Chapter 2. SETS AND FUNCTIONS

§1P. Sets

1. DeMorgan's Laws. Let A, B, and C be sets. Show that
a) $(A \cup B) \cup C=A \cup(B \cup C)$.
b) $A \cup B=B \cup A$.
c) $A \cup \emptyset=A$.
d) $(A \cap B) \cap C=A \cap(B \cap C)$.
e) $A \cap B=B \cap A$.
f) $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$.

Proof.
a) To show: aa) $(A \cup B) \cup C \subseteq A \cup(B \cup C)$.
ab) $A \cup(B \cup C) \subseteq(A \cup B) \cup C$.
aa) Let $x \in(A \cup B) \cup C$.
Then $x \in A \cup B$ or $x \in C$.
So $x \in A$ or $x \in B$ or $x \in C$.
So $x \in A$ or $x \in B \cup C$.
So $x \in A \cup(B \cup C)$.
So $(A \cup B) \cup C \subseteq A \cup(B \cup C)$.
ab) Let $x \in A \cup(B \cup C)$.
Then $x \in A$ or $x \in B \cup C$.
So $x \in A$ or $x \in B$ or $x \in C$.
So $x \in A \cup B$ or $x \in C$.
So $x \in(A \cup B) \cup C$.
So $A \cup(B \cup C) \subseteq(A \cup B) \cup C$.
So $(A \cup B) \cup C=A \cup(B \cup C)$.
b) To show: ba) $A \cup B \subseteq B \cup A$.
bb) $B \cup A \subseteq A \cup B$.
ba) Let $x \in A \cup B$.
Then $x \in A$ or $x \in B$.
So $x \in B$ or $x \in A$.
So $x \in B \cup A$.
So $A \cup B \subseteq B \cup A$.
bb) Let $x \in B \cup A$.
Then $x \in B$ or $x \in A$.
So $x \in A$ or $x \in B$.
So $x \in A \cup B$.
So $B \cup A \subseteq A \cup B$.
So $A \cup B=B \cup A$.
c) To show: ca) $A \cup \emptyset \subseteq A$.
cb) $A \subseteq A \cup \emptyset$.
ca) Proof by contradiction.
Assume $A \cup \emptyset \nsubseteq A$.
Then there exists $x \in A \cup \emptyset$ such that $x \notin A$.
So $x \in \emptyset$.
This is a contradiction to the definition of empty set.
So $A \cup \emptyset \subseteq A$.
cb) Let $x \in A$.
Then $x \in A$ or $x \in \emptyset$.

So $x \in A \cup \emptyset$.
So $A \subseteq A \cup \emptyset$.
So $A \cup \emptyset=A$.
d) To show: da) $(A \cap B) \cap C \subseteq A \cap(B \cap C)$.
db) $A \cap(B \cap C) \subseteq(A \cap B) \cap C$.
da) Let $x \in(A \cap B) \cap C$.
Then $x \in A \cap B$ and $x \in C$.
So $x \in A$ and $x \in B$ and $x \in C$.
So $x \in A$ and $x \in B \cap C$.
So $x \in A \cap(B \cap C)$.
So $(A \cap B) \cap C \subseteq A \cap(B \cap C)$.
db) Let $x \in A \cap(B \cap C)$.
Then $x \in A$ and $x \in B \cap C$.
So $x \in A$ and $x \in B$ and $x \in C$.
So $x \in A \cap B$ and $x \in C$.
So $x \in(A \cap B) \cap C$.
So $A \cap(B \cap C) \subseteq(A \cap B) \cap C$.
So $(A \cap B) \cap C=A \cap(B \cap C)$.
e) To show: ea) $A \cap B \subseteq B \cap A$.
eb) $B \cap A \subseteq A \cap B$.
ea) Let $x \in A \cap B$.
Then $x \in A$ and $x \in B$.
So $x \in B$ and $x \in A$.
So $x \in B \cap A$.
So $A \cap B \subseteq B \cap A$.
eb) Let $x \in B \cap A$.
Then $x \in B$ and $x \in A$.
So $x \in A$ and $x \in B$.
So $x \in A \cap B$.
So $B \cap A \subseteq A \cap B$.
So $A \cap B=B \cap A$.
f) To show: fa) $A \cap(B \cup C) \subseteq(A \cap B) \cup(A \cap C)$.
fb) $(A \cap B) \cup(A \cap C) \subseteq A \cap(B \cup C)$.
fa) Let $x \in A \cap(B \cup C)$.
Then $x \in A$ and $x \in B \cup C$.
So $x \in A$ and $x \in B$ or $x \in C$.
So $x \in A$ and $x \in B$, or $x \in A$ and $x \in C$.
So $x \in A \cap B$ or $x \in A \cap C$.
So $x \in(A \cap B) \cup(A \cap C)$.
So $A \cap(B \cup C) \subseteq(A \cap B) \cup(A \cap C)$.
fb) Let $x \in(A \cap B) \cup(A \cap C)$.
Then $x \in A \cap B$ or $x \in A \cap C$.
So $x \in A$ and $x \in B$, or $x \in A$ and $x \in C$.
So $x \in A$ and, $x \in B$ or $x \in C$.
So $x \in A$ and $x \in B \cup C$.
So $x \in A \cap(B \cup C)$.
So $(A \cap B) \cup(A \cap C) \subseteq A \cap(B \cup C)$.
So $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$.

§2P. Functions

(2.2.3) Proposition. Let $f: S \rightarrow T$ be a function. An inverse function to f exists if and only if f is bijective.

Proof.
\Longrightarrow : Assume $f: S \rightarrow T$ has an inverse function $f^{-1}: T \rightarrow S$.
To show: a) f is injective.
b) f is surjective.
a) Assume $f\left(s_{1}\right)=f\left(s_{2}\right)$.

To show: $s_{1}=s_{2}$.

$$
s_{1}=f^{-1}\left(f\left(s_{1}\right)\right)=f^{-1}\left(f\left(s_{2}\right)\right)=s_{2} .
$$

So f is injective.
b) Let $t \in T$.

