(s1) = t1 and f(s2) = t2.
Since t1 = t2, f(s1) = f(s2).
Since f is injective this implies that s1 = s2.

So ϕ(t1) = s1 = s2 = ϕ(t2).
So ϕ is well defined.

b) To show: ba) If s ∈ S then ϕ
(
f(s)

)
= s.

bb) If t ∈ T then f
(
ϕ(t)

)
= t.

ba) This is immediate from the definition of ϕ.
bb) Assume t ∈ T .

Let s ∈ S be such that f(s) = t.
Then

f
(
ϕ(t)

)
= f(s) = t.

So ϕ ◦ f and f ◦ ϕ are the identity functions on S and T respectively.
So ϕ is an inverse function to f .
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(2.2.7) Proposition.
a) Let S be a set and let ∼ be an equivalence relation on S. The set of equivalence classes of the

relation ∼ is a partition of S.
b) Let S be a set and let {Sα} be a partition of S. Then the relation defined by

s ∼ t, if s, t are in the same Sα,

is an equivalence relation on S.

Proof.
a) To show: aa) If s ∈ S then s is in some equivalence class.

ab) If [s] ∩ [t] 6= ∅ then [s] = [t].
aa) Let s ∈ S.

Since s ∼ s, s ∈ [s].
ab) Assume [s] ∩ [t] 6= ∅.

To show: [s] = [t].
Since [s] ∩ [t] 6= 0, there is an r ∈ [s] ∩ [t].
So s ∼ r and r ∼ t.
By transitivity, s ∼ t.
To show: aba) [s] ⊆ [t]

abb) [t] ⊆ [s].
aba) Suppose u ∈ [s].

Then u ∼ s.
We know s ∼ t.
So, by transitivity, u ∼ t.
Therefore u ∈ [t].
So [s] ⊆ [t].

abb) Suppose v ∈ [t].
Then v ∼ t.
We know t ∼ s.
So, by transitivity, v ∼ s.
Therefore v ∈ [s].
So [t] ⊆ [s].

So [s] = [t].
So the equivalence classes form a partition of S.

b) We must show that ∼ is an equivalence relation, i.e. that ∼ is reflexive, symmetric, and transitive.
To show: ba) s ∼ s for all s ∈ S.

bb) If s ∼ t then t ∼ s.
bc) If s ∼ t and t ∼ u then s ∼ u.

ba) s and s are in the same Sα so s ∼ s.
bb) Assume s ∼ t.

Then s and t are in the same Sα.
So t ∼ s.

bc) Assume s ∼ t and t ∼ u.
Then s and t are in the same Sα and t and u are in the same Sα.
So s and u are in the same Sα.
So s ∼ u.

So ∼ is an equivalence relation.

1. Let S, T , U be sets and let f :S → T and g:T → U be functions.
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a) If f and g are injective then g ◦ f is injective.
b) If f and g are surjective then g ◦ f is surjective.
c) If f and g are bijective then g ◦ f is bijective.

Proof.
a) Assume f and g are injective.

To show: If s1, s2 ∈ S and (g ◦ f)(s1) = (g ◦ f)(s2) then s1 = s2.
Assume s1, s2 ∈ S and (g ◦ f)(s1) = (g ◦ f)(s2).
Then

g
(
f(s1)

)
= g
(
f(s2)

)
.

Thus, since g is injective, f(s1) = f(s2).
Thus, since f is injective, s1 = s2.

So g ◦ f is injective.

b) Assume f and g are surjective.
To show: If u ∈ U then there exists s ∈ S such that (g ◦ f)(s) = u.

Assume u ∈ U .
Since g is surjective there exists t ∈ T such that g(t) = u.
Since f is surjective there exists s ∈ S such that f(s) = t.
So

(g ◦ f)(s) = g
(
f(s)

)
= g(t)
= u.

So there exists s ∈ S such that (g ◦ f)(s) = u.
So g ◦ f is surjective.

c) Assume f and g are bijective.
To show: ca) g ◦ f is injective.

cb) g ◦ f is surjective.
ca) Since f and g are bijective, f and g are injective.

Thus, by a), g ◦ f is injective.
cb) Since f and g are bijective, f and g are surjective.

Thus, by b), g ◦ f is surjective.
So g ◦ f is bijective.

2. Let f :S → T be a function. Then the set F = {f−1(t) | t ∈ T} of fibers of the map f is a partition of S.

Proof.
To show: a) If s′ ∈ S then s′ ∈ f−1(t) for some t ∈ T .

b) If f−1(t1) ∩ f−1(t2) 6= ∅ then f−1(t1) = f−1(t2).
a) Assume s′ ∈ S.

Then f−1(f(s′)) = {s ∈ S | f(s) = f(s′)}.
Since f(s′) = f(s′), s′ ∈ f−1

(
f(s′)

)
.

b) Assume f−1(t1) ∩ f−1(t2) 6= ∅.
Let s ∈ f−1(t1) ∩ f−1(t2).
So f(s) = t1 and f(s) = t2.
To show: f−1(t1) = f−1(t2).

To show: ba) f−1(t1) ⊆ f−1(t2).
bb) f−1(t2) ⊆ f−1(t1).
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ba) Let k ∈ f−1(t1).
Then f(k) = t1

= f(s)
= t2.

So k ∈ f−1(t2).
So f−1(t1) ⊆ f−1(t2).

bb) Let h ∈ f−1(t2).
Then f(k) = t2

= f(s)
= t1.

So h ∈ f−1(t1).
So f−1(t2) ⊆ f−1(t1).

So f−1(t1) = f−1(t2).
So the set F = {f−1(t) | t ∈ T} of fibers of the map f is a partition of S.

3. a) Let f :S → T be a function. Define

f ′: S → im f
s 7→ f(s).

Then the map f ′ is well defined and surjective.

b) Let f :S → T be a function and let F = {f−1(t) | t ∈ T} be the set of nonempty fibers of f . Define

f̂ : F → T
f−1(t) 7→ t.

Then the map f̂ is well defined and injective.

c) Let f :S → T be a function and let F = {f−1(t) | t ∈ T} be the set of nonempty fibers of f . Define

f̂ ′: F → im f
f−1(t) 7→ t.

Then the map f̂ ′ is well defined and bijective.

Proof.
a) To show: aa) f ′ is well defined.

ab) f ′ is surjective.
aa) To show: aaa) If s ∈ S then f ′(s) ∈ im f .

aab) If s1 = s2 then f ′(s1) = f ′(s2).
aaa) Assume s ∈ S.

Then f ′(s) = f(s) ∈ im f by definition of f ′ and im f .
aab) Assume s1 = s2.

Then, by definition of f ′,

f ′(s1) = f(s1) = f(s2) = f ′(s2).

So f ′ is well defined.

ab) To show: If t ∈ im f then there exists s ∈ S such that f ′(s) = t.
Assume t ∈ im f .
Then f(s) = t for some s ∈ S.
So f ′(s) = f(s) = t.
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So f ′ is surjective.

b) To show: ba) f̂ is well defined.
bb) f̂ is injective.

ba) To show: baa) If f−1(t) ∈ F then f̂
(
f−1(t)

)
∈ T .

bab) If f−1(t1) = f−1(t2) then f̂
(
f−1(t1)

)
= f̂

(
f−1(t2)

)
.

baa) Assume f−1(t) ∈ F .
Then f̂

(
f−1(t)

)
= t ∈ T , by definition.

bab) Assume f−1(t1) = f−1(t2).
Let s ∈ f−1(t1).
Then s ∈ f−1(t2) also.
So t1 = f(s) = t2.
Then

f̂
(
f−1(t1)

)
= t1 = t2 = f̂

(
f−1(t2)

)
.

So f̂ is well defined.
bb) To show: If f̂

(
f−1(t1)

)
= f̂

(
f−1(t2)

)
then f−1(t1) = f−1(t2).

Assume f̂
(
f−1(t1)

)
= f̂

(
f−1(t2)

)
.

Then t1 = t2.
To show: f−1(t1) = f−1(t2).

This is clearly true since t1 = t2.
So f̂ is injective.

c) By Ex. 2.2.3 b), the function

f̂ : F → T
f−1(t) 7→ t

is well defined and injective.
By Ex. 2.2.3 a), the function

f̂ ′: F → im f̂
f−1(t) 7→ t

is well defined and surjective.
To show: ca) im f̂ = im f .

cb) f̂ ′ is injective.

ca) To show: caa) im f̂ ⊆ im f .
cab) im f ⊆ im f̂ .

caa) Assume t ∈ im f̂ .
Then f−1(t) is nonempty.
So there exists s ∈ S such that f(s) = t.
So t ∈ im f .
So im f̂ ⊆ im f .

cab) Assume t ∈ im f .
Then there exists s ∈ S such that f(s) = t.
So f−1(t) 6= ∅.
So t ∈ im f̂ .
So im f ⊆ im f̂ .

So im f̂ = im f .
cb) To show: If f̂ ′

(
f−1(t1)

)
= f̂ ′

(
f−1t2)

)
then f−1(t1) = f−1(t2).

Assume f̂ ′
(
f−1(t1)

)
= f̂ ′

(
f−1(t2)

)
.
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So t1 = t2.
So f−1(t1) = f−1(t2).

So f̂ ′ is injective.
So f̂ ′ is well defined and bijective.

4. Let S be a set and let {0, 1}S be the set of all functions f :S → {0, 1}. Given a subset T ⊆ S define
a function fT :S → {0, 1} by

fT (s) =
{

0 if s /∈ T ;
1 if s ∈ T .

Then the map

ψ: 2S → {0, 1}S
T 7→ fT

is a bijection.

Proof.
To show: a) ψ is well defined.

b) ψ is bijective.
a) To show: aa) If T ∈ 2S then ψ(T ) = fT ∈ {0, 1}S .

ab) If T1 and T2 are subsets of S and T1 = T2 then ψ(T1) = ψ(T2).
aa) It is clear from the definition of fT that zz/psi(T ) = fT is a function from S to {0, 1}.
ab) Assume T1 and T2 are subsets of S and T1 = T2.

To show: ψ(T1) = ψ(T2).
To show: fT1 = fT2 .

To show: If s ∈ S then fT1(s) = fT2(s).
Assume s ∈ S.
Case 1: If s ∈ T1 then, since T1 = T2, s ∈ T2.

So

fT1(s) = 1 = fT2(s).

Case 2: If s /∈ T1 then, since T1 = T2, s /∈ T2.
So

fT1(s) = 0 = fT2(s).

So fT1(s) = fT2(s) for all s ∈ S.
So fT1 = fT2 .

So ψ(T1) = fT1 = fT2 = ψ(T2).
So ψ is well defined.

b) By virtue of Proposition 2.2.3 we would like to show:
ψ: 2S → {0, 1}S has an inverse function.
Given a function f :S → {0, 1} define

Tf = {s ∈ S | f(s) = 1}.

Define a function ϕ: {0, 1}S → 2S by

ϕ: {0, 1}S → 2S

f 7→ Tf .
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To show: ba) ϕ is well defined.
bb) ϕ is an inverse function to ψ.

ba) To show: baa) If f ∈ {0, 1}S then ϕ(f) = Tf ∈ 2S .
bab) If f1, f2 ∈ {0, 1}S and f1 = f2 then

ϕ(f1) = ϕ(f2).

baa) By definition, Tf = {s ∈ S | f(s) = 1} is a subset of S.
bab) Assume f1, f2 ∈ {0, 1}S and f1 = f2.

To show: ϕ(f1) = ϕ(f2).
To show: Tf1 = Tf2 .

To show: baba) Tf1 ⊆ Tf2 .
babb) Tf2 ⊆ Tf1 .

baba) Assume s ∈ Tf1 .
Then f1(s) = 1.
Since f2(s) = f1(s), f2(s) = 1.
Thus s ∈ Tf2 .
So Tf1 ⊆ Tf2 .

babb) Assume s ∈ Tf2 .
Then f2(s) = 1.
Since f1(s) = f2(s), f1(s) = 1.
Thus s ∈ Tf1 .
So Tf2 ⊆ Tf1 .

So Tf1 = Tf2 .
So ϕ(f1) = ϕ(f2).

So ϕ is well defined.

bb) To show: bba) If T ∈ 2S then ϕ
(
ψ(T )

)
= T .

bbb) If f ∈ {0, 1}S then ψ
(
ϕ(f)

)
= f .

bba) Assume T ⊆ S.
To show: ϕ

(
ψ(T )

)
= T .

To show: TfT
= T .

To show: bbaa) TfT
⊆ T .

bbab) T ⊆ TfT
.

bbaa) Assume t ∈ TfT
.

Then fT (t) = 1.
So t ∈ T .
So TfT

⊆ T .
bbab) Assume t ∈ T .

Then fT (t) = 1.
So t ∈ TfT

.
So T ⊆ TfT

.
So TfT

= T .
So ϕ

(
ψ(T )

)
= T .

bbb) Assume f ∈ {0, 1}S .
To show: ψ

(
ϕ(f)

)
= f .

By definition, ψ
(
ϕ(f)

)
= fTf

.
To show: If s ∈ S then fTf

(s) = f(s).
Assume s ∈ S.
Case 1: f(s) = 1.

Then s ∈ Tf .
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So fTf
(s) = 1.

So fTf
(s) = f(s).

Case 2: f(s) = 0.
Then s /∈ Tf .
So fTf

(s) = 0.
So fTf

(s) = f(s).
So fTf

(s) = f(s).
So ψ

(
ϕ(f)

)
= f .

So ϕ is an inverse function to ψ.
So ψ is bijective.

5. a) Let ◦ be an operation on a set S. If S contains an identity for ◦ then it is unique.
b) Let e be an identity for an associative operation ◦ on a set S. Let s ∈ S. If s has an inverse then

it is unique.