To show: There exists $s \in S$ such that $f(s)=t$.
Let $s=f^{-1}(t)$.
Then

$$
f(s)=f\left(f^{-1}(t)\right)=t
$$

So f is surjective.
So f is bijective.
\Longleftarrow : Assume $f: S \rightarrow T$ is bijective.
To show: f has an inverse function.
We need to define a function $\varphi: T \rightarrow S$.
Let $t \in T$.
Since f is surjective there exists $s \in S$ such that $f(s)=t$.
Define $\varphi(t)=s$.
To show: a) φ is well defined.
b) φ is an inverse function to f.
a) To show: aa) If $t \in T$ then $\varphi(t) \in S$.
ab) If $t_{1}, t_{2} \in T$ and $t_{1}=t_{2}$ then $\varphi\left(t_{1}\right)=\varphi\left(t_{2}\right)$.
aa) It is clear from the definition that $\varphi(t) \in S$.
ab) To show: If $t_{1}=t_{2}$ then $\varphi\left(t_{1}\right)=\varphi\left(t_{2}\right)$.
Assume $t_{1}, t_{2} \in T$ and $t_{1}=t_{2}$.
Let $s_{1}, s_{2} \in S$ such that $f\left(s_{1}\right)=t_{1}$ and $f\left(s_{2}\right)=t_{2}$.
Since $t_{1}=t_{2}, f\left(s_{1}\right)=f\left(s_{2}\right)$.
Since f is injective this implies that $s_{1}=s_{2}$.
So $\varphi\left(t_{1}\right)=s_{1}=s_{2}=\varphi\left(t_{2}\right)$.
So φ is well defined.
b) To show: ba) If $s \in S$ then $\varphi(f(s))=s$.
bb) If $t \in T$ then $f(\varphi(t))=t$.
ba) This is immediate from the definition of φ.
bb) Assume $t \in T$.
Let $s \in S$ be such that $f(s)=t$.
Then

$$
f(\varphi(t))=f(s)=t
$$

So $\varphi \circ f$ and $f \circ \varphi$ are the identity functions on S and T respectively.
So φ is an inverse function to f.

(2.2.7) Proposition.

a) Let S be a set and let \sim be an equivalence relation on S. The set of equivalence classes of the relation \sim is a partition of S.
b) Let S be a set and let $\left\{S_{\alpha}\right\}$ be a partition of S. Then the relation defined by

$$
s \sim t, \text { if } s, t \text { are in the same } S_{\alpha},
$$

is an equivalence relation on S.
Proof.
a) To show: aa) If $s \in S$ then s is in some equivalence class.
ab) If $[s] \cap[t] \neq \emptyset$ then $[s]=[t]$.
aa) Let $s \in S$.
Since $s \sim s, s \in[s]$.
ab) Assume $[s] \cap[t] \neq \emptyset$.
To show: $[s]=[t]$.
Since $[s] \cap[t] \neq 0$, there is an $r \in[s] \cap[t]$.
So $s \sim r$ and $r \sim t$.
By transitivity, $s \sim t$.
To show: aba) $[s] \subseteq[t]$
abb) $[t] \subseteq[s]$.
aba) Suppose $u \in[s]$.
Then $u \sim s$.
We know $s \sim t$.
So, by transitivity, $u \sim t$.
Therefore $u \in[t]$.
So $[s] \subseteq[t]$.
abb) Suppose $v \in[t]$.
Then $v \sim t$.
We know $t \sim s$.
So, by transitivity, $v \sim s$.
Therefore $v \in[s]$.
So $[t] \subseteq[s]$.
So $[s]=[t]$.
So the equivalence classes form a partition of S.
b) We must show that \sim is an equivalence relation, i.e. that \sim is reflexive, symmetric, and transitive.

To show: ba) $s \sim s$ for all $s \in S$.
bb) If $s \sim t$ then $t \sim s$.
bc) If $s \sim t$ and $t \sim u$ then $s \sim u$.
ba) s and s are in the same S_{α} so $s \sim s$.
bb) Assume $s \sim t$.
Then s and t are in the same S_{α}.
So $t \sim s$.
bc) Assume $s \sim t$ and $t \sim u$.
Then s and t are in the same S_{α} and t and u are in the same S_{α}. So s and u are in the same S_{α}.
So $s \sim u$.
So \sim is an equivalence relation.

1. Let S, T, U be sets and let $f: S \rightarrow T$ and $g: T \rightarrow U$ be functions.
a) If f and g are injective then $g \circ f$ is injective.
b) If f and g are surjective then $g \circ f$ is surjective.
c) If f and g are bijective then $g \circ f$ is bijective.

Proof.
a) Assume f and g are injective.

To show: If $s_{1}, s_{2} \in S$ and $(g \circ f)\left(s_{1}\right)=(g \circ f)\left(s_{2}\right)$ then $s_{1}=s_{2}$.
Assume $s_{1}, s_{2} \in S$ and $(g \circ f)\left(s_{1}\right)=(g \circ f)\left(s_{2}\right)$.
Then

$$
g\left(f\left(s_{1}\right)\right)=g\left(f\left(s_{2}\right)\right)
$$

Thus, since g is injective, $f\left(s_{1}\right)=f\left(s_{2}\right)$.
Thus, since f is injective, $s_{1}=s_{2}$.
So $g \circ f$ is injective.
b) Assume f and g are surjective.

To show: If $u \in U$ then there exists $s \in S$ such that $(g \circ f)(s)=u$.
Assume $u \in U$.
Since g is surjective there exists $t \in T$ such that $g(t)=u$.
Since f is surjective there exists $s \in S$ such that $f(s)=t$.
So

$$
\begin{aligned}
(g \circ f)(s) & =g(f(s)) \\
& =g(t) \\
& =u .
\end{aligned}
$$

So there exists $s \in S$ such that $(g \circ f)(s)=u$.
So $g \circ f$ is surjective.
c) Assume f and g are bijective.

To show: ca) $g \circ f$ is injective.
cb) $g \circ f$ is surjective.
ca) Since f and g are bijective, f and g are injective.
Thus, by a), $g \circ f$ is injective.
cb) Since f and g are bijective, f and g are surjective.
Thus, by b), $g \circ f$ is surjective.
So $g \circ f$ is bijective.
2. Let $f: S \rightarrow T$ be a function. Then the set $F=\left\{f^{-1}(t) \mid t \in T\right\}$ of fibers of the map f is a partition of S. Proof.

To show: a) If $s^{\prime} \in S$ then $s^{\prime} \in f^{-1}(t)$ for some $t \in T$.
b) If $f^{-1}\left(t_{1}\right) \cap f^{-1}\left(t_{2}\right) \neq \emptyset$ then $f^{-1}\left(t_{1}\right)=f^{-1}\left(t_{2}\right)$.
a) Assume $s^{\prime} \in S$.

Then $f^{-1}\left(f\left(s^{\prime}\right)\right)=\left\{s \in S \mid f(s)=f\left(s^{\prime}\right)\right\}$.
Since $f\left(s^{\prime}\right)=f\left(s^{\prime}\right), s^{\prime} \in f^{-1}\left(f\left(s^{\prime}\right)\right)$.
b) Assume $f^{-1}\left(t_{1}\right) \cap f^{-1}\left(t_{2}\right) \neq \emptyset$.

Let $s \in f^{-1}\left(t_{1}\right) \cap f^{-1}\left(t_{2}\right)$.
So $f(s)=t_{1}$ and $f(s)=t_{2}$.
To show: $f^{-1}\left(t_{1}\right)=f^{-1}\left(t_{2}\right)$.
To show: ba) $f^{-1}\left(t_{1}\right) \subseteq f^{-1}\left(t_{2}\right)$.
bb) $f^{-1}\left(t_{2}\right) \subseteq f^{-1}\left(t_{1}\right)$.
ba) Let $k \in f^{-1}\left(t_{1}\right)$.
Then $f(k)=t_{1}$

$$
=f(s)
$$

$$
=t_{2}
$$

So $k \in f^{-1}\left(t_{2}\right)$.
So $f^{-1}\left(t_{1}\right) \subseteq f^{-1}\left(t_{2}\right)$.
bb) Let $h \in f^{-1}\left(t_{2}\right)$.
Then $f(k)=t_{2}$

$$
=f(s)
$$

$$
=t_{1}
$$

So $h \in f^{-1}\left(t_{1}\right)$.
So $f^{-1}\left(t_{2}\right) \subseteq f^{-1}\left(t_{1}\right)$.
So $f^{-1}\left(t_{1}\right)=f^{-1}\left(t_{2}\right)$.
So the set $F=\left\{f^{-1}(t) \mid t \in T\right\}$ of fibers of the map f is a partition of S.
3. a) Let $f: S \rightarrow T$ be a function. Define

$$
\begin{aligned}
f^{\prime}: \quad S & \rightarrow \operatorname{imf} \\
s & \mapsto
\end{aligned}
$$

Then the map f^{\prime} is well defined and surjective.
b) Let $f: S \rightarrow T$ be a function and let $F=\left\{f^{-1}(t) \mid t \in T\right\}$ be the set of nonempty fibers of f. Define

$$
\begin{array}{cccc}
\hat{f}: & F & \rightarrow & T \\
& f^{-1}(t) & \mapsto & t
\end{array}
$$

Then the map \hat{f} is well defined and injective.
c) Let $f: S \rightarrow T$ be a function and let $F=\left\{f^{-1}(t) \mid t \in T\right\}$ be the set of nonempty fibers of f. Define

$$
\begin{array}{cccc}
\hat{f}^{\prime}: & F & \rightarrow & \operatorname{im} f \\
f^{-1}(t) & \mapsto & t .
\end{array}
$$

Then the map \hat{f}^{\prime} is well defined and bijective.
Proof.
a) To show: aa) f^{\prime} is well defined.
ab) f^{\prime} is surjective.
aa) To show: aaa) If $s \in S$ then $f^{\prime}(s) \in \operatorname{im} f$.
aab) If $s_{1}=s_{2}$ then $f^{\prime}\left(s_{1}\right)=f^{\prime}\left(s_{2}\right)$.
aaa) Assume $s \in S$.
Then $f^{\prime}(s)=f(s) \in \operatorname{im} f$ by definition of f^{\prime} and $\operatorname{im} f$.
aab) Assume $s_{1}=s_{2}$.
Then, by definition of f^{\prime},

$$
f^{\prime}\left(s_{1}\right)=f\left(s_{1}\right)=f\left(s_{2}\right)=f^{\prime}\left(s_{2}\right)
$$

So f^{\prime} is well defined.
ab) To show: If $t \in \operatorname{im} f$ then there exists $s \in S$ such that $f^{\prime}(s)=t$.
Assume $t \in \operatorname{im} f$.
Then $f(s)=t$ for some $s \in S$.
So $f^{\prime}(s)=f(s)=t$.

So f^{\prime} is surjective.
b) To show: ba) \hat{f} is well defined.
bb) \hat{f} is injective.
ba) To show: baa) If $f^{-1}(t) \in F$ then $\hat{f}\left(f^{-1}(t)\right) \in T$.
bab) If $f^{-1}\left(t_{1}\right)=f^{-1}\left(t_{2}\right)$ then $\hat{f}\left(f^{-1}\left(t_{1}\right)\right)=\hat{f}\left(f^{-1}\left(t_{2}\right)\right)$.
baa) Assume $f^{-1}(t) \in F$.
Then $\hat{f}\left(f^{-1}(t)\right)=t \in T$, by definition.
bab) Assume $f^{-1}\left(t_{1}\right)=f^{-1}\left(t_{2}\right)$.
Let $s \in f^{-1}\left(t_{1}\right)$.
Then $s \in f^{-1}\left(t_{2}\right)$ also.
So $t_{1}=f(s)=t_{2}$.
Then

$$
\hat{f}\left(f^{-1}\left(t_{1}\right)\right)=t_{1}=t_{2}=\hat{f}\left(f^{-1}\left(t_{2}\right)\right)
$$

So \hat{f} is well defined.
bb) To show: If $\hat{f}\left(f^{-1}\left(t_{1}\right)\right)=\hat{f}\left(f^{-1}\left(t_{2}\right)\right)$ then $f^{-1}\left(t_{1}\right)=f^{-1}\left(t_{2}\right)$.
Assume $\hat{f}\left(f^{-1}\left(t_{1}\right)\right)=\hat{f}\left(f^{-1}\left(t_{2}\right)\right)$.
Then $t_{1}=t_{2}$.
To show: $f^{-1}\left(t_{1}\right)=f^{-1}\left(t_{2}\right)$.
This is clearly true since $t_{1}=t_{2}$.
So \hat{f} is injective.
c) By Ex. 2.2 .3 b), the function

$$
\begin{array}{cccc}
\hat{f}: & F & \rightarrow & T \\
f^{-1}(t) & \mapsto & t
\end{array}
$$

is well defined and injective.
By Ex. 2.2.3 a), the function

$$
\begin{array}{cccc}
\hat{f}^{\prime}: & F & \rightarrow & \operatorname{im} \hat{f} \\
f^{-1}(t) & \mapsto & t
\end{array}
$$