Proof.
a) Let e, e′ ∈ S be identities for ◦.

Then e ◦ e′ = e, since e′ is an identity, and e ◦ e′ = e′, since e is an identity.
So e = e′.

b) Assume t, u ∈ S are both inverses for s.
By associativity of ◦, u = (t ◦ s) ◦ u = t ◦ (s ◦ u) = t.

6. a) Let S and T be sets and let ιS and ιT be the identity maps on S and T respectively.
For any function f :S → T ,

ιT ◦ f = f, and
f ◦ ιS = f.

b) Let f :S → T be a function. If an inverse function to f exists then it is unique.

Proof.
a) Assume f :S → T is a function.

To show: aa) ιT ◦ f = f .
ab) f ◦ ιS = f .

To show: aa) If s ∈ S then ιT (f(s)) = f(s).
ab) If s ∈ S then f(ιS(s)) = f(s).

aa) and ab) follow immediately from the definitions of ιT and ιS respectively.

b) Assume ϕ and ψ are both inverse functions to f .
To show: ϕ = ψ.
By the definitions if identity functions and inverse functions,

ϕ = ϕ ◦ (f ◦ ψ) = (ϕ ◦ f) ◦ ψ = ψ.

So, if an inverse function to f exists, then it is unique.
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Chapter 1. GROUPS AND GROUP ACTIONS

§1P. Groups

(1.1.3) Proposition. Let G be a group and let H be a subgroup of G. Then the cosets of H in G partition
G.

Proof.
To show: a) If g ∈ G then g ∈ g′H for some g′ ∈ G.

b) If g1H ∩ g2H 6= ∅ then g1H = g2H.
a) Let g ∈ G.

Then g = g · 1 ∈ gH since 1 ∈ H.
So g ∈ gH.

b) Assume g1H ∩ g2H 6= ∅.
To show: ba) g1H ⊆ g2H.

bb) g2H ⊆ g1H.
Let k ∈ g1H ∩ g2H.
Suppose k = g1h1 and k = g2h2, where h1, h2 ∈ H.
Then

g1 = g1h1h
−1
1 = kh−1

1 = g2h2h
−1
1 , and

g2 = g2h2h
−1
2 = kh−1

2 = g1h1h
−1
2 .

ba) Let g ∈ g1H.
Then g = g1h for some h ∈ H.
Then

g = g1h = g2h2h
−1
1 h ∈ g2H,

since h2h
−1
1 h ∈ H.

So g1H ⊆ g2H.
bb) Let g ∈ g2H.

Then g = g2h for some h ∈ H.
So

g = g2h = g1h1h
−1
2 h ∈ g1H

since h1h
−1
2 h ∈ H.

So g2H ⊆ g1H.
So g1H = g2H.

So the cosets of H in G partition G.

(1.1.4) Proposition. Let G be a group and let H be a subgroup of G. Then for any g1, g2 ∈ G,

Card(g1H) = Card(g2H).

Proof.
To show: There is a bijection from g1H to g2H.
Define a map ϕ by

ϕ: g1H → g2H
x 7→ g2g

−1
1 x.

To show: a) ϕ is well defined.
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b) ϕ is a bijection.
a) To show: aa) If x ∈ g1H then ϕ(x) ∈ g2H.

ab) If x = y then ϕ(x) = ϕ(y).
aa) Assume x ∈ g1H.

Then x = g1h for some h ∈ H.
So ϕ(x) = g2g

−1
1 g1h = g2h ∈ g2H.

ab) This is clear from the definition of ϕ.
So ϕ is well defined.

b) By virtue of Theorem 2.2.3, Part I, we want to construct an inverse map for ϕ. Define

ψ: g2H → g1H
y 7→ g1g

−1
2 y.

HW: Show
(
exactly as in a) above

)
that ψ is well defined.

Then,

ψ(ϕ(x)) = g1g
−1
2 ϕ(x) = g1g

−1
2 g2g

−1
1 x = x, and

ϕ(ψ(y)) = g2g
−1
1 ϕ(y) = g2g

−1
1 g1g

−1
2 y = y.

So ψ is an inverse function to ϕ.
So ϕ is a bijection.

(1.1.5) Corollary. Let H be a subgroup of a group G. Then

Card(G) = Card(G/H) Card(H).

Proof.
By Proposition 1.1.4, all cosets in G/H are the same size as H.
Since the cosets of H partition G, the cosets are disjoint subsets of G,
and G is a union of these subsets.
So G is a union of Card(G/H) disjoint subsets all of which have size Card(H).

(1.1.8) Proposition. Let N be a subgroup of G. N is a normal subgroup of G if and only if G/N with the
operation given by (aN)(bN) = abN is a group.

Proof.
=⇒: Assume N is a normal subgroup of G.

To show: a) (aN)(bN) = (abN) is a well defined operation on (G/N).
b) N is the identity element of G/N .
c) g−1N is the inverse of gN .

a) We want the operation on G/N given by

G/N ×G/N → G/N
(aN, bN) 7→ abN

to be well defined.
To show: If (a1N, b1N), (a2N, b2N) ∈ G/N ×G/N and (a1N, b1N) = (a2N, b2N)
then a1b1N = a2b2N .

Let (a1N, b1N), (a2N, b2N) ∈ (G/N ×G/N) such that (a1N, b1N) = (a2N, b2N).
Then a1N = a2N and b1N = b2N .
To show: aa) a1b1N ⊆ a2b2N .

ab) a2b2N ⊆ a1b1N .
aa) We know a1 = a1 · 1 ∈ a2N since a1N = a2N .
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So a1 = a2n1 for some n1 ∈ N .
Similary, b1 = b2n2 for some n2 ∈ N .
Let k ∈ a1b1N .
Then k = a1b1n for some n ∈ N . So

k = a1b1n

= a2n1b2n2n

= a2b2b
−1
2 n1b2n2n.

Since N is normal, b−1
2 n1b2 ∈ N , and therefore (b−1

2 n1b2)n2n ∈ N .
So k = a2b2(b−1

2 n1b2)n2n ∈ a2b2N .
So a1b1N ⊆ a2b2N .

ab) Since a1N = a2N , we know a1n1 = a2 for some n1 ∈ N .
Since b1N = b2N , we know b1n2 = b2 for some n2 ∈ N .
Let k ∈ a2b2N .
Then k = a2b2n for some n ∈ N . So

k = a2b2n

= a1n1b1n2n

= a1b1b
−1
1 n1b1n2n.

Since N is normal b−1
1 n1b1 ∈ N , and therefore (b−1

1 n1b1)n2n ∈ N .
So k = a1b1(b−1

1 n1b1)n2n ∈ a1b1N .
So a2b2N ⊆ a1b1N .

So (a1b1)N = (a2b2)N .
So the operation is well defined.

b) The coset N = 1N is the identity since

(N)(gN) = (1g)N
= gN

= (g1)N
= (gN)(N),

for all g ∈ G.

c) Given any coset gN its inverse is g−1N since

(gN)(g−1N) = (gg−1)N
= N

= g−1gN

= (g−1N)(gN).

So G/N is a group.

⇐=: Assume (G/N) is a group with operation (aN)(bN) = abN .
To show: If g ∈ G and n ∈ N then gng−1 ∈ N .

First we show: If n ∈ N then nN = N .
Assume n ∈ N .
To show: a) nN ⊆ N .

b) N ⊆ nN .
a) Let x ∈ nN .
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Then x = nm for some m ∈ N .
Since N is a subgroup, nm ∈ N .
So x ∈ N .
So nN ⊆ N .

b) Assume m ∈ N .
Then, since N is a subgroup, m = nn−1m ∈ nN .
So N ⊆ nN .

Now let g ∈ G and n ∈ N .
Then, by definition of the operation,

gng−1N = (gN)(nN)(g−1N)

= (gN)(N)(g−1N)

= g1g−1N

= N.

So gng−1 ∈ N .
So N is a normal subgroup of G.

(1.1.11) Proposition. Let f :G → H be a group homomorphism. Let 1G and 1H be the identities for G
and H respectively. Then

a) f(1G) = 1H .
b) For any g ∈ G, f(g−1) = f(g)−1.

Proof.
a) Multiply both sides of the following equation by f(1G)−1.

f(1G) = f(1G · 1G) = f(1G)f(1G).

b) Since f(g)f(g−1) = f(gg−1) = f(1G) = 1H , and f(g−1)f(g) = f(g−1g) = f(1G) = 1H , then

f(g)−1 = f(g−1).

(1.1.13) Proposition. Let f :G → H be a group homomorphism. Let 1G and 1H be the identities for G
and H respectively. Then

a) ker f is a normal subgroup of G.
b) im f is a subgroup of H.

Proof.
To show: a) ker f is a normal subgroup of G.

b) im f is a subgroup of G.

a) To show: aa) ker f is a subgroup.
ab) ker f is normal.

aa) To show: aaa) If k1, k2 ∈ ker f then k1k2 ∈ ker f .
aab) 1G ∈ ker f .
aac) If k ∈ ker f then k−1 ∈ ker f .

aaa) Assume k1,k2 ∈ ker f . Then f(k1) = 1H and f(k2) = 1H .
So f(k1k2) = f(k1)f(k2) = 1H .
So k1k2 ∈ ker f .

aab) Since f(1G) = 1H , 1G ∈ ker f .
aac) Assume k ∈ ker f . So f(k) = 1H .

Then

14



f(k−1) = f(k)−1 = 1−1
H = 1H .

So k−1 ∈ ker f .
So ker f is a subgroup.

ab) To show: If g ∈ G and k ∈ ker f then gkg−1 ∈ ker f .
Assume g ∈ G and k ∈ ker f . Then

f(gkg−1) = f(g)f(k)f(g−1)

= f(g)f(g−1)

= f(g)f(g)−1

= 1.

So gkg−1 ∈ ker f .
So ker f is a normal subgroup of G.

b) To show: im f is a subgroup of H.
To show: ba) If h1, h2 ∈ im f then h1h2 ∈ im f .

bb) 1H ∈ im f .
bc) If h ∈ im f then h−1 ∈ im f .

ba) Assume h1, h2 ∈ im f .
Then h1 = f(g1) and h2 = f(g2) for some g1, g2 ∈ G.
Then

h1h2 = f(g1)f(g2) = f(g1g2)

since f is a homomorphism.
So h1h2 ∈ im f .

bb) By Proposition 1.1.11 a), f(1G) = 1H , so 1H ∈ im f .
bc) Assume h ∈ im f .

Then h = f(g) for some g ∈ G.
Then, by Proposition 1.1.11 b),

h−1 = f(g)−1 = f(g−1).

So h−1 ∈ im f .
So im f is a subgroup of H.

(1.1.14) Proposition. Let f : G→ H be a group homomorphism. Let 1G be the identity in G. Then
a) ker f = (1G) if and only if f is injective.
b) im f = H if and only if f is surjective.

Proof.
a) Let 1G and 1H be the identities for G and H respectively.

=⇒: Assume ker f = (1G).
To show: If f(g1) = f(g2) then g1 = g2.

Assume f(g1) = f(g2).
Then, by Proposition 1.1.11 b) and the fact that f is a homomorphism,

1H = f(g1)f(g2)−1 = f(g1g−1
2 ).

So g1g−1
2 ∈ ker f .

But ker f = (1G).
So g1g−1

2 = 1G.
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So g1 = g2.
So f is injective.

⇐=: Assume f is injective.
To show: aa) (1G) ⊆ ker f .

ab) ker f ⊆ (1G).
aa) Since f(1G) = 1H , 1G ∈ ker f .

So (1G) ⊆ ker f .
ab) Let k ∈ ker f . Then f(k) = 1H . So f(k) = f(1G). Thus, since f is injective, k = 1G.

So ker f ⊆ (1G).
So ker f = (1G).

b) =⇒: Assume im f = H.
To show: If h ∈ H then there exists g ∈ G such that f(g) = h.

Assume h ∈ H.
Then h ∈ im f .
So there exists some g ∈ G such that f(g) = h.

So f is surjective.
⇐=: Assume f is surjective.

To show: ba) im f ⊆ H.
bb) H ⊆ im f .

ba) Let x ∈ im f .
Then x = f(g) for some g ∈ G.
By the definition of f , f(g) ∈ H.
So x ∈ H.
So im f ⊆ H.

bb) Assume x ∈ H.
Since f is surjective there exists a g such that f(g) = x.
So x ∈ im f .
So H ⊆ im f .

So im f = H.

(1.1.15) Theorem.
a) Let f :G→ H be a group homomorphism and let K = ker f . Define

f̂ : G/ ker f → H
gK 7→ f(g).

Then f̂ is a well defined injective group homomorphism.

b) Let f :G→ H be a group homomorphism and define

f ′: G → im f
g 7→ f(g).

Then f ′ is a well defined surjective group homomorphism.

c) If f :G→ H is a group homomorphism then

G/ ker f ' im f,

where the isomorphism is a group isomorphism.

Proof.
a) To show: aa) f̂ is well defined.

ab) f̂ is injective.
ac) f̂ is a homomorphism.
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aa) To show: aaa) If g ∈ G then f̂(gK) ∈ H.
aab) If g1K = g2K then f̂(g1K) = f̂(g2K).

aaa) Assume g ∈ G.
Then f̂(gK) = f(g) and f(g) ∈ H by the definition of f̂ and f .

aab) Assume g1K = g2K.
Then g1 = g2k for some k ∈ K.
To show: f̂(g1K) = f̂(g2K), i.e.,
To show: f(g1) = f(g2).