is well defined and surjective.
To show: ca) $\operatorname{im} \hat{f}=\operatorname{im} f$.
cb) \hat{f}^{\prime} is injective.
ca) To show: caa) $\operatorname{im} \hat{f} \subseteq \operatorname{im} f$.
cab) $\operatorname{im} f \subseteq \operatorname{im} \hat{f}$.
caa) Assume $t \in \operatorname{im} \hat{f}$.
Then $f^{-1}(t)$ is nonempty.
So there exists $s \in S$ such that $f(s)=t$.
So $t \in \operatorname{im} f$.
So $\operatorname{im} \hat{f} \subseteq \operatorname{im} f$.
cab) Assume $t \in \operatorname{im} f$.
Then there exists $s \in S$ such that $f(s)=t$.
So $f^{-1}(t) \neq \emptyset$.
So $t \in \operatorname{im} \hat{f}$.
So $\operatorname{im} f \subseteq \operatorname{im} \hat{f}$.
So $\operatorname{im} \hat{f}=\operatorname{im} f$.
cb) To show: If $\left.\hat{f}^{\prime}\left(f^{-1}\left(t_{1}\right)\right)=\hat{f}^{\prime}\left(f^{-1} t_{2}\right)\right)$ then $f^{-1}\left(t_{1}\right)=f^{-1}\left(t_{2}\right)$.
Assume $\hat{f}^{\prime}\left(f^{-1}\left(t_{1}\right)\right)=\hat{f}^{\prime}\left(f^{-1}\left(t_{2}\right)\right)$.

So \hat{f}^{\prime} is well defined and bijective.
4. Let S be a set and let $\{0,1\}^{S}$ be the set of all functions $f: S \rightarrow\{0,1\}$. Given a subset $T \subseteq S$ define a function $f_{T}: S \rightarrow\{0,1\}$ by

$$
f_{T}(s)= \begin{cases}0 & \text { if } s \notin T \\ 1 & \text { if } s \in T\end{cases}
$$

Then the map

$$
\begin{array}{rccc}
\psi: \quad 2^{S} & \rightarrow & \{0,1\}^{S} \\
T & \mapsto & f_{T}
\end{array}
$$

is a bijection.
Proof.
To show: a) ψ is well defined.
b) ψ is bijective.
a) To show: aa) If $T \in 2^{S}$ then $\psi(T)=f_{T} \in\{0,1\}^{S}$.
ab) If T_{1} and T_{2} are subsets of S and $T_{1}=T_{2}$ then $\psi\left(T_{1}\right)=\psi\left(T_{2}\right)$.
aa) It is clear from the definition of f_{T} that $z z / p s i(T)=f_{T}$ is a function from S to $\{0,1\}$.
ab) Assume T_{1} and T_{2} are subsets of S and $T_{1}=T_{2}$.
To show: $\psi\left(T_{1}\right)=\psi\left(T_{2}\right)$.
To show: $f_{T_{1}}=f_{T_{2}}$.
To show: If $s \in S$ then $f_{T_{1}}(s)=f_{T_{2}}(s)$.
Assume $s \in S$.
Case 1: If $s \in T_{1}$ then, since $T_{1}=T_{2}, s \in T_{2}$.
So

$$
f_{T_{1}}(s)=1=f_{T_{2}}(s)
$$

Case 2: If $s \notin T_{1}$ then, since $T_{1}=T_{2}, s \notin T_{2}$. So

$$
f_{T_{1}}(s)=0=f_{T_{2}}(s)
$$

$$
\text { So } f_{T_{1}}(s)=f_{T_{2}}(s) \text { for all } s \in S
$$

So $f_{T_{1}}=f_{T_{2}}$.
So $\psi\left(T_{1}\right)=f_{T_{1}}=f_{T_{2}}=\psi\left(T_{2}\right)$.
So ψ is well defined.
b) By virtue of Proposition 2.2.3 we would like to show: $\psi: 2^{S} \rightarrow\{0,1\}^{S}$ has an inverse function.
Given a function $f: S \rightarrow\{0,1\}$ define

$$
T_{f}=\{s \in S \mid f(s)=1\}
$$

Define a function $\varphi:\{0,1\}^{S} \rightarrow 2^{S}$ by

$$
\begin{aligned}
\varphi: \quad\{0,1\}^{S} & \rightarrow \\
f & \mapsto 2^{S} \\
& \mapsto
\end{aligned}
$$

To show: ba) φ is well defined.
bb) φ is an inverse function to ψ.
ba) To show: baa) If $f \in\{0,1\}^{S}$ then $\varphi(f)=T_{f} \in 2^{S}$.
bab) If $f_{1}, f_{2} \in\{0,1\}^{S}$ and $f_{1}=f_{2}$ then

$$
\varphi\left(f_{1}\right)=\varphi\left(f_{2}\right)
$$

baa) By definition, $T_{f}=\{s \in S \mid f(s)=1\}$ is a subset of S.
bab) Assume $f_{1}, f_{2} \in\{0,1\}^{S}$ and $f_{1}=f_{2}$.
To show: $\varphi\left(f_{1}\right)=\varphi\left(f_{2}\right)$.
To show: $T_{f_{1}}=T_{f_{2}}$.
To show: baba) $T_{f_{1}} \subseteq T_{f_{2}}$.
babb) $T_{f_{2}} \subseteq T_{f_{1}}$.
baba) Assume $s \in T_{f_{1}}$.
Then $f_{1}(s)=1$.
Since $f_{2}(s)=f_{1}(s), f_{2}(s)=1$.
Thus $s \in T_{f_{2}}$.
So $T_{f_{1}} \subseteq T_{f_{2}}$.
babb) Assume $s \in T_{f_{2}}$.
Then $f_{2}(s)=1$.
Since $f_{1}(s)=f_{2}(s), f_{1}(s)=1$.
Thus $s \in T_{f_{1}}$.
So $T_{f_{2}} \subseteq T_{f_{1}}$.
So $T_{f_{1}}=T_{f_{2}}$.
So $\varphi\left(f_{1}\right)=\varphi\left(f_{2}\right)$.
So φ is well defined.
bb) To show: bba) If $T \in 2^{S}$ then $\varphi(\psi(T))=T$.
bbb) If $f \in\{0,1\}^{S}$ then $\psi(\varphi(f))=f$.
bba) Assume $T \subseteq S$.
To show: $\varphi(\psi(T))=T$.
To show: $T_{f_{T}}=T$.
To show: bbaa) $T_{f_{T}} \subseteq T$.
bbab) $T \subseteq T_{f_{T}}$.
bbaa) Assume $t \in T_{f_{T}}$.
Then $f_{T}(t)=1$.
So $t \in T$.
So $T_{f_{T}} \subseteq T$.
bbab) Assume $t \in T$.
Then $f_{T}(t)=1$.
So $t \in T_{f_{T}}$.
So $T \subseteq T_{f_{T}}$.
So $T_{f_{T}}=T$.
So $\varphi(\psi(T))=T$.
bbb) Assume $f \in\{0,1\}^{S}$.
To show: $\psi(\varphi(f))=f$.
By definition, $\psi(\varphi(f))=f_{T_{f}}$.
To show: If $s \in S$ then $f_{T_{f}}(s)=f(s)$.
Assume $s \in S$.
Case 1: $f(s)=1$.
Then $s \in T_{f}$.