Since k ∈ ker f , we have f(k) = 1 and so

f(g1) = f(g2k) = f(g2)f(k) = f(g2).

So f̂(g1K) = f̂(g2K).
So f̂ is well defined.

ab) To show: If f̂(g1K) = f̂(g2K) then g1K = g2K.
Assume f̂(g1K) = f̂(g2K). Then f(g1) = f(g2).
So f(g1)f(g2)−1 = 1.
So f(g1g−1

2 ) = 1.
So g1g−1

2 ∈ ker f .
So g1g−1

2 = k for some k ∈ ker f .
So g1 = g2k for some k ∈ ker f .
To show: aba) g1K ⊆ g2K.

abb) g2K ⊆ g1K.

aba) Let g ∈ g1K. Then g = g1k1 for some k1 ∈ K.
So g = g2kk1 ∈ g2K, since kk1 ∈ K.
So g1K ⊆ g2K.

abb) Let g ∈ g2K. Then g = g2k2 for some k2 ∈ K.
So g = g1k

−1k2 ∈ g1K since k−1k2 ∈ K.
So g2K ⊆ g1K.

So g1K = g2K.
So f̂ is injective.

ac) To show: f̂(g1K)f̂(g2K) = f̂
(
(g1K)(g2K)

)
.

Since f is a homomorphism,

f̂(g1K)f̂(g2K) = f(g1)f(g2)
= f(g1g2)

= f̂(g1g2K)

= f̂
(
(g1K)(g2K)

)
.

So f̂ is a homomorphism.

b) To show: ba) f ′ is well defined.
bb) f ′ is surjective.
bc) f ′ is a homomorphism.

ba) and bb) are proved in Ex. 2.2.3, Part I.
bc) Since f is a homomorphism,

f ′(g)f ′(h) = f(g)f(h) = f(gh) = f ′(gh).

So f ′ is a homomorphism.
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c) Let K = ker f .
By a), the function

f̂ : G/K → H
gK 7→ f(g)

is a well defined injective homomorphism.
By b), the function

f̂ ′: G/K → im f̂

gK 7→ f̂(gK) = f(g)

is a well defined surjective homomorphism.
To show: ca) im f̂ = im f .

cb) f̂ ′ is injective.

ca) To show: caa) im f̂ ⊆ im f .
cab) im f ⊆ im f̂ .

caa) Let h ∈ im f̂ .
Then there is some gK ∈ G/K such that f̂(gK) = h.
Let g′ ∈ gK.
Then g′ = gk for some k ∈ K.
Then, since f is a homomorphism and f(k) = 1,

f(g′) = f(gk)
= f(g)f(k)
= f(g)

= f̂(gK)
= h.

So h ∈ im f .
So im f̂ ⊆ im f .

cab) Let h ∈ im f .
Then there is some g ∈ G such that f(g) = h.
So f̂(gK) = f(g) = h.
So h ∈ im f̂ .
So im f ⊆ im f̂ .

cb) To show: If f̂ ′(g1K) = f̂ ′(g2K) then g1K = g2K.
Assume f̂ ′(g1K) = f̂ ′(g2K).
Then f̂(g1K) = f̂(g2K).
Then, since f̂ is injective, g1K = g2K.

So f̂ ′ is injective.
Thus we have

f̂ ′: G/K → im f̂
gK 7→ f(g)

is a well defined bijective homomorphism.
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§2P. Group Actions

(1.2.3) Proposition. Suppose G is a group acting on a set S and let s ∈ S and g ∈ G. Then
a) Gs is a subgroup of G.
b) Ggs = gGsg

−1.

Proof.
a)To show:aa) If h1, h2 ∈ Gs then h1h2 ∈ Gs

ab) 1 ∈ Gs.
ac) If h ∈ Gs then h−1 ∈ Gs.

aa) Assume h1, h2 ∈ Gs. Then

(h1h2)s = h1(h2s) = h1s = s.

So h1h2 ∈ Gs.
ab) Since 1s = s, 1 ∈ Gs.
ac) Assume h ∈ Gs. Then

h−1s = h−1(hs) = (h−1h)s = 1s = s.

So h−1 ∈ Gs.
So Gs is a subgroup of G.

b) To show: ba) Ggs ⊆ gGsg−1.
bb) gGsg

−1 ⊆ Ggs.
ba) Assume h ∈ Ggs.

Then hgs = gs.
So g−1hgs = s.
So g−1hg ∈ Gs.
Since h = g(g−1hg)g−1, h ∈ gGsg−1.
So Ggs ⊆ gGsg−1.

bb) Assume h ∈ gGsg−1.
So h = gag−1 for some a ∈ Gs.
Then

hgs = (gag−1)gs = gas = gs.

So h ∈ Ggs.
So Ggs ⊆ gGsg−1.

So Ggs = gGsg
−1.

(1.2.4) Proposition. Let G be a group which acts on a set S. Then the orbits partition the set S.

Proof.
To show: a) If s ∈ S then s ∈ Gt for some t ∈ S.

b) If s1, s2 ∈ S and Gs1 ∩Gs2 6= ∅ then Gs1 = Gs2.
a) Assume s ∈ S.

Then, since s = 1s, s ∈ Gs.
b) Assume s1, s2 ∈ S and that Gs1 ∩Gs2 6= ∅.

Then let t ∈ Gs1 ∩Gs2.
So t = g1s1 and t = g2s2 for some elements g1, g2 ∈ G.
So

s1 = g−1
1 g2s2 and s2 = g−1

2 g1s1.

To show: Gs1 = Gs2.
To show: ba) Gs1 ⊆ Gs2.
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bb) Gs2 ⊆ Gs1.
ba) Let t1 ∈ Gs1.

So t = h1s1 for some h1 ∈ G.
Then

t1 = h1s1 = h1g
−1
1 g2s2 ∈ Gs2.

So Gs1 ⊆ Gs2.
bb) Let t2 ∈ Gss.

So t2 = h2s2 for some h2 ∈ G.
Then

t2 = h2s2 = h2g
−1
2 g1s1 ∈ Gs1.

So Gs2 ⊆ Gs1.
So Gs1 = Gs2.

So the orbits partition S.

(1.2.5) Corollary. If G is a group acting on a set S and Gsi denote the orbits of the action of G on S
then

Card(S) =
∑

distinct
orbits

Card(Gsi).

Proof.
By Proposition 1.2.4, S is a disjoint union of orbits.
So Card(S) is the sum of the cardinalities of the orbits.

(1.2.6) Proposition. Let G be a group acting on a set S and let s ∈ S. If Gs is the orbit containing s and
Gs is the stabilizer of s then

| G:Gs |= Card(Gs).

where | G:Gs | is the index of Gs ∈ G.

Proof.
Recall that | G:Gs |= Card(G/Gs).
To show: There is a bijective map

ϕ: G/Gs → Gs.

Let us define

ϕ: G/Gs → Gs
gGs 7→ gs.

To show: a) ϕ is well defined.
b) ϕ is bijective.

a) To show: aa) ϕ(gGs) ∈ Gs for every g ∈ G.
ab) If g1Gs = g2Gs then ϕ(g1Gs) = ϕ(g2Gs).

aa) Is clear from the definition of ϕ, ϕ(gGs) = gs ∈ Gs.
ab) Assume g1, g2 ∈ G and g1Gs = g2Gs.

Then g1 = g2h for some h ∈ Gs.
To show: g1s = g2s.

Then

g1s = g2hs = g2s,
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since h ∈ Gs.
So ϕ(g1Gs) = ϕ(g2Gs).

So ϕ is well defined.

b) To show: ba) ϕ is injective, i.e. if ϕ(g1Gs) = ϕ(g2G2) then g1Gs = g2Gs.
bb) ϕ is surjective, i.e. if gs ∈ Gs then there exists hGs ∈ G/Gs

such that ϕ(hGs) = gs.

ba) Assume ϕ(g1Gs) = ϕ(g2Gs).
Then g1s = g2s.
So s = g−1

1 g2s and g−1
2 g1s = s.

So g−1
1 g2 ∈ Gs and g−1

2 g1 ∈ Gs.
To show: ϕ is injective.

To show: g1Gs = g2Gs
To show: baa) g1Gs ⊆ g2Gs.

bab) g2Gs ⊆ g1Gs.
baa) Let k1 ∈ g1Gs.

So k1 = g1h1 for some h1 ∈ Gs.
Then

k1 = g1h1 = g1g
−1
1 g2g

−1
2 g1h1 = g2(g−1

2 g1h1) ∈ g2Gs.

So g1Gs ⊆ g2Gs.
bab) Let k2 ∈ g2Gs.

So k2 = g2h2 for some h2 ∈ Gs.
Then

k2 = g2h2 = g2g
−1
2 g1g

−1
1 g2h2 = g1(g−1

1 g2h2) ∈ g1Gs.

So g2Gs ⊆ g1Gs.
So g1Gs = g2Gs.

So ϕ is injective.

bb) To show: ϕ is surjective.
Assume t ∈ Gs.
Then t = gs for some g ∈ G.
Thus,

ϕ(gGs) = gs = t.

So ϕ is surjective.
So ϕ is bijective.

(1.2.7) Corollary. Let G be a group acting on a set S. Let s ∈ S, let Gs denote the stabilizer of s, and let
Gs denote the orbit of s. Then

Card(G) = Card(Gs)Card(Gs).

Proof.
Multiply both sides of the identity in Proposition 1.2.6 by Card(Gs) and use Corollary 1.1.5.

(1.2.9) Proposition. Let H be a subgroup of G and let NH be the normalizer of H in G. Then
a) H is a normal subgroup of NH .
b) If K is a subgroup of G such that H ⊆ K ⊆ G and H is a normal subgroup of K then K ⊆ NH .
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Proof.
b) Let k ∈ K.

To show: k ∈ NH .
To show: khk−1 ∈ H for all h ∈ H.

This is true since H is normal in K.
So K ⊆ NH .

a) This is the special case of b) when K = H.

(1.2.10) Proposition. Let G be a group and let S be the set of subsets of G. Then
a) G acts on S by

α: G× S → S
(g, S) 7→ gSg−1

where gSg−1 = {gsg−1 | s ∈ S}. We say that G acts on S by conjugation.
b) If S is a subset of G then NS is the stabilizer of S under the action of G on S by conjugation.

Proof.
a) To show: aa) α is well defined.

ab) α(1, S) = S for all S ∈ S.
ac) α(g, α(h, S)) = α(gh, S) for all g, h ∈ G, and S ∈ S.

aa) To show: aaa) gSg−1 ∈ S.
aab) If S = T and g = h then gSg−1 = hTh−1.

Both of these are clear from the definitions.
ab) Let S ∈ S.

Then

α(1, S) = 1S1−1 = S.

ac) Let g, h ∈ G and S ∈ S.
Then

α
(
g, α(h, S)

)
= α(g, hSh−1) = g(hSh−1)g−1

= (gh)S(h−1g−1) = (gh)S(gh)−1 = α(gh, S).

b) This follows immediately from the definitions of NS and of stabilizer.

(1.2.12) Proposition. Let G be a group. Then
a) G acts on G by

G×G → G
(g, s) 7→ gsg−1.

We say that G acts on itself by conjugation.
b) Two elements g1, g2 ∈ G are conjugate if and only if they are in the same orbit under the action

of G on itself by conjugation.
c) The conjugacy class, Cg, of g ∈ G is the orbit of g under the action of G on itself by conjugation.
d) The centralizer, Zg, of g ∈ G is the stablilizer of g under the action of G on itself by conjugation.

Proof.
a) The proof is exactly the same as the proof of a) in Proposition 1.2.10.

Replace all the capital S’s by lower case s’s.
b), c), and d) follow easily from the definitons.

(1.2.14) Lemma. Let Gs be the stabilizer of s ∈ G under the action of G on itself by conjugation. Then
a) For each subset S ⊆ G,
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ZS =
⋂
s∈S

Gs.

b) Z(G) = ZG, where Z(G) denotes the center of G.
c) s ∈ Z(G) if and only if ZS = G.
d) s ∈ Z(G) if and only if Cs = {s}.

Proof.
a) aa) Assume s ∈ Zs.

Then sxs−1 = s for all s ∈ S.
So x ∈ Gs for all s ∈ S.
So x ∩s∈S Gs.
So Zs ⊆ ∩s∈SGs.

ab) Assume x ∈ ∩s∈SGs.
Then xsx−1 = s for all s ∈ S.
So x ∈ Zs.
So ∩s∈SGs.

b) This is clear from the definitions of ZG and Z(G).

c) =⇒: Let s ∈ Z(G).
To show: ZS = G.

By definiton ZS ⊆ G.
To show: G ⊆ ZS .

Let g ∈ G.
Then gsg−1 = s since s ∈ Z(G).
So g ∈ ZS .

So G ⊆ ZS .
So ZS = G.

⇐=: Assume ZS = G.
Then gsg−1 = s for all g ∈ G.
So gs = sg for all g ∈ G.
So s ∈ Z(G).

d) =⇒: Assume s ∈ Z(G).
Then gsg−1 = s for all s ∈ G.
So Cs = {gsg−1 | g ∈ G} = {s}.

⇐=: Assume Cs = {s}.
Then gsg−1 = s for all g ∈ G.
So s ∈ Z(g).

(1.2.15) Proposition. (The Class Equation) Let Cgi
denote the conjugacy classes in a group G and let

|Cgi | denote Card(Cgi). Then

|G| = |Z(G)|+
∑
|Cgi
|>1

Card(Cgi
).

Proof.
By Corollary 1.2.5 and the fact that the Cgi

are the orbits of G acting on itself by conjugation we
know that

|G| =
∑
Cgi

Card(Cgi
).