$$
\begin{aligned}
& \text { So } f_{T_{f}}(s)=1 \\
& \text { So } f_{T_{f}}(s)=f(s) \text {. }
\end{aligned}
$$

Case 2: $f(s)=0$.
Then $s \notin T_{f}$.
So $f_{T_{f}}(s)=0$.
So $f_{T_{f}}(s)=f(s)$.
So $f_{T_{f}}(s)=f(s)$.
So $\psi(\varphi(f))=f$.
So φ is an inverse function to ψ.
So ψ is bijective.
5. a) Let \circ be an operation on a set S. If S contains an identity for \circ then it is unique.
b) Let e be an identity for an associative operation \circ on a set S. Let $s \in S$. If s has an inverse then it is unique.

Proof.
a) Let $e, e^{\prime} \in S$ be identities for \circ.

Then $e \circ e^{\prime}=e$, since e^{\prime} is an identity, and $e \circ e^{\prime}=e^{\prime}$, since e is an identity.
So $e=e^{\prime}$.
b) Assume $t, u \in S$ are both inverses for s.

By associativity of $\circ, u=(t \circ s) \circ u=t \circ(s \circ u)=t$.
6. a) Let S and T be sets and let ι_{S} and ι_{T} be the identity maps on S and T respectively.

For any function $f: S \rightarrow T$,

$$
\begin{aligned}
\iota_{T} \circ f & =f, \quad \text { and } \\
f \circ \iota_{S} & =f .
\end{aligned}
$$

b) Let $f: S \rightarrow T$ be a function. If an inverse function to f exists then it is unique.

Proof.
a) Assume $f: S \rightarrow T$ is a function.

To show: aa) $\iota_{T} \circ f=f$.
ab) $f \circ \iota_{S}=f$.
To show: aa) If $s \in S$ then $\iota_{T}(f(s))=f(s)$.
ab) If $s \in S$ then $f\left(\iota_{S}(s)\right)=f(s)$.
aa) and ab) follow immediately from the definitions of ι_{T} and ι_{S} respectively.
b) Assume φ and ψ are both inverse functions to f.

To show: $\varphi=\psi$.
By the definitions if identity functions and inverse functions,

$$
\varphi=\varphi \circ(f \circ \psi)=(\varphi \circ f) \circ \psi=\psi
$$

So, if an inverse function to f exists, then it is unique.

Chapter 1. GROUPS AND GROUP ACTIONS

§1P. Groups

(1.1.3) Proposition. Let G be a group and let H be a subgroup of G. Then the cosets of H in G partition G.

Proof.
To show: a) If $g \in G$ then $g \in g^{\prime} H$ for some $g^{\prime} \in G$.
b) If $g_{1} H \cap g_{2} H \neq \emptyset$ then $g_{1} H=g_{2} H$.
a) Let $g \in G$.

Then $g=g \cdot 1 \in g H$ since $1 \in H$. So $g \in g H$.
b) Assume $g_{1} H \cap g_{2} H \neq \emptyset$.

To show: ba) $g_{1} H \subseteq g_{2} H$.
bb) $g_{2} H \subseteq g_{1} H$.
Let $k \in g_{1} H \cap g_{2} H$.
Suppose $k=g_{1} h_{1}$ and $k=g_{2} h_{2}$, where $h_{1}, h_{2} \in H$.
Then

$$
\begin{aligned}
& g_{1}=g_{1} h_{1} h_{1}^{-1}=k h_{1}^{-1}=g_{2} h_{2} h_{1}^{-1}, \quad \text { and } \\
& g_{2}=g_{2} h_{2} h_{2}^{-1}=k h_{2}^{-1}=g_{1} h_{1} h_{2}^{-1} .
\end{aligned}
$$

ba) Let $g \in g_{1} H$.
Then $g=g_{1} h$ for some $h \in H$.
Then

$$
g=g_{1} h=g_{2} h_{2} h_{1}^{-1} h \in g_{2} H,
$$

since $h_{2} h_{1}^{-1} h \in H$.
So $g_{1} H \subseteq g_{2} H$.
bb) Let $g \in g_{2} H$.
Then $g=g_{2} h$ for some $h \in H$.
So

$$
g=g_{2} h=g_{1} h_{1} h_{2}^{-1} h \in g_{1} H
$$

since $h_{1} h_{2}^{-1} h \in H$.
So $g_{2} H \subseteq g_{1} H$.
So $g_{1} H=g_{2} H$.
So the cosets of H in G partition G.
(1.1.4) Proposition. Let G be a group and let H be a subgroup of G. Then for any $g_{1}, g_{2} \in G$,

$$
\operatorname{Card}\left(g_{1} H\right)=\operatorname{Card}\left(g_{2} H\right)
$$

Proof.
To show: There is a bijection from $g_{1} H$ to $g_{2} H$.
Define a map φ by

$$
\begin{array}{cccc}
\varphi: & g_{1} H & & g_{2} H \\
x & \mapsto & g_{2} g_{1}^{-1} x .
\end{array}
$$

To show: a) φ is well defined.
b) φ is a bijection.
a) To show: aa) If $x \in g_{1} H$ then $\varphi(x) \in g_{2} H$.

$$
\text { ab) If } x=y \text { then } \varphi(x)=\varphi(y)
$$

aa) Assume $x \in g_{1} H$.
Then $x=g_{1} h$ for some $h \in H$.
So $\varphi(x)=g_{2} g_{1}^{-1} g_{1} h=g_{2} h \in g_{2} H$.
ab) This is clear from the definition of φ.
So φ is well defined.
b) By virtue of Theorem 2.2.3, Part I, we want to construct an inverse map for φ. Define

$$
\begin{aligned}
\psi: \quad g_{2} H & \rightarrow & g_{1} H \\
y & \mapsto & g_{1} g_{2}^{-1} y
\end{aligned}
$$

$H W$: Show (exactly as in a) above) that ψ is well defined.
Then,

$$
\begin{aligned}
& \psi(\varphi(x))=g_{1} g_{2}^{-1} \varphi(x)=g_{1} g_{2}^{-1} g_{2} g_{1}^{-1} x=x, \quad \text { and } \\
& \varphi(\psi(y))=g_{2} g_{1}^{-1} \varphi(y)=g_{2} g_{1}^{-1} g_{1} g_{2}^{-1} y=y
\end{aligned}
$$

So ψ is an inverse function to φ.
So φ is a bijection.
(1.1.5) Corollary. Let H be a subgroup of a group G. Then

$$
\operatorname{Card}(G)=\operatorname{Card}(G / H) \operatorname{Card}(H)
$$

Proof.
By Proposition 1.1.4, all cosets in G / H are the same size as H.
Since the cosets of H partition G, the cosets are disjoint subsets of G,
and G is a union of these subsets.
So G is a union of $\operatorname{Card}(G / H)$ disjoint subsets all of which have size $\operatorname{Card}(H)$.
(1.1.8) Proposition. Let N be a subgroup of $G . N$ is a normal subgroup of G if and only if G / N with the operation given by $(a N)(b N)=a b N$ is a group.