By Lemma 1.2.14 d) we know that
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Z(G) =
⋃
|Cgi
|=1

Cgi
.

So

|G| =
∑
|Cgi
|=1

Card(Cgi
) +

∑
|Cgi
|>1

Card(Cgi
)

= Card
(
Z(G)

)
+

∑
|Cgi
|>1

Card(Cgi
).
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Chapter 2. RINGS AND MODULES

§1P. Rings

(2.0.4) Proposition. Let R be a ring and let I be an additive subgroup of R. Then the cosets of I in R
partition R.

Proof.
To show: a) If r ∈ R then r ∈ r′ + I for some r′ ∈ R.

b) If (r1 + I) ∩ (r2 + I) 6= ∅ then r1 + I = r2 + I.
a) Let r ∈ R.

Then r = r + 0 ∈ r + I, since 0 ∈ I.
So r ∈ r + I.

b) Assume (r1 + I) ∩ (r2 + I) 6= ∅.
To show: ba) r1 + I ⊆ r2 + I.

bb) r2 + I ⊆ r1 + I.
Let s ∈ (r1 + I) ∩ (r2 + I).
Suppose s = r1 + i1 and s = r2 + i2 where i1, i2 ∈ I.
Then

r1 = r1 + i1 − i1 = s− i1 = r2 + i2 − i1 and
r2 = r2 + i2 − i2 = s− i2 = r1 + i1 − i2.

ba) Let r ∈ r1 + I.
Then r = r1 + i for some i ∈ I.
Then

r = r1 + i = r2 + i2 − i1 + i ∈ r2 + I,

since i2 − i1 + i ∈ I.
So r1 + I ⊆ r2 + I.

bb) Let r ∈ r2 + I.
Then r = r2 + i for some i ∈ I.
So

r = r2 + i = r1 + i1 − i2 + i ∈ r1 + I,

since i1 − i2 + i ∈ I.
So r2 + I ⊆ r1 + I.

So r1 + I = r2 + I.
So the cosets of I in R partition R.

(2.0.6) Proposition. Let I be an additive subgroup of a ring R. I is an ideal of R if and only if R/I with
operations given by

(r1 + I) + (r2 + I) = (r1 + r2) + I and
(r1 + I)(r2 + I) = r1r2 + I

is a ring.

Proof.
=⇒: Assume I is an ideal of R.

To show: a) (r1 + I) + (r2 + I) = (r1 + r2) + I is a well defined operation on R/I.
b) (r1 + I)(r2 + I) = (r1r2) + I is a well defined operation on R/I.
c)
(
(r1 + I) + (r2 + I)

)
+ (r3 + I) = (r1 + I) +

(
(r2 + I) + (r3 + I)

)
for all r1 + I, r2 + I, r3 + I ∈ R/I.

d) (r1 + I) + (r2 + I) = (r2 + I) + (r1 + I) for all r1 + I, r2 + I ∈ R/I.
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e) 0 + I = I is the zero in R/I.
f) −r + I is the additive inverse of r + I.
g)
(
(r1 + I)(r2 + I)

)
(r3 + I) = (r1 + I)

(
(r2 + I)(r3 + I)

)
for all r1 + I, r2 + I, r3 + I ∈ R/I.

h) 1 + I is the identity in R/I.
i) If r1 + I, r2 + I, r3 + I ∈ R/I then

(r1 + I)
(
(r2 + I) + (r3 + I)

)
= (r1 + I)(r2 + I) + (r1 + I)(r3 + I) and(

(r2 + I) + (r3 + I)
)
(r1 + I) = (r2 + I)(r1 + I) + (r3 + I)(r1 + I).

a) We want the operation on R/I given by

R/I ×R/I → R/I
(r + I, s+ I) 7→ (r + s) + I

to be well defined.
Let (r1 + I, s1 + I), (r2 + I, s2 + I) ∈ R/I ×R/I such that
(r1 + I, s1 + I) = (r2 + I, s2 + I).
Then r1 + I = r2 + I and s1 + I = s2 + I.
To show: (r1 + s1) + I = (r2 + s2) + I.

So we must show: aa) (r1 + s1) + I ⊆ (r2 + s2) + I.
ab) (r2 + s2) + I ⊆ (r1 + s1) + I.

aa) We know r1 = r1 + 0 ∈ r2 + I since r1 + I = r2 + I.
So r1 = r2 + k1 for some k1 ∈ I.
Similarly s1 = s2 + k2 for some k2 ∈ I.
Let t ∈ (r1 + s1) + I.
Then t = r1 + s1 + k for some k ∈ I.
So

t = r1 + s1 + k

= r2 + k1 + s2 + k2 + k

= r2 + s2 + k1 + k2 + k,

since addition is commutative.
So t = (r2 + s2) + (k1 + k2 + k) ∈ r2 + s2 + I.
So (r1 + s1) + I ⊆ (r2 + s2) + I.

ab) Since r1 + I = r2 + I, we know r1 + k1 = r2 for some k1 ∈ I.
Since s1 + I = s2 + I, we know s1 + k2 = s2 for some k2 ∈ I.
Let t ∈ (r2 + s2) + I.
Then t = r2 + s2 + k for some k ∈ I.
So

t = r2 + s2 + k

= r1 + k1 + s1 + k2 + k

= r1 + s1 + k1 + k2 + k,

since addition is commutative.
So t = (r1 + s1) + (k1 + k2 + k) ∈ (r1 + s1) + I.
So (r2 + s2) + I ⊆ (r1 + s1) + I.

So (r1 + ss) + I = (r2 + s2) + I.
So the operation given by (r1 + I) + (r2 + I) = (r1 + r2) + I is a well defined
operation on R/I.

b) We want the operation on R/I given by
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R/I ×R/I → R/I
(r + I, s+ I) 7→ (rs) + I

to be well defined.
Let (r1 + I, s1 + I), (r2 + I, s2 + I) ∈ R/I ×R/I such that
(r1 + I, s1 + I) = (r2 + I, s2 + I).
Then r1 + I = r2 + I and s2 + I = s2 + I.
To show: r1s1 + I = r2s2 + I.

So we must show: ba) r1s1 + I ⊆ r2s2 + I.
bb) r2s2 + I ⊆ r1s1 + I.

ba) Since r1 + I = r2 + I, we know r1 = r2 + k1 for some k1 ∈ I.
Since s1 + I = s2 + I, we know s1 = s2 + k2 for some k2 ∈ I.
Let t ∈ r1s1 + I.
Then t = r1s1 + k for some k ∈ I.
So

t = r1s1 + k

= (r2 + k1)(s2 + k2) + k

= r2s2 + k1s2 + r2k2 + k1k2 + k,

by using the distributive law.
k1s2 + r2k2 + k1k2 + k ∈ I by the definition of ideal.
So t ∈ r2s2 + I.
So r1s1 + I ⊆ r2s2 + I.

bb) Since r1 + I = r2 + I, we know r1 + k1 = r2 for some k1 ∈ I.
Since s1 + I = s2 + I, we know s1 + k2 = s2 for some k2 ∈ I.
Let t ∈ r2s2 + I.
Then t = r2s2 + k for some k ∈ I.
So

t = r2s2 + k

= (r1 + k1)(s1 + k2) + k

= r1s1 + r1k2 + k1s1 + k1k2 + k,

by using the distributive law.
r1k2 + k1s1 + k1k2 + k ∈ I by the definition of ideal.
So t ∈ r1s1 + I.
So r2s2 + I ⊆ r1s1 + I.

So r1s1 + I = r2s2 + I.
So the operation given by (r + I)(s+ I) = rs+ I is a well defined operation on R/I.

c) By the associativity of addition in R and the definition of the operation in R/I,(
(r1 + I) + (r2 + I)

)
+ (r3 + I) =

(
(r1 + r2) + I

)
+ (r3 + I)

=
(
(r1 + r2) + r3

)
+ I

=
(
r1 + (r2 + r3)

)
+ I

= (r1 + I) +
(
(r2 + r3) + I

)
= (r1 + I) +

(
(r2 + I) + (r3 + I)

)
for all r1 + I, r2 + I, r3 + I ∈ R/I.

d) By the commutativity of addition in R and the definition of the operation in R/I,
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(r1 + I) + (r2 + I) = (r1 + r2) + I

= (r2 + r1) + I

= (r2 + I) + (r1 + I)

for all r1 + I, r2 + I ∈ R/I.

e) The coset I = 0 + I is the zero in R/I since

I + (r + I) = (0 + r) + I

= r + I

= (r + 0) + I = (r + I) + I

for all r + I ∈ R/I.

f) Given any coset r + I, its additive inverse is (−r) + I since

(r + I) + (−r + I) = r + (−r) + I

= 0 + I

= I

= (−r + r) + I

= (−r + I) + (r + I)

for all r + I ∈ R/I.

g) By the associativity of multiplication in R and the definition of the operation in R/I,(
(r1 + I)(r2 + I)

)
(r3 + I) = (r1r2 + I)(r3 + I)

= (r1r2)r3 + I

= r1(r2r3) + I

= (r1 + I)(r2r3 + I)

= (r1 + I)
(
(r2 + I)(r3 + I)

)
for all r1 + I, r2 + I, r3 + I ∈ R/I.

h) The coset 1 + I is the identity in R/I since

(1 + I)(r + I) = 1 · r + I

= r + I

= r · 1 + I

= (r + I)(1 + I)

for all r + I ∈ R/I.

i) Assume r, s, t ∈ R. Then by definition of the operations

(r + I)
(
(s+ I) + (t+ I)

)
= (r + I)

(
(s+ t) + I

)
= r(s+ t) + I

= (rs+ rt) + I

= (rs+ I) + (rt+ I)
= (r + I)(s+ I) + (r + I)(t+ I),

and
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(
(s+ I) + (t+ I)

)
(r + I) =

(
(s+ t) + I

)
(r + I)

= (s+ t)r + I

= (sr + tr) + I

= (sr + I) + (tr + I)
= (s+ I)(r + I) + (t+ I)(r + I).

So R/I is a ring.

⇐=: Assume R/I is a ring with operations given by

(r + I) + (s+ I) = (r + s) + I and
(r + I)(s+ I) = rs+ I

for all r + I, s+ I ∈ R/I.
To show: If k ∈ I and r ∈ R then kr ∈ I and rk ∈ I.

First we show: If k ∈ I then k + I = I.
To show: a) k + I ⊆ I.

b) I ⊆ k + I.

a) Let i ∈ k + I.
Then i = k + k1 for some k1 ∈ I.
Then, since I is a subgroup, i = k + k1 ∈ I.
So k + I ⊆ I.

b) Assume k1 ∈ I.
Since k1 − k ∈ I, k1 = k + (k1 − k) ∈ k + I.
So I ⊆ k + I.

Now assume r ∈ R and k ∈ I.
Then by definition of the operation

rk + I = (r + I)(k + I)
= (r + I)I
= (r + I)(0 + I)
= 0 + I

= I,

and

kr + I = (k + I)(r + I)
= (0 + I)(r + I)
= 0 + I

= I.

So kr ∈ I and rk ∈ I.
So I is an ideal of R.

(2.0.9) Proposition. Let f :R → S be a ring homomorphism. Let 0R and 0S be the zeros for R and S
respectively. Then

a) f(0R) = 0S.
b) For any r ∈ R, f(−r) = −f(r).
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Proof.
a) Add −f(0R) to each side of the following equation.

f(0R) = f(0R + 0R) = f(0R) + f(0R).

b) Since

f(r) + f(−r) = f
(
r + (−r)

)
= f(0R) = 0S and

f(−r) + f(r) = f
(
(−r) + r

)
= f(0R) = 0S ,

then f(−r) = −f(r).

(2.0.11) Proposition. Let f :R→ S be a ring homomorphism. Then
a) ker f is an ideal of R.
b) im f is a subring of S.

Proof.
Let 0R and 0S be the zeros of R and S respectively.

a) To show: ker f is an ideal of R.
To show: aa) If k1, k2 ∈ ker f then k1 + k2 ∈ ker f .

ab) 0R ∈ ker f .
ac) If k ∈ ker f then −k ∈ ker f .
ad) If k ∈ ker f and r ∈ R then kr ∈ ker f and rk ∈ ker f .

aa) Assume k1, k2 ∈ ker f .
Then f(k1) = 0S and f(k2) = 0S .
So f(k1 + k2) = f(k1) + f(k2) = 0S .
So k1 + k2 ∈ ker f .

ab) Since f(0R) = 0S , 0R ∈ ker f .
ac) Assume k ∈ ker f .

So f(k) = 0S .
Then

f(−k) = −f(k) = 0S .

So −k ∈ ker f .
ad) Assume k ∈ ker f and r ∈ R.

Then

f(kr) = f(k)f(r) = 0S · f(r) = 0S and
f(rk) = f(r)f(k) = f(r) · 0S = 0S .

So kr ∈ ker f and rk ∈ ker f .
So ker f is an ideal of R.

b) To show: ba) If s1, s2 ∈ im f then s1 + s2 ∈ im f .
bb) 0S ∈ im f .
bc) If s ∈ im f then −s ∈ im f .
bd) If s1, s2 ∈ im f then s1s2 ∈ im f .
be) 1S ∈ im f .

ba) Assume s1, s2 ∈ im f . Then s1 = f(r1) and s2 = f(r2) for some r1, r2 ∈ R.
Then

s1 + s2 = f(r1) + f(r2) = f(r1 + r2),

since f is a homomorphism.
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So s1 + s2 ∈ im f .
bb) By Proposition 2.1.9 a), f(0R) = 0S , so 0S ∈ im f .
bc) Assume s ∈ im f . Then s = f(r) for some r ∈ R.

Then, by Proposition 2.1.9 b),

−s = −f(r) = f(−r).

So −s ∈ im f .
bd) Assume s1, s2 ∈ im f . Then s1 = f(r1) and s2 = f(r2) for some r1, r2 ∈ R.

Then

s1s2 = f(r1)f(r2) = f(r1r2),

since f is a homomorphism.
So s1s2 ∈ im f .

be) By the definition of ring homomorphism, f(1R) = 1S , so 1S ∈ im f .

So im f is a subring of S.

(2.0.12) Proposition. Let f :R→ S be a ring homomorphism. Let 0R be the zero in R. Then
a) ker f = (0R) if and only if f is injective.
b) im f = S if and only if f is surjective.

Proof.
a) Let 0R and 0S be the zeros in R and S respectively.

=⇒: Assume ker f = (0R).
To show: If f(r1) = f(r2) then r1 = r2.

Assume f(r1) = f(r2).
Then, by the fact that f is a homomorphism,

0S = f(r1)− f(r2) = f(r1 − r2).

So r1 − r2 ∈ ker f .
But ker f = (0S).
So r1 − r2 = 0R.

So r1 = r2.
So f is injective.

⇐=: Assume f is injective.
To show: aa) (0R) ⊆ ker f .

ab) ker f ⊆ (0R).
aa) Since f(0R) = 0S , 0R ∈ ker f .

So (0R) ⊆ ker f .
ab) Let k ∈ ker f .

Then f(k) = 0S .
So f(k) = f(0R).
Thus, since f is injective, k = 0R.
So ker f ⊆ (0R).

So ker f = (0R).

b) =⇒: Assume im f = S.
To show: If s ∈ S then there exists r ∈ R such that f(r) = s.

Assume s ∈ S.
Then s ∈ im f .
So there is some r ∈ R such that f(r) = s.

So f is surjective.
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⇐=: Assume f is surjective.
To show: a) im f ⊆ S.

b) S ⊆ im f .
a) Let x ∈ im f .

Then x = f(r) for some r ∈ R.
By the definition of f , f(r) ∈ S.
So x ∈ S.
So im f ⊆ S.

b) Assume x ∈ S.
Since f is surjective there is an r such that f(r) = x.
So x ∈ im f .
So S ⊆ im f .

So im f = S.

(2.0.13) Theorem.
a) Let f :R→ S be a ring homomorphism and let K = ker f . Define

f̂ : R/ ker f → S
r +K 7→ f(r).

Then f̂ is a well defined injective ring homomorphism.

b) Let f :R→ S be a ring homomorphism and define

f ′: R → im f
r 7→ f(r).

Then f ′ is a well defined surjective ring homomorphism.

c) If f :R→ S is a ring homomorphism, then

R/ ker f ' im f

where the isomorphism is a ring isomorphism.

Proof.
Let 1R and 1S be the identities in R and S respectively.

a) To show: aa) f̂ is well defined.
ab) f̂ is injective.
ac) f̂ is a ring homomorphism.

aa) To show: aaa) If r ∈ R then f̂(r +K) ∈ S.
aab) If r1 +K = r2 +K ∈ R/K then f̂(r1 +K) = f̂(r2 +K).

aaa) Assume r ∈ R.
Then f̂(r +K) = f(r), and f(r) ∈ S, by the definition of f̂ and f .

aab) Assume r1 +K = r2 +K.
Then r1 = r2 + k for some k ∈ K.
To show: f̂(r1 +K) = f̂(r2 +K), i.e.,
To show: f(r1) = f(r2).

Since k ∈ ker f , we have f(k) = 0 and so

f(r1) = f(r2 + k) = f(r2) + f(k) = f(r2) + 0 = f(r2).

So f̂(r1 +K) = f̂(r2 +K).
So f̂ is well defined.

ab) To show: If f̂(r1 +K) = f̂(r2 +K) then r1 +K = r2 +K.
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Assume f̂(r1 +K) = f̂(r2 +K).
Then f(r1) = f(r2).
So f(r1)− f(r2) = 0.
So f(r1 − r2) = 0.
So r1 − r2 ∈ ker f .
So r1 − r2 = k, for some k ∈ ker f .
So r1 = r2 + k, for some k ∈ ker f .
To show: aba) r1 +K ⊆ r2 +K.

abb) r2 +K ⊆ r1 +K.
aba) Let r ∈ r1 +K.

Then r = r1 + k1, for some k1 ∈ K.
So r = r2 + k + k1 ∈ r2 +K since k + k1 ∈ K.
So r1 +K ⊆ r2 +K.

abb) Let r ∈ r2 +K.
Then r = r2 + k2, for some k2 ∈ K.
So r = r2 + k2 = r1 − k + k2 ∈ r1 +K since −k + k2 ∈ K.
So r2 +K ⊆ r1 +K.

So r1 +K = r2 +K.
So f̂ is injective.

ac) To show: aca) If r1 +K, r2 +K ∈ R/K
then f̂

(
(r1 + k) + (r2 +K)

)
= f̂(r1 +K) + f̂(r2 +K).

acb) If r1 +K, r2 +K ∈ R/K
then f̂

(
(r1 +K)(r2 +K)

)
= f̂(r1 +K)f̂(r2 +K).

acc) f̂(1R +K) = 1S .
aca) Let r1 +K, r2 +K ∈ R/K.

Since f is a homomorphism,

f̂(r1 +K) + f̂(r2 +K) = f(r1) + f(r2)
= f(r1 + r2)

= f̂
(
(r1 + r2) +K

)
= f̂

(
(r1 +K) + (r2 +K)

)
.

acb) Let r1 +K, r2 +K ∈ R/K.
Since f is a homomorphism,

f̂(r1 +K)f̂(r2 +K) = f(r1)f(r2)
= f(r1r2)

= f̂(r1r2 +K)

= f̂
(
(r1 +K)(r2 +K)

)
.

acc) Since f is a homomorphism,

f̂(1R +K) = f(1R)
= 1S .

So f̂ is a ring homomorphism.

So f̂ is a well defined injective ring homomorphism.

b) Let 1R and 1S be the identities in R and S respectively.
To show: ba) f ′ is well defined.
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bb) f ′ is surjective.
bc) f ′ is a ring homomorphism.

ba) and bb) are proved in Ex. 2.2.4 a) and b), Part I.
bc) To show: bca) If r1, r2 ∈ R then f ′(r1 + r2) = f ′(r1) + f ′(r2).

bcb) If r1, r2 ∈ R then f ′(r1r2) = f ′(r1)f ′(r2).
bcc) f ′(1R) = 1S .

bca) Let r1, r2 ∈ R.
Then, since f is a homomorphism,

f ′(r1 + r2) = f(r1 + r2) = f(r1) + f(r2) = f ′(r1) + f ′(r2).

bcb) Let r1, r2 ∈ R.
Then, since f is a homomorphism,

f ′(r1r2) = f(r1r2) = f(r1)f(r2) = f ′(r1)f ′(r2).

bcc) Since f is a homomorphism,

f ′(1R) = f(1R) = 1S .

So f ′ is a homomorphism.

So f ′ is a well defined surjective ring homomorphism.

c) Let K = ker f .
By a), the function

f̂ : R/K → S
r +K 7→ f(r)

is a well defined injective ring homomorphism.
By b), the function

f̂ ′: R/K → im f̂

r +K 7→ f̂(r +K) = f(r)

is a well defined surjective ring homomorphism.
To show: ca) im f̂ = im f .

cb) f̂ ′ is injective.

ca) To show: caa) im f̂ ⊆ im f .
cab) im f ⊆ im f̂ .

caa) Let s ∈ im f̂ .
Then there is some r +K ∈ R/K such that f̂(r +K) = s.
Let r′ ∈ r +K.
Then r′ = r + k for some k ∈ K.
Then, since f is a homomorphism and f(k) = 0,

f(r′) = f(r + k)
= f(r) + f(k)
= f(r)

= f̂(r + k)
= s.

So s ∈ im f .
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So im f̂ ⊆ im f .
cab) Let s ∈ im f̂ .

Then there is some r ∈ R such that f(r) = s.
So f̂(r +K) = f(r) = s.
So s ∈ im f .
So im f ⊆ im f̂ .

So im f = im f̂ .

cb) To show: If f̂ ′(r1 +K) = f̂ ′(r2 +K) then r1 +K = r2 +K.
Assume f̂ ′(r1 +K) = f̂ ′(r2 +K).
Then f̂(r1 +K) = f̂(r2 +K).
Then, since f̂ is injective, r1 +K = r2 +K.

So f̂ ′ is injective.

Thus we have

f̂ ′: R/K → im f
r +K 7→ f(r)

is a well defined bijective ring homomorphism.

(2.0.17) Proposition. Let R be a ring. Let 0R and 1R be the zero and the identity in R respectivelly.
a) There is a unique ring homomorphism ϕ: ZII→ R given by

ϕ(0) = 0R,
ϕ(m) = 1R + · · ·+ 1R︸ ︷︷ ︸

m times

, and

ϕ(−m) = −ϕ(m),

for every m ∈ZII , m > 0.
b) kerϕ = n ZII = {nk | k ∈ZII } where n = char(R) is the characteristic of the ring R.

Proof.
Let 1R and 0R be the identity and zero of the ring R.

a) Define ϕ: ZII→ R by defining, for each m > 0, m ∈ZII ,

ϕ(m) = 1R + · · ·+ 1R︸ ︷︷ ︸
m times

,

ϕ(−m) = −ϕ(m),
ϕ(0) = 0R.

To show: aa) ϕ is unique.
ab) ϕ is well defined.
ac) ϕ is a homomorphism.

aa) To show: If ϕ′: ZII→ R is a homomorphism then ϕ′ = ϕ.
Assume ϕ′: ZII→ R is a homomorphism.
To show: If m ∈ZII then ϕ′(m) = ϕ(m).

If m = 1 then ϕ′(1) = 1R = ϕ(1).
If m > 0 then

ϕ′(m) = ϕ′(1 + · · ·+ 1)︸ ︷︷ ︸
m times

= ϕ′(1) + · · ·+ ϕ′(1)︸ ︷︷ ︸
m times

= 1R + · · ·+ 1R︸ ︷︷ ︸
m times

= ϕ(m).

ϕ′(−m) = −ϕ′(m) = −ϕ(m) = ϕ(−m).

If m = 0 then ϕ′(0) = 0R = ϕ(0).
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ab) This is clear from the definitions.

ac) To show: aca) ϕ(1) = 1R.
acb) ϕ(mn) = ϕ(m)ϕ(n).
acc) ϕ(m+ n) = ϕ(m) + ϕ(n).

aca) This follows from the definition of ϕ.
acb) Let m,n > 0. Then, by the distributive law,

ϕ(m)ϕ(n) = (1 + · · ·+ 1︸ ︷︷ ︸
m times

)(1 + · · ·+ 1︸ ︷︷ ︸
n times

) = 1 + · · ·+ 1︸ ︷︷ ︸
mn times

= ϕ(mn).

ϕ(m)ϕ(−n) = ϕ(m)
(
− ϕ(n)

)
= ϕ(m)(−1R)ϕ(n) = (−1R)ϕ(m)ϕ(n)

= (−1R)ϕ(mn) = −ϕ(mn) = ϕ
(
m(−n)

)
.

ϕ(−m)ϕ(n) = −ϕ(m)ϕ(n) = (−1R)ϕ(m)ϕ(n) = (−1R)ϕ(mn) = −ϕ(mn) = ϕ
(
(−m)n

)
.

ϕ(−m)ϕ(−n) = (−1R)ϕ(m)(−1)Rϕ(n) = ϕ(m)ϕ(n) = ϕ(mn) = ϕ
(
(−m)(−n)

)
.

acc) Let m,n > 0.
Then

ϕ(m) + ϕ(n) = 1 + · · ·+ 1︸ ︷︷ ︸
m times

+ 1 + · · ·+ 1︸ ︷︷ ︸
n times

= 1 + · · ·+ 1︸ ︷︷ ︸
m+n times

= ϕ(m+ n).

ϕ(−m) + ϕ(−n) = −ϕ(m)− ϕ(n) = −
(
ϕ(m) + ϕ(n)

)
= −ϕ(m+ n)

= ϕ
(
− (m+ n)

)
= ϕ

(
(−m) + (−n)

)
.

If m ≥ n, ϕ(m) + ϕ(−n) = ϕ(m)− ϕ(n) = (1 + · · ·+ 1)︸ ︷︷ ︸
m times

− (1 + · · ·+ 1)︸ ︷︷ ︸
n times

= 1 + · · ·+ 1︸ ︷︷ ︸
m−n times

= ϕ(m− n).

If m < n, ϕ(m) + ϕ(−n) = ϕ(m)− ϕ(n) = −
(
ϕ(n)− ϕ(m)

)
= −ϕ(n−m) = ϕ(m− n).

So ϕ is a homomorphism.

b) Let n =char(R).
To show: ba) n ZII⊆ kerϕ.

bb) kerϕ ⊆ n ZII .
First we show n ∈ kerϕ.

By the definition of char(R),

ϕ(n) = 1R + · · ·+ 1R︸ ︷︷ ︸
n times

= 0R.

So n ∈ kerϕ.
ba) Let m ∈ n ZII .
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Then m = nk for some k ∈ZII .
Since ϕ is a homomorphism,

ϕ(m) = ϕ(nk) = ϕ(n)ϕ(k) = 0 · ϕ(k) = 0.

So ϕ(m) ∈ kerϕ.
So n ZII⊆ kerϕ.

bb) Let m ∈ kerϕ.
Write m = nr + s where 0 ≤ s < n and r ∈ZII .
Then, since ϕ is a homomorphism,

0R = ϕ(m) = ϕ(nr + s) = ϕ(n)ϕ(r) + ϕ(s) = 0R + ϕ(s) = 1R + · · ·+ 1R︸ ︷︷ ︸
s times

.