Proof.
\Longrightarrow : Assume N is a normal subgroup of G.
To show: a) $(a N)(b N)=(a b N)$ is a well defined operation on (G / N).
b) N is the identity element of G / N.
c) $g^{-1} N$ is the inverse of $g N$.
a) We want the operation on G / N given by

$$
\begin{array}{ccc}
G / N \times G / N & \rightarrow & G / N \\
(a N, b N) & \mapsto & a b N
\end{array}
$$

to be well defined.
To show: If $\left(a_{1} N, b_{1} N\right),\left(a_{2} N, b_{2} N\right) \in G / N \times G / N$ and $\left(a_{1} N, b_{1} N\right)=\left(a_{2} N, b_{2} N\right)$
then $a_{1} b_{1} N=a_{2} b_{2} N$.
Let $\left(a_{1} N, b_{1} N\right),\left(a_{2} N, b_{2} N\right) \in(G / N \times G / N)$ such that $\left(a_{1} N, b_{1} N\right)=\left(a_{2} N, b_{2} N\right)$.
Then $a_{1} N=a_{2} N$ and $b_{1} N=b_{2} N$.
To show: aa) $a_{1} b_{1} N \subseteq a_{2} b_{2} N$.
ab) $a_{2} b_{2} N \subseteq a_{1} b_{1} N$.
aa) We know $a_{1}=a_{1} \cdot 1 \in a_{2} N$ since $a_{1} N=a_{2} N$.

So $a_{1}=a_{2} n_{1}$ for some $n_{1} \in N$.
Similary, $b_{1}=b_{2} n_{2}$ for some $n_{2} \in N$.
Let $k \in a_{1} b_{1} N$.
Then $k=a_{1} b_{1} n$ for some $n \in N$. So

$$
\begin{aligned}
k & =a_{1} b_{1} n \\
& =a_{2} n_{1} b_{2} n_{2} n \\
& =a_{2} b_{2} b_{2}^{-1} n_{1} b_{2} n_{2} n
\end{aligned}
$$

Since N is normal, $b_{2}^{-1} n_{1} b_{2} \in N$, and therefore $\left(b_{2}^{-1} n_{1} b_{2}\right) n_{2} n \in N$.
So $k=a_{2} b_{2}\left(b_{2}^{-1} n_{1} b_{2}\right) n_{2} n \in a_{2} b_{2} N$.
So $a_{1} b_{1} N \subseteq a_{2} b_{2} N$.
ab) Since $a_{1} N=a_{2} N$, we know $a_{1} n_{1}=a_{2}$ for some $n_{1} \in N$.
Since $b_{1} N=b_{2} N$, we know $b_{1} n_{2}=b_{2}$ for some $n_{2} \in N$.
Let $k \in a_{2} b_{2} N$.
Then $k=a_{2} b_{2} n$ for some $n \in N$. So

$$
\begin{aligned}
k & =a_{2} b_{2} n \\
& =a_{1} n_{1} b_{1} n_{2} n \\
& =a_{1} b_{1} b_{1}^{-1} n_{1} b_{1} n_{2} n .
\end{aligned}
$$

Since N is normal $b_{1}^{-1} n_{1} b_{1} \in N$, and therefore $\left(b_{1}^{-1} n_{1} b_{1}\right) n_{2} n \in N$.
So $k=a_{1} b_{1}\left(b_{1}^{-1} n_{1} b_{1}\right) n_{2} n \in a_{1} b_{1} N$.
So $a_{2} b_{2} N \subseteq a_{1} b_{1} N$.
So $\left(a_{1} b_{1}\right) N=\left(a_{2} b_{2}\right) N$.
So the operation is well defined.
b) The coset $N=1 N$ is the identity since

$$
\begin{aligned}
(N)(g N) & =(1 g) N \\
& =g N \\
& =(g 1) N \\
& =(g N)(N),
\end{aligned}
$$

for all $g \in G$.
c) Given any coset $g N$ its inverse is $g^{-1} N$ since

$$
\begin{aligned}
(g N)\left(g^{-1} N\right) & =\left(g g^{-1}\right) N \\
& =N \\
& =g^{-1} g N \\
& =\left(g^{-1} N\right)(g N)
\end{aligned}
$$

So G / N is a group.
\Longleftarrow : Assume (G / N) is a group with operation $(a N)(b N)=a b N$.
To show: If $g \in G$ and $n \in N$ then $g n g^{-1} \in N$.
First we show: If $n \in N$ then $n N=N$.
Assume $n \in N$.
To show: a) $n N \subseteq N$.
b) $N \subseteq n N$.
a) Let $x \in n N$.

Then $x=n m$ for some $m \in N$.
Since N is a subgroup, $n m \in N$.
So $x \in N$.
So $n N \subseteq N$.
b) Assume $m \in N$.

Then, since N is a subgroup, $m=n n^{-1} m \in n N$.
So $N \subseteq n N$.
Now let $g \in G$ and $n \in N$.
Then, by definition of the operation,

$$
\begin{aligned}
g n g^{-1} N & =(g N)(n N)\left(g^{-1} N\right) \\
& =(g N)(N)\left(g^{-1} N\right) \\
& =g 1 g^{-1} N \\
& =N .
\end{aligned}
$$

So $g n g^{-1} \in N$.
So N is a normal subgroup of G.
(1.1.11) Proposition. Let $f: G \rightarrow H$ be a group homomorphism. Let 1_{G} and 1_{H} be the identities for G and H respectively. Then
a) $f\left(1_{G}\right)=1_{H}$.
b) For any $g \in G, f\left(g^{-1}\right)=f(g)^{-1}$.

Proof.
a) Multiply both sides of the following equation by $f\left(1_{G}\right)^{-1}$.

$$
f\left(1_{G}\right)=f\left(1_{G} \cdot 1_{G}\right)=f\left(1_{G}\right) f\left(1_{G}\right)
$$

b) Since $f(g) f\left(g^{-1}\right)=f\left(g g^{-1}\right)=f\left(1_{G}\right)=1_{H}$, and $f\left(g^{-1}\right) f(g)=f\left(g^{-1} g\right)=f\left(1_{G}\right)=1_{H}$, then

$$
f(g)^{-1}=f\left(g^{-1}\right)
$$

(1.1.13) Proposition. Let $f: G \rightarrow H$ be a group homomorphism. Let 1_{G} and 1_{H} be the identities for G and H respectively. Then
a) $\operatorname{ker} f$ is a normal subgroup of G.
b) $\operatorname{im} f$ is a subgroup of H.

Proof.
To show: a) ker f is a normal subgroup of G.
b) $\operatorname{im} f$ is a subgroup of G.
a) To show: aa) $\operatorname{ker} f$ is a subgroup.
ab) $\operatorname{ker} f$ is normal.
aa) To show: aaa) If $k_{1}, k_{2} \in \operatorname{ker} f$ then $k_{1} k_{2} \in \operatorname{ker} f$.
aab) $1_{G} \in \operatorname{ker} f$.
aac) If $k \in \operatorname{ker} f$ then $k^{-1} \in \operatorname{ker} f$.
aaa) Assume $k_{1}, k_{2} \in \operatorname{ker} f$. Then $f\left(k_{1}\right)=1_{H}$ and $f\left(k_{2}\right)=1_{H}$.
So $f\left(k_{1} k_{2}\right)=f\left(k_{1}\right) f\left(k_{2}\right)=1_{H}$.
So $k_{1} k_{2} \in \operatorname{ker} f$.
aab) Since $f\left(1_{G}\right)=1_{H}, 1_{G} \in \operatorname{ker} f$.
aac) Assume $k \in \operatorname{ker} f$. So $f(k)=1_{H}$.
Then

$$
f\left(k^{-1}\right)=f(k)^{-1}=1_{H}^{-1}=1_{H} .
$$

So $k^{-1} \in \operatorname{ker} f$.
So $\operatorname{ker} f$ is a subgroup.
ab) To show: If $g \in G$ and $k \in \operatorname{ker} f$ then $g k g^{-1} \in \operatorname{ker} f$.
Assume $g \in G$ and $k \in \operatorname{ker} f$. Then

$$
\begin{aligned}
f\left(g k g^{-1}\right) & =f(g) f(k) f\left(g^{-1}\right) \\
& =f(g) f\left(g^{-1}\right) \\
& =f(g) f(g)^{-1} \\
& =1
\end{aligned}
$$

So $g k g^{-1} \in \operatorname{ker} f$.
So $\operatorname{ker} f$ is a normal subgroup of G.
b) To show: $\operatorname{im} f$ is a subgroup of H.

To show: ba) If $h_{1}, h_{2} \in \operatorname{im} f$ then $h_{1} h_{2} \in \operatorname{im} f$.
bb) $1_{H} \in \operatorname{im} f$.
bc) If $h \in \operatorname{im} f$ then $h^{-1} \in \operatorname{im} f$.
ba) Assume $h_{1}, h_{2} \in \operatorname{im} f$.
Then $h_{1}=f\left(g_{1}\right)$ and $h_{2}=f\left(g_{2}\right)$ for some $g_{1}, g_{2} \in G$.
Then

$$
h_{1} h_{2}=f\left(g_{1}\right) f\left(g_{2}\right)=f\left(g_{1} g_{2}\right)
$$

since f is a homomorphism.
So $h_{1} h_{2} \in \operatorname{im} f$.
bb) By Proposition 1.1.11 a), $f\left(1_{G}\right)=1_{H}$, so $1_{H} \in \operatorname{im} f$.
bc) Assume $h \in \operatorname{im} f$.
Then $h=f(g)$ for some $g \in G$.
Then, by Proposition 1.1.11 b),

$$
h^{-1}=f(g)^{-1}=f\left(g^{-1}\right)
$$

So $h^{-1} \in \operatorname{im} f$.
So $\operatorname{im} f$ is a subgroup of H.
(1.1.14) Proposition. Let $f: G \rightarrow H$ be a group homomorphism. Let 1_{G} be the identity in G. Then
a) $\operatorname{ker} f=\left(1_{G}\right)$ if and only if f is injective.
b) $\operatorname{im} f=H$ if and only if f is surjective.

Proof.
a) Let 1_{G} and 1_{H} be the identities for G and H respectively.
\Longrightarrow : Assume ker $f=\left(1_{G}\right)$.
To show: If $f\left(g_{1}\right)=f\left(g_{2}\right)$ then $g_{1}=g_{2}$.
Assume $f\left(g_{1}\right)=f\left(g_{2}\right)$.
Then, by Proposition 1.1 .11 b$)$ and the fact that f is a homomorphism,

$$
1_{H}=f\left(g_{1}\right) f\left(g_{2}\right)^{-1}=f\left(g_{1} g_{2}^{-1}\right) .
$$

So $g_{1} g_{2}^{-1} \in \operatorname{ker} f$.
But ker $f=\left(1_{G}\right)$.
So $g_{1} g_{2}^{-1}=1_{G}$.

So $g_{1}=g_{2}$.
So f is injective.
\Longleftarrow : Assume f is injective.
To show: aa) $\left(1_{G}\right) \subseteq \operatorname{ker} f$.
ab) $\operatorname{ker} f \subseteq\left(1_{G}\right)$.
aa) Since $f\left(1_{G}\right)=1_{H}, 1_{G} \in \operatorname{ker} f$.
So $\left(1_{G}\right) \subseteq \operatorname{ker} f$.
ab) Let $k \in \operatorname{ker} f$. Then $f(k)=1_{H}$. So $f(k)=f\left(1_{G}\right)$. Thus, since f is injective, $k=1_{G}$.
So $\operatorname{ker} f \subseteq\left(1_{G}\right)$.
So ker $f=\left(1_{G}\right)$.
b) \Longrightarrow : Assume im $f=H$.