By definition of char(R), n is the smallest positive integer such that 1R + · · · 1R︸ ︷︷ ︸
n times

= 0R.

So s = 0.
So m = nr.
So m ∈ n ZII .
So kerϕ ⊆ n ZII .

So kerϕ = n ZII .

(2.0.21) Proposition. Every proper ideal I of a ring R is contained in a maximal ideal of R.

Proof.
The idea is to use Zorn’s lemma on the set of proper ideals of R containing I, ordered by inclusion. We
will not prove Zorn’s lemma, we will assume it. Zorn’s lemma is equivalent to the axiom of choice. For
a proof see Isaacs book [I].

Zorn’s Lemma. If S is a poset such that every chain in S has an upper bound then S has a maximal
element.

Let S be the set of proper ideals of R containing I, ordered by inclustion.
To show: Given any chain of ideals in S

· · · ⊆ Ik−1 ⊆ Ik ⊆ Ik+1 ⊆ · · ·

there is a proper ideal J of R containing I that contains all the Ik.
Let

J =
⋃
k

Ik.

To show: a) J is an ideal.
b) J is a proper ideal.

a) To show: aa) If i, j ∈ J then i+ j ∈ J .
ab) If i ∈ J and r ∈ R then ir ∈ J and ri ∈ J .

aa) Assume i, j ∈ J .
Then i ∈ Ik and j ∈ Ik′ for some k and k′.
So either i, j ∈ Ik or i, j ∈ Ik′ since either Ik ⊆ Ik′ or Ik′ ⊆ Ik.
So either i+ j ∈ Ik or i+ j ∈ Ik′ since Ik and Ik′ are ideals.
So

i+ j ∈
⋃
k

Ik = J.

ab) Assume i ∈ J and r ∈ R.
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Then i ∈ Ik for some k.
Since Ik is an ideal, ri ∈ Ik and ir ∈ Ik.
So

ri ∈
⋃
k

Ik = J and ir ∈
⋃
k

Ik = J.

So J is an ideal.

b) To show: 1 /∈ J .
Since the Ik are all proper ideals, 1 /∈ Ik for any k.
So

1 /∈
⋃
k

Ik = J.

So J is a proper ideal of R.
So every chain of proper ideals in R that contain I has an upper bound.
Thus, by Zorn’s lemma, the set S of proper ideals containing I has a maximal element.
So I is contained in a maximal ideal.
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§2P. Modules

(2.2.4) Proposition. Let M be a left R-module and let N be a subgroup of M . Then the cosets of N in
M partition M .

Proof.
To show: a) If m ∈M then m ∈ m′ +N for some m′ ∈M .

b) If (m1 +N) ∩ (m2 +N) 6= ∅ then m1 +N = m2 +N .
a) Let m ∈M .

Then, since 0 ∈ N , m = m+ 0 ∈ m+N .
So m ∈ m+N .

b) Assume (m1 +N) ∩ (m2 +N) 6= ∅.
To show: ba) m1 +N ⊆ m2 +N .

bb) m2 +N ⊆ m1 +N .
Let a ∈ (m1 +N) ∩ (m2 +N).
Suppose a = m1 + n1 and a = m2 + n2 where n1, n2 ∈ N .
Then

m1 = m1 + n1 − n1 = a− n1 = m2 + n2 − n1 and
m2 = m2 + n2 − n2 = a− n2 = m1 + n1 − n2.

ba) Let m ∈ m1 +N .
Then m = m1 + n for some n ∈ N .
Then

m = m1 + n = m2 + n2 − n1 + n ∈ m2 +N,

since n2 − n1 + n ∈ N .
So m1 +N ⊆ m2 +N .

bb) Let m ∈ m2 +N .
Then m = m2 + n for some n ∈ N .
Then

m = m2 + n = m1 + n1 − n2 + n ∈ m1 +N,

since n1 − n2 + n ∈ N .
So m2 +N ⊆ m1 +N .

So m1 +N = m2 +N .
So the cosets of N in M partition M .

(2.2.5) Theorem. Let N be a subgroup of a left R-module M . Then N is a submodule of M if and only if
M/N with the operations given by

(m1 +N) + (m2 +N) = (m1 +m2) +N, and
r(m1 +N) = rm1 +N,

is a left R-module.

Proof.
=⇒: Assume N is a submodule of M .

To show: a) (m1 +N) + (m2 +N) = (m1 +m2) +N is a well defined operation on M/N .
b) The operation given by r(m+N) = rm+N is well defined.
c)
(
(m1 +N) + (m2 +N)

)
+ (m3 +N) = (m1 +N) +

(
(m2 +N) + (m3 +N)

)
for all m1 +N,m2 +N,m3 +N ∈M/N .

d) (m1 +N) + (m2 +N) = (m2 +N) + (m1 +N) for all m1 +N,m2 +N ∈M/N .
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e) 0 +N = N is the zero in M/N .
f) −m+N is the additive inverse of m+N .
g) If r1, r2 ∈ R and m+N ∈M/N , then r1

(
r2(m+N)

)
= (r1r2)(m+N).

h) If m+N ∈M/N then 1(m+N) = m+N .
i) If r ∈ R and m1 +N,m2 +N ∈M/N ,

then r
(
(m1 +N) + (m2 +N)

)
= r(m1 +N) + r(m2 +N).

j) If r1, r2 ∈ R and m+N ∈M/N ,
then (r1 + r2)(m+N) = r1(m+N) + r2(m+N).

a) We want the operation on M/N given by

M/N ×M/N → M/N
(m1 +N,m2 +N) 7→ (m1 +m2) +N

to be well defined.
Let (m1 +N,m2 +N), (m3 +N,m4 +N) ∈M/N ×M/N such that
(m1 +N,m2 +N) = (m3 +N,m4 +N).
Then m1 +N = m3 +N and m2 +N = m4 +N .
To show: (m1 +m2) +N = (m3 +m4) +N .

So we must show: aa) (m1 +m2) +N ⊆ (m3 +m4) +N .
ab) (m3 +m4) +N ⊆ (m1 +m2) +N .

aa) We know m1 = m1 + 0 ∈ m3 +N since m1 +N = m3 +N .
So m1 = m3 + k1 for some k1 ∈ N .
Similarly m2 = m4 + k2 for some k2 ∈ N .
Let t ∈ (m1 +m2) +N .
Then t = m1 +m2 + k for some k ∈ N .
So

t = m1 +m2 + k

= m3 + k1 +m4 + k2 + k

= m3 +m4 + k1 + k2 + k,

since addition is commutative.
So t = (m3 +m4) + (k1 + k2 + k) ∈ m3 +m4 +N .
So (m1 +m2) +N ⊆ (m3 +m4) +N .

ab) Since m1 +N = m3 +N , we know m1 + k1 = m3 for some k1 ∈ N .
Since m2 +N = m4 +N , we know m2 + k2 = m4 for some k2 ∈ N .
Let t ∈ (m3 +m4) +N .
Then t = m3 +m4 + k for some k ∈ N .
So

t = m3 +m4 + k

= m1 + k1 +m2 + k2 + k

= m1 +m2 + k1 + k2 + k,

since addition is commutative.
So t = (m1 +m2) + (k1 + k2 + k) ∈ (m1 +m2) +N .
So (m3 +m4) +N ⊆ (m1 +m2) +N .

So (m1 +m2) +N = (m3 +m4) +N .
So the operation given by (m1 +N) + (m3 +N) = (m1 +m3) +N is a well defined
operation on M/N .

b) We want the operation given by

R×M/N → M/N
(r,m+N) 7→ rm+N
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to be well defined.
Let (r1,m1 +N), (r2,m2 +N) ∈ (R×M/N) such that (r1,m1 +N) = (r2,m2 +N).
Then r1 = r2 and m1 +N = m2 +N .
To show: r1m1 +N = r2m2 +N .

To show: ba) r1m1 +N ⊆ r2m2 +N .
bb) r2m2 +N ⊆ r1m1 +N .

ba) Since m1 +N = m2 +N , we know m1 = m2 + n2 for some n2 ∈ N .
Let k ∈ r1m1 +N .
Then k = r1m1 + n for some n ∈ N . So

k = r1m1 + n

= r2(m2 + n2) + n

= r2m2 + r2n2 + n.

Since N is a submodule, r2n2 ∈ N , and r2n2 + n ∈ N .
So k = r2m2 + r2n2 + n ∈ r2m2 +N .
So r1m1 +N ⊆ r2m2 +N .

bb) Since m1 +N = m2 +N , we know m2 = m1 + n1 for some n1 ∈ N .
Let k ∈ r2m2 +N .
Then k = r2m2 + n for some n ∈ N . So

k = r2m2 + n

= r1(m1 + n1) + n

= r1m1 + r1n1 + n.

Since N is a submodule, r1n1 ∈ N , and r1n1 + n ∈ N .
So k = r1m1 + r1n1 + n ∈ r1m1 +N .
So r2m2 +N ⊆ r1m1 +N .

So r1m1 +N = r2m2 +N .
So the operation is well defined.

c) By the associativity of addition in M and the definition of the operation in M/N ,(
(m1 +N) + (m2 +N)

)
+ (m3 +N) =

(
(m1 +m2) +N

)
+ (m3 +N)

=
(
(m1 +m2) +m3

)
+N

=
(
m1 + (m2 +m3)

)
+N

= (m1 +N) +
(
(m2 +m3) +N

)
= (m1 +N) +

(
(m2 +N) + (m3 +N)

)
for all m1 +N,m2 +N,m3 +N ∈M/N .

d) By the commutativity of addition in M and the definition of the operation in M/N ,

(m1 +N) + (m2 +N) = (m1 +m2) +N

= (m2 +m1) +N

= (m2 +N) + (m1 +N).

for all m1 +N,m2 +N ∈M/N .

e) The coset N = 0 +N is the zero in M/N since
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N + (m+N) = (0 +m) +N

= m+N

= (m+ 0) +N = (m+N) +N

for all m+N ∈M/N .

f) Given any coset m+N , its additive inverse is (−m) +N since

(m+N) + (−m+N) = m+ (−m) +N

= 0 +N

= N

= (−m+m) +N

= (−m+N) + (m+N)

for all m+N ∈M/N .

g) Assume r1, r2 ∈ R and m+N ∈M/N .
Then, by definition of the operation,

r1
(
r2(m+N)

)
= r1(r2m+N)

= r1(r2m) +N

= (r1r2)m+N

= (r1r2)(m+N).

h) Assume m+N ∈M/N .
Then, by definition of the operation,

1(m+N) = (1m) +N

= m+N.

i) Assume r ∈ R and m1 +N,m2 +N ∈M/N .
Then

r
(
(m1 +N) + (m2 +N)

)
= r
(
(m1 +m2) +N

)
= r(m1 +m2) +N

= (rm1 + rm2) +N

= (rm1 +N) + (rm2 +N)
= r(m1 +N) + r(m2 +N).

j) Assume r1, r2 ∈ R and m+N ∈M/N .
Then

(r1 + r2)(m+N) =
(
(r1 + r2)m

)
+N

= (r1m+ r2m) +N

= (r1m+N) + (r2m+N)
= r1(m+N) + r2(m+N).

So M/N is a left R-module.

⇐=: Assume N is a subgroup of M and (M/N) is a left R-module with action given by
r(m+N) = rm+N .
To show: N is a submodule of M .
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To show: If r ∈ R and n ∈ N then rn ∈ N .
First we show: If n ∈ N then n+N = N .

To show: a) n+N ⊆ N .
b) N ⊆ n+N .

a) Let k ∈ n+N .
So k = n+ n1 for some n1 ∈ N .
Since N is a subgroup, k = n+ n1 ∈ N .
So n+N ⊆ N .

b) Let k ∈ N .
Since k − n ∈ N , k = n+ (k − n) ∈ n+N .
So N ⊆ n+N .

Now assume r ∈ R and n ∈ N .
Then, by definition of the R-action on M/N ,

rn+N = r(n+N)
= r(0 +N)
= r · 0 +N

= 0 +N

= N.

So rn = rn+ 0 ∈ N .
So N is a submodule of M .

(2.2.9) Proposition. Let f :M → N be an R-module homomorphism. Then
a) ker f is a submodule of M .
b) im f is a submodule of N .

Proof.
a) By condition a) in the definition of R-module homomorphism, f is a group homomorphism.

By Proposition 1.1.13 a), ker f is a subgroup of M .
To show: If r ∈ R and k ∈ ker f then rk ∈ ker f .

Assume r ∈ R and k ∈ ker f .
Then, by the definition of R-module homomorphism,

f(rk) = rf(k) = r · 0 = 0.

So rk ∈ ker f .
So ker f is a submodule of M .

b) By condition a) in the definition of R-module homomorphism, f is a group homomorphism.
By Proposition 1.1.13 b), im f is a subgroup of N .
To show: If r ∈ R and a ∈ im f then ra ∈ im f .

Assume r ∈ R and a ∈ im f .
Then a = f(m) for some m ∈M .
By the definition of R-module homomorphism,

ra = rf(m) = f(rm).

So ra ∈ im f .
So im f is a submodule of N .

(2.2.10) Proposition. Let f :M → N be an R-module homomorphism. Let 0M be the zero in M . Then
a) ker f = (0M ) if and only if f is injective.
b) im f = N if and only if f is surjective.
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Proof.
Let 0M and 0N be the zeros in M and N respectively.

a) =⇒: Assume ker f = (0M ).
To show: If f(m1) = f(m2) then m1 = m2.

Assume f(m1) = f(m2).
Then, by the fact that f is a homomorphism,

0N = f(m1)− f(m2) = f(m1 −m2).

So m1 −m2 ∈ ker f .
But ker f = (0M ).
So m1 −m2 = 0M .
So m1 = m2.

So f is injective.
⇐=: Assume f is injective.

To show: aa) (0M ) ⊆ ker f .
ab) ker f ⊆ (0M ).

aa) Since f(0M ) = 0N , 0M ∈ ker f .
So (0M ) ⊆ ker f .

ab) Let k ∈ ker f .
Then f(k) = 0N .
So f(k) = f(0M ).
Thus, since f is injective, k = 0M .
So ker f ⊆ (0M ).

So ker f = (0M ).

b) =⇒: Assume im f = N .
To show: If n ∈ N then there exists m ∈M such that f(m) = n.

Assume n ∈ N .
Then n ∈ im f .
So there is some m ∈M such that f(m) = n.

So f is surjective.
⇐=: Assume f is surjective.

To show: ba) im f ⊆ N .
bb) N ⊆ im f .

ba) Let x ∈ im f .
Then x = f(m) for some m ∈M .
By the definition of f , f(m) ∈ N .
So x ∈ N .
So im f ⊆ N .

bb) Assume x ∈ N .
Since f is surjective there is an m such that f(m) = x.
So x ∈ im f .
So N ⊆ im f .

So im f = N .

(2.2.11) Theorem.
a) Let f :M → N be an R-module homomorphism and let K = ker f . Define

f̂ : M/ ker f → N
m+K 7→ f(m).

Then f̂ is a well defined injective R-module homomorphism.
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b) Let f :M → N be an R-module homomorphism and define

f ′: M → im f
m 7→ f(m).

Then f ′ is a well defined surjective R-module homomorphism.

c) If f :M → N is an R-module homomorphism, then

M/ ker f ' im f

where the isomorphism is an R-module isomorphism.

Proof.
a) To show: aa) f̂ is well defined.

ab) f̂ is injective.
ac) f̂ is an R-module homomorphism.

aa) To show: aaa) If m ∈M then f̂(m+K) ∈ N .
aab) If m1 +K = m2 +K ∈M/K then f̂(m1 +K) = f̂(m2 +K).

aaa) Assume m ∈M .
Then f̂(m+K) = f(m) and f(m) ∈ N , by the definition of f̂ and f .

aab) Assume m1 +K = m2 +K.
Then m1 = m2 + k, for some k ∈ K.
To show: f̂(m1 +K) = f̂(m2 +K), i.e.,
To show: f(m1) = f(m2).

Since k ∈ ker f , we have f(k) = 0 and so

f(m1) = f(m2 + k) = f(m2) + f(k) = f(m2).

So f̂(m1 +K) = f̂(m2 +K).
So f̂ is well defined.

ab) To show: If f̂(m1 +K) = f̂(m2 +K) then m1 +K = m2 +K.
Assume f̂(m1 +K) = f̂(m2 +K).
Then f(m1) = f(m2).
So f(m1)− f(m2) = 0.
So f(m1 −m2) = 0.
So m1 −m2 ∈ ker f .
So m1 −m2 = k, for some k ∈ ker f .
So m1 = m2 + k, for some k ∈ ker f .
To show: aba) m1 +K ⊆ m2 +K.

abb) m2 +K ⊆ m1 +K.
aba) Let m ∈ m1 +K. Then m = m1 + k1, for some k1 ∈ K.

So m = m2 + k + k1 ∈ m2 +K, since k + k1 ∈ K.
So m1 +K ⊆ m2 +K.

abb) Let m ∈ m2 +K. Then m = m2 + k2, for some k2 ∈ K.
So m = m1 − k + k2 ∈ m1 +K since −k + k2 ∈ K.
So m2 +K ⊆ m1 +K.

So m1 +K = m2 +K.
So f̂ is injective.

ac) To show: aca) If m1 +K,m2 +K ∈M/K

then f̂(m1 +K) + f̂(m2 +K) = f̂
(
(m1 +K) + (m2 +K)

)
.

acb) If r ∈ R and m+K ∈M/K then f̂
(
r(m+K)

)
= rf̂(m+K).

aca) Let m1 +K,m2 +K ∈M/K.
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Since f is a homomorphism,

f̂(m1 +K) + f̂(m2 +K) = f(m1) + f(m2)
= f(m1 +m2)

= f̂
(
(m1 +m2) +K

)
= f̂

(
(m1 +K) + (m2 +K)

)
.

acb) Let r ∈ R and m+K ∈M/K.
Since f is a homomorphism,

f̂
(
r(m+K)

)
= f̂(rm+K)

= f(rm)
= rf(m)

= rf̂(m+K).

So f̂ is an R-module homomorphism.
So f̂ is a well defined injective R-module homomorphism.

b) To show: ba) f ′ is well defined.
bb) f ′ is surjective.
bc) f ′ is an R-module homomorphism.

ba) and bb) are proved in Ex. 2.2.3 a), Part I.
bc) To show: bca) If m1,m2 ∈M then f ′(m1 +m2) = f ′(m1) + f ′(m2).

bcb) If r ∈ R and m ∈M then f ′(rm) = rf ′(m).
bca) Let m1,m2 ∈M .

Then, since f is a homomorphism,

f ′(m1 +m2) = f(m1 +m2) = f(m1) + f(m2) = f ′(m1) + f ′(m2).

bcb) Let m1,m2 ∈M .
Then, since f is an R-module homomorphism,

f ′(rm) = f(rm) = rf(m) = rf ′(m).

So f ′ is an R-module homomorphism.
So f ′ is a well defined surjective R-module homomorphism.

c) Let K = ker f .
By a), the function

f̂ : M/K → N
m+K 7→ f(m)

is a well defined injective R-module homomorphism.
By b), the function

f̂ ′: M/K → im f̂

m+K 7→ f̂(m+K) = f(m)

is a well defined surjective R-module homomorphism.
To show: ca) im f̂ = im f .

cb) f̂ ′ is injective.

ca) To show: caa) im f̂ ⊆ im f .
cab) im f ⊆ im f̂ .
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caa) Let n ∈ im f̂ .
Then there is some m+K ∈M/K such that f̂(m+K) = n.
Let m′ ∈ m+K.
Then m′ = m+ k for some k ∈ K.
Then, since f is a homomorphism and f(k) = 0,

f(m′) = f(m+ k)
= f(m) + f(k)
= f(m)

= f̂(m+ k)
= n.

So n ∈ im f .
So im f̂ ⊆ im f .

cab) Let n ∈ im f .
Then there is some m ∈M such that f(m) = n.
So f̂(m+K) = f(m) = n.
So n ∈ im f̂ .
So im f ⊆ im f̂ .

So im f = im f̂ .
cb) To show: If f̂ ′(m1 +K) = f̂ ′(m2 +K) then m1 +K = m2 +K.

Assume f̂ ′(m1 +K) = f̂ ′(m2 +K).
Then f̂(m1 +K) = f̂(m2 +K).
Then, since f̂ is injective, m1 +K = m2 +K.

So f̂ ′ is injective.
Thus we have

f̂ ′: M/K → im f
m+K 7→ f(m)

is a well defined bijective R-module homomorphism.
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Chapter 3. FIELDS AND VECTOR SPACES

§1P. Fields

(3.1.3) Proposition. If f :K → F is a field homomorphism then f is injective.

Proof.
To show: f :K → F is injective.

Assume f :K → F is a field homomorphism.
To show: If x1, x2 ∈ K and f(x1) = f(x2) then x1 = x2.

Assume x1, x2 ∈ K and f(x1) = f(x2).
To show: x1 = x2.

Proof by contradiction: Assume x1 6= x2.
Let 0K and 0F be the additive identities in K and F respectively.
Let 1Kand 1F be the multiplicative identities in K and F respectively.
Then f(x1)− f(x2) = 0F and x1 − x2 6= 0K .
Let y = (x1 − x2)−1 , which exists by property h) in the definition of a field.
Then, since f :K → F is a homomorphism and f(x1)− f(x2) = 0F ,

1F = f(1K) = f
(
(x1 − x2)y

)
= f(x1 − x2)f(y)

=
(
f(x1)− f(x2)

)
f(y)

= 0F · f(y)
= 0F .

This is a contradiction to property g) in the definition of a field.
So x1 = x2.

So f :K → F is injective.
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§2P. Vector Spaces

(3.2.4) Proposition. Let V be a vector space over a field F and let W be a subgroup of V . Then the cosets
of W in V partition V .

Proof.
To show: a) If v ∈ V then v ∈ v′ +W for some v′ ∈ V .

b) If (v1 +W ) ∩ (v2 +W ) 6= ∅ then v1 +W = v2 +W .
a) Let v ∈ V .

Then, since 0 ∈W , v = v + 0 ∈ v +W .
So v ∈ v +W .

b) Assume (v1 +W ) ∩ (v2 +W ) 6= ∅.
To show: ba) v1 +W ⊆ v2 +W .

bb) v2 +W ⊆ v1 +W .
Let a ∈ (v1 +W ) ∩ (v2 +W ).
Suppose a = v1 + w1 and a = v2 + w2 where w1, w2 ∈W .
Then

v1 = v1 + w1 − w1 = a− w1 = v2 + w2 − w1 and
v2 = v2 + w2 − w2 = a− w2 = v1 + w1 − w2.

ba) Let v ∈ v1 +W .
Then v = v1 + w for some w ∈W .
Then

v = v1 + w = v2 + w2 − w1 + w ∈ v2 +W,

since w2 − w1 + w ∈W .
So v1 +W ⊆ v2 +W .

bb) Let v ∈ v2 +W .
Then v = v2 + w for some w ∈W .
Then

v = v2 + w = v1 + w1 − w2 + w ∈ v1 +W,

since w1 − w2 + w ∈W .
So v2 +W ⊆ v1 +W .

So v1 +W = v2 +W .
So the cosets of W in V partition V .

(3.2.5) Theorem. Let W be a subgroup of a vector space V over a field F . Then W is a subspace of V if
and only if V/W with operations given by

(v1 +W ) + (v2 +W ) = (v1 + v2) +W, and
c(v +W ) = cv +W,

is a vector space over F .

Proof.
=⇒: Assume W is a subspace of V .

To show: a) (v1 +W ) + (v2 +W ) = (v1 + v2) +W is a well defined operation on V/W .
b) The operation given by c(v +W ) = cv +W is well defined.
c)
(
(v1 +W ) + (v2 +W )

)
+ (v3 +W ) = (v1 +W ) +

(
(v2 +W ) + (v3 +W )

)
for all v1 +W, v2 +W, v3 +W ∈ V/W .

d) (v1 +W ) + (v2 +W ) = (v2 +W ) + (v1 +W ) for all v1 +W, v2 +W ∈ V/W .
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e) 0 +W = W is the zero in V/W .
f) −v +W is the additive inverse of v +W .
g) If c1, c2 ∈ F and v +W ∈ V/W , then c1

(
c2(v +W )

)
= (c1c2)(v +W ).

h) If v +W ∈ V/W then 1(v +W ) = v +W .
i) If c ∈ F and v1 +W, v2 +W ∈ V/W ,

then c
(
(v1 +W ) + (v2 +W )

)
= c(v1 +W ) + c(v2 +W ).

j) If c1, c2 ∈ F and v +W ∈ V/W ,
then (c1 + c2)(v +W ) = c1(v +W ) + c2(v +W ).

a) We want the operation on V/W given by

V/W × V/W → V/W
(v1 +W, v2 +W ) 7→ (v1 + v2) +W

to be well defined.
Let (v1 +W, v2 +W ), (v3 +W, v4 +W ) ∈ V/W × V/W such that
(v1 +W, v2 +W ) = (v3 +W, v4 +W ).
Then v1 +W = v3 +W and v2 +W = v4 +W .
To show: (v1 + v2) +W = (v3 + v4) +W .

So we must show: aa) (v1 + v2) +W ⊆ (v3 + v4) +W .
ab) (v3 + v4) +W ⊆ (v1 + v2) +W .

aa) We know v1 = v1 + 0 ∈ v3 +W since v1 +W = v3 +W .
So v1 = v3 + w1 for some w1 ∈W .
Similarly v2 = v4 + w2 for some w2 ∈W .
Let t ∈ (v1 + v2) +W .
Then t = v1 + v2 + w for some w ∈W .
So

t = v1 + v2 + w

= v3 + w1 + v4 + w2 + w

= v3 + v4 + w1 + w2 + w,

since addition is commutative.
So t = (v3 + v4) + (w1 + w2 + w) ∈ v3 + v4 +W .
So (v1 + v2) +W ⊆ (v3 + v4) +W .

ab) Since v1 +W = v3 +W , we know v1 + w1 = v3 for some w1 ∈W .
Since v2 +W = v4 +W , we know v2 + w2 = v4 for some w2 ∈W .
Let t ∈ (v3 + v4) +W .
Then t = v3 + v4 + w for some w ∈W .
So

t = v3 + v4 + w

= v1 + w1 + v2 + w2 + w

= v1 + v2 + w1 + w2 + w,

since addition is commutative.
So t = (v1 + v2) + (w1 + w2 + w) ∈ (v1 + v2) +W .
So (v3 + v4) +W ⊆ (v1 + v2) +W .

So (v1 + v2) +W = (v3 + v4) +W .
So the operation given by (v1 +W ) + (v3 +W ) = (v1 + v3) +W is a well defined
operation on V/W .

b) We want the operation given by

F × V/W → V/W
(c, v +W ) 7→ cv +W
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to be well defined.
Let (c1, v1 +W ), (c2, v2 +W ) ∈ (F × V/W ) such that (c1, v1 +W ) = (c2, v2 +W ).
Then c1 = c2 and v1 +W = v2 +W .
To show: c1v1 +W = c2v2 +W .