To show: If $h \in H$ then there exists $g \in G$ such that $f(g)=h$.
Assume $h \in H$.
Then $h \in \operatorname{im} f$.
So there exists some $g \in G$ such that $f(g)=h$.
So f is surjective.
\Longleftarrow : Assume f is surjective.
To show: ba) $\operatorname{im} f \subseteq H$.
bb) $H \subseteq \operatorname{im} f$.
ba) Let $x \in \operatorname{im} f$.
Then $x=f(g)$ for some $g \in G$.
By the definition of $f, f(g) \in H$.
So $x \in H$.
So $\operatorname{im} f \subseteq H$.
bb) Assume $x \in H$.
Since f is surjective there exists a g such that $f(g)=x$.
So $x \in \operatorname{im} f$.
So $H \subseteq \operatorname{im} f$.
So $\operatorname{im} f=H$.
(1.1.15) Theorem.
a) Let $f: G \rightarrow H$ be a group homomorphism and let $K=\operatorname{ker} f$. Define

$$
\begin{array}{cccc}
\hat{f}: \quad G / \operatorname{ker} f & \rightarrow & H \\
g K & \mapsto & f(g) .
\end{array}
$$

Then \hat{f} is a well defined injective group homomorphism.
b) Let $f: G \rightarrow H$ be a group homomorphism and define

$$
\begin{aligned}
f^{\prime}: \quad G & \rightarrow \operatorname{im} f \\
g & \mapsto f(g) .
\end{aligned}
$$

Then f^{\prime} is a well defined surjective group homomorphism.
c) If $f: G \rightarrow H$ is a group homomorphism then

$$
G / \operatorname{ker} f \simeq \operatorname{im} f
$$

where the isomorphism is a group isomorphism.
Proof.
a) To show: aa) \hat{f} is well defined.
ab) \hat{f} is injective.
ac) \hat{f} is a homomorphism.
aa) To show: aaa) If $g \in G$ then $\hat{f}(g K) \in H$.
aab) If $g_{1} K=g_{2} K$ then $\hat{f}\left(g_{1} K\right)=\hat{f}\left(g_{2} K\right)$.
aaa) Assume $g \in G$.
Then $\hat{f}(g K)=f(g)$ and $f(g) \in H$ by the definition of \hat{f} and f.
aab) Assume $g_{1} K=g_{2} K$.
Then $g_{1}=g_{2} k$ for some $k \in K$.
To show: $\hat{f}\left(g_{1} K\right)=\hat{f}\left(g_{2} K\right)$, i.e.,
To show: $f\left(g_{1}\right)=f\left(g_{2}\right)$.
Since $k \in \operatorname{ker} f$, we have $f(k)=1$ and so

$$
f\left(g_{1}\right)=f\left(g_{2} k\right)=f\left(g_{2}\right) f(k)=f\left(g_{2}\right)
$$

So $\hat{f}\left(g_{1} K\right)=\hat{f}\left(g_{2} K\right)$.
So \hat{f} is well defined.
ab) To show: If $\hat{f}\left(g_{1} K\right)=\hat{f}\left(g_{2} K\right)$ then $g_{1} K=g_{2} K$.
Assume $\hat{f}\left(g_{1} K\right)=\hat{f}\left(g_{2} K\right)$. Then $f\left(g_{1}\right)=f\left(g_{2}\right)$.
So $f\left(g_{1}\right) f\left(g_{2}\right)^{-1}=1$.
So $f\left(g_{1} g_{2}^{-1}\right)=1$.
So $g_{1} g_{2}^{-1} \in \operatorname{ker} f$.
So $g_{1} g_{2}^{-1}=k$ for some $k \in \operatorname{ker} f$.
So $g_{1}=g_{2} k$ for some $k \in \operatorname{ker} f$.
To show: aba) $g_{1} K \subseteq g_{2} K$.
abb) $g_{2} K \subseteq g_{1} K$.
aba) Let $g \in g_{1} K$. Then $g=g_{1} k_{1}$ for some $k_{1} \in K$.
So $g=g_{2} k k_{1} \in g_{2} K$, since $k k_{1} \in K$.
So $g_{1} K \subseteq g_{2} K$.
abb) Let $g \in g_{2} K$. Then $g=g_{2} k_{2}$ for some $k_{2} \in K$.
So $g=g_{1} k^{-1} k_{2} \in g_{1} K$ since $k^{-1} k_{2} \in K$. So $g_{2} K \subseteq g_{1} K$.
So $g_{1} K=g_{2} K$.
So \hat{f} is injective.
ac) To show: $\hat{f}\left(g_{1} K\right) \hat{f}\left(g_{2} K\right)=\hat{f}\left(\left(g_{1} K\right)\left(g_{2} K\right)\right)$.
Since f is a homomorphism,

$$
\begin{aligned}
\hat{f}\left(g_{1} K\right) \hat{f}\left(g_{2} K\right) & =f\left(g_{1}\right) f\left(g_{2}\right) \\
& =f\left(g_{1} g_{2}\right) \\
& =\hat{f}\left(g_{1} g_{2} K\right) \\
& =\hat{f}\left(\left(g_{1} K\right)\left(g_{2} K\right)\right)
\end{aligned}
$$

So \hat{f} is a homomorphism.
b) To show: ba) f^{\prime} is well defined.
bb) f^{\prime} is surjective.
bc) f^{\prime} is a homomorphism.
ba) and bb) are proved in Ex. 2.2.3, Part I.
bc) Since f is a homomorphism,

$$
f^{\prime}(g) f^{\prime}(h)=f(g) f(h)=f(g h)=f^{\prime}(g h) .
$$

So f^{\prime} is a homomorphism.
c) Let $K=\operatorname{ker} f$.

By a), the function

$$
\begin{array}{cccc}
\hat{f}: & G / K & \rightarrow & H \\
& g K & \mapsto & f(g)
\end{array}
$$

is a well defined injective homomorphism.
By b), the function

$$
\begin{array}{cccc}
\hat{f}^{\prime}: \quad G / K & \rightarrow & \operatorname{im} \hat{f} \\
& g K & \mapsto & \hat{f}(g K)=f(g)
\end{array}
$$

is a well defined surjective homomorphism.
To show: ca) $\operatorname{im} \hat{f}=\operatorname{im} f$.
cb) \hat{f}^{\prime} is injective.
ca) To show: caa) $\operatorname{im} \hat{f} \subseteq \operatorname{im} f$.
cab) $\operatorname{im} f \subseteq \operatorname{im} \hat{f}$.
caa) Let $h \in \operatorname{im} \hat{f}$.
Then there is some $g K \in G / K$ such that $\hat{f}(g K)=h$.
Let $g^{\prime} \in g K$.
Then $g^{\prime}=g k$ for some $k \in K$.
Then, since f is a homomorphism and $f(k)=1$,

$$
\begin{aligned}
f\left(g^{\prime}\right) & =f(g k) \