To show: ba) c1v1 +W ⊆ c2v2 +W .
bb) c2v2 +W ⊆ c1v1 +W .

ba) Since v1 +W = v2 +W , we know v1 = v2 + w1 for some w1 ∈W .
Let t ∈ c1v1 +W .
Then t = c1v1 + w for some w ∈W . So

t = c1v1 + w

= c2(v2 + w1) + w

= c2v2 + c2w1 + w,

since c1 = c2.
Since W is a subspace, c2w1 ∈W , and c2w1 + w ∈W .
So t = c2v2 + c2w1 + w ∈ c2v2 +W .
So c1v1 +W ⊆ c2v2 +W .

bb) Since v1 +W = v2 +W , we know v2 = v1 + w2 for some w2 ∈W .
Let t ∈ c2v2 +W .
Then t = c2v2 + w for some w ∈W . So

t = c2v2 + w

= c1(v1 + w2) + w

= c1v1 + c1w2 + w,

since c2 = c1.
Since W is a subspace, c1w2 ∈W , and c1w2 + w ∈W .
So t = c1v1 + c1w2 + w ∈ c1v1 +W .
So c2v2 +W ⊆ c1v1 +W .

So c1v1 +W = c2v2 +W .
So the operation is well defined.

c) By the associativity of addition in V and the definition of the operation in V/W ,(
(v1 +W ) + (v2 +W )

)
+ (v3 +W ) =

(
(v1 + v2) +W

)
+ (v3 +W )

=
(
(v1 + v2) + v3

)
+W

=
(
v1 + (v2 + v3)

)
+W

= (v1 +W ) +
(
(v2 + v3) +W

)
= (v1 +W ) +

(
(v2 +W ) + (v3 +W )

)
for all v1 +W, v2 +W, v3 +W ∈ V/W .

d) By the commutativity of addition in V and the definition of the operation in V/W ,

(v1 +W ) + (v2 +W ) = (v1 + v2) +W

= (v2 + v1) +W

= (v2 +W ) + (v1 +W ).

for all v1 +W, v2 +W ∈ V/W .

e) The coset W = 0 +W is the zero in V/W since
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W + (v +W ) = (0 + v) +W

= v +W

= (v + 0) +W

= (v +W ) +W

for all v +W ∈ V/W .

f) Given any coset v +W , its additive inverse is (−v) +W since

(v +W ) + (−v +W ) = v + (−v) +W

= 0 +W

= W

= (−v + v) +W

= (−v +W ) + v +W

for all v +W ∈ V/W .

g) Assume c1, c2 ∈ F and v +W ∈ V/W .
Then, by definition of the operation,

c1
(
c2(v +W )

)
= c1(c2v +W )

= c1(c2v) +W

= (c1c2)v +W

= (c1c2)(v +W ).

h) Assume v +W ∈ V/W .
Then, by definition of the operation,

1(v +W ) = (1v) +W

= v +W.

i) Assume c ∈ F and v1 +W, v2 +W ∈ V/W .
Then

c
(
(v1 +W ) + (v2 +W )

)
= c
(
(v1 + v2) +W

)
= c(v1 + v2) +W

= (cv1 + cv2) +W

= (cv1 +W ) + (cv2 +W )
= c(v1 +W ) + c(v2 +W ).

j) Assume c1, c2 ∈ F and v +W ∈ V/W .
Then

(c1 + c2)(v +W ) =
(
(c1 + c2)v

)
+W

= (c1v + c2v) +W

= (c1v +W ) + (c2v +W )
= c1(v +W ) + c2(v +W ).

So V/W is a vector space over F .

⇐=: Assume W is a subgroup of V and V/W is a vector space over F with action given by
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c(v +W ) = cv +W .
To show: W is a subspace of V .

To show: If c ∈ F and w ∈W then cw ∈W .
First we show: If w ∈W then w +W = W .

To show: a) w +W ⊆W .
b) W ⊆ w +W .

a) Let k ∈ w +W .
So k = w + w1 for some w1 ∈W .
Since W is a subgroup, w + w1 ∈W .
So w +W ⊆W .

b) Let k ∈W .
Since k − w ∈W , k = w + (k − w) ∈ w +W .
So W ⊆ w +W .

Now assume c ∈ F and w ∈W .
Then, by definition of the operation on V/W ,

cw +W = c(w +W )
= c(0 +W )
= c · 0 +W

= 0 +W

= W.

So cw = cw + 0 ∈W .
So W is a subspace of V .

(3.2.8) Proposition. Let T :V →W be a linear transformation. Let 0V and 0W be the zeros for V and W
respectively. Then

a) T (0V ) = 0W .
b) For any v ∈ V , T (−v) = −T (v).

Proof.
a) Add −T (0V ) to both sides of the following equation.

T (0V ) = T (0V + 0V ) = T (0V ) + T (0V ).

b) Since T (v) + T (−v) = T
(
v + (−v)

)
= T (0V ) = 0W and

T (−v) + T (v) = T
(
(−v) + v

)
+ T (0V ) = 0W , then

−T (v) = T (−v).

(3.2.10) Proposition. Let T :V →W be a linear transformation. Then
a) kerT is a subspace of V .
b) imT is a subspace of W .

Proof.
a) By condition a) in the definition of linear transformation, T is a group homomorphism.

By Proposition 1.1.13 a), kerT is a subgroup of V .
To show: If c ∈ F and k ∈ kerT then ck ∈ kerT .

Assume c ∈ F and k ∈ kerT .
Then, by the definition of linear transformation,

T (ck) = cT (k) = c · 0 = 0.

So ck ∈ kerT .
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So kerT is a subspace of V .
b) By condition a) in the definition of linear transformation, T is a group homomorphism.

By Proposition 1.1.13 b), imT is a subgroup of W .
To show: If c ∈ F and a ∈ imT then ca ∈ imT .

Assume c ∈ F and c ∈ imT .
Then a = T (v) for some v ∈ V .
By the definition of linear transformation,

ca = cT (v) = T (cv).

So ca ∈ imT .
So imT is a subspace of W .

(3.2.11) Proposition. Let T :V →W be a linear transformation. Let 0V be the zero in V . Then
a) kerT = (0V ) if and only if T is injective.
b) imT = W if and only if T is surjective.

Proof.
Let 0V and 0W be the zeros in V and W respectively.

a) =⇒: Assume kerT = (0V ).
To show: If T (v1) = T (v2) then v1 = v2.

Assume T (v1) = T (v2).
Then, by the fact that T is a homomorphism,

0W = T (v1)− T (v2) = T (v1 − v2).

So v1 − v2 ∈ kerT .
But kerT = (0V ).
So v1 − v2 = 0V .
So v1 = v2.

So T is injective.
⇐=: Assume T is injective.

To show: aa) (0V ) ⊆ kerT .
ab) kerT ⊆ (0V ).

aa) Since T (0V ) = 0W , 0V ∈ kerT .
So (0V ) ⊆ kerT .

ab) Let k ∈ kerT .
Then T (k) = 0W .
So T (k) = T (0V ).
Thus, since T is injective, k = 0V .
So kerT ⊆ (0V ).

So kerT = (0V ).

b) =⇒: Assume imT = W .
To show: If w ∈W then there exists v ∈ V such that T (v) = w.

Assume w ∈W .
Then w ∈ imT .
So there is some v ∈ V such that T (v) = w.

So T is surjective.
⇐=: Assume T is surjective.

To show: ba) imT ⊆W .
bb) W ⊆ imT .

ba) Let x ∈ imT .
Then x = T (v) for some v ∈ V .
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By the definition of T , T (v) ∈W .
So x ∈W .
So imT ⊆W .

bb) Assume x ∈W .
Since T is surjective there is a v such that T (v) = x.
So x ∈ imT .
So W ⊆ imT .

So imT = W .

(3.2.12) Theorem.
a) Let T :V →W be a linear transformation and let K = kerT . Define

T̂ : V/ kerT → W
v +K 7→ T (v).

Then T̂ is a well defined injective linear transformation.

b) Let T :V →W be a linear transformation and define

T ′: V → imT
v 7→ T (v).

Then T ′ is a well defined surjective linear transformation.

c) If T :V →W is a linear transformation, then

V/ kerT ' imT

where the isomorphism is a vector space isomorphism.

Proof.
a) To show: aa) T̂ is well defined.

ab) T̂ is injective.
ac) T̂ is a linear transformation.

aa) To show: aaa) If v ∈ V then T̂ (v +K) ∈W .
aab) If v1 +K = v2 +K ∈ V/K then T̂ (v1 +K) = T̂ (v2 +K).

aaa) Assume v ∈ V .
Then T̂ (v +K) = T (v) and T (v) ∈W , by the definition of T̂ and T .

aab) Assume v1 +K = v2 +K.
Then v1 = v2 +K, for some k ∈ K.
To show: T̂ (v1 +K) = T̂ (v2 +K), i.e.,
To show: T (v1) = T (v2).

Since K ∈ kerT , we have T (k) = 0 and so

T (v1) = T (v2 + k) = T (v2) + T (k) = T (v2).

So T̂ (v1 +K) = T̂ (v2 +K).
So T̂ is well defined.

ab) To show: If T̂ (v1 +K) = T̂ (v2 +K) then v1 +K = v2 +K.
Assume T̂ (v1 +K) = T̂ (v2 +K). Then T (v1) = T (v2).
So T (v1)− T (v2) = 0.
So T (v1 − v2) = 0.
So v1 − v2 ∈ kerT .
So v1 − v2 = k, for some k ∈ kerT .
So v1 = v2 + k, for some k ∈ kerT .
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To show: aba) v1 +K ⊆ v2 +K.
abb) v2 +K ⊆ v1 +K.

aba) Let v ∈ v1 +K. Then v = v1 + k1, for some k1 ∈ K.
So v = v2 + k + k1 ∈ v2 +K, since k + k1 ∈ K.
So v1 +K ⊆ v2 +K.

abb) Let v ∈ v2 +K. Then v = v2 + k2, for some k2 ∈ K.
So v = v1 − k + k2 ∈ v1 +K since −k + k2 ∈ K.
So v2 +K ⊆ v1 +K.

So v1 +K = v2 +K.
So T̂ is injective.

ac) To show: aca) If v1 +K, v2 +K ∈ V/K then
T̂ (v1 +K) + T̂ (v2 +K) = T̂

(
(v1 +K) + (v2 +K)

)
.

acb) If c ∈ F and v +K ∈ V/K then T̂
(
c(v +K)

)
= cT̂ (v +K).

aca) Let v1 +K, v2 +K ∈ V/K.
Since T is a homomorphism,

T̂ (v1 +K) + T̂ (v2 +K) = T (v1) + T (v2)
= T (v1 + v2)

= T̂
(
(v1 + v2) +K

)
= T̂

(
(v1 +K) + (v2 +K)

)
.

acb) Let c ∈ F and v +K ∈ V/K.
Since T is a homomorphism,

T̂
(
c(v +K)

)
= T̂ (cv +K)

= T (cv)
= cT (v)

= cT̂ (v +K).

So T̂ is a linear transformation.
So T̂ is a well defined injective linear transformation.

b) To show: ba) T ′ is well defined.
bb) T ′ is surjective.
bc) T ′ is a linear transformation.

ba) and bb) are proved in Ex. 2.2.3 b), Part I.
bc) To show: bca) If v1, v2 ∈ V then T ′(v1 + v2) = T ′(v1) + T ′(v2).

bcb) If c ∈ F and v ∈ V then T ′(cv) = cT ′(v).
bca) Let v1, v2 ∈ V .

Then, since T is a linear transformation,

T ′(v1 + v2) = T (v1 + v2) = T (v1) + T (v2) = T ′(v1) + T ′(v2).

bcb) Let v1, v2 ∈ V .
Then, since T is a linear transformation,

T ′(cv) = T (cv) = cT (v) = cT ′(v).

So T ′ is a linear transformation.
So T ′ is a well defined surjective linear transformation.

c) Let K = kerT .
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By a), the function

T̂ : V/K → W
v +K 7→ T (v)

is a well defined injective linear transformation.
By b), the function

T̂ ′: V/K → im T̂
v +K 7→ T̂ (v +K) = T (v)

is a well defined surjective linear transformation.
To show: ca) im T̂ = imT .

cb) T̂ ′ is injective.
ca) To show: caa) im T̂ ⊆ imT .

cab) imT ⊆ im T̂ .
caa) Let w ∈ im T̂ .

Then there is some v +K ∈ V/K such that T̂ (v +K) = w.
Let v′ ∈ v +K.
Then v′ = v + k for some k ∈ K.
Then, since T is a linear transformation and T (k) = 0,

T (v′) = T (v + k)
= T (v) + T (k)
= T (v)

= T̂ (v + k)
= w.

So w ∈ imT .
So im T̂ ⊆ imT .

cab) Let w ∈ imT .
Then there is some v ∈ V such that T (v) = w.
So T̂ (v +K) = T (v) = w.
So w ∈ im T̂ .
So imT ⊆ im T̂ .

So imT = im T̂ .
cb) To show: If T̂ ′(v1 +K) = T̂ ′(v2 +K) then v1 +K = v2 +K.

Assume T̂ ′(v1 +K) = T̂ ′(v2 +K).
Then T̂ (v1 +K) = T̂ (v2 +K).
Then, since T̂ is injective, v1 +K = v2 +K.

So T̂ ′ is injective.
Thus we have

T̂ ′: V/K → im T̂
v +K 7→ T (v)

is a well defined bijective linear transformation.
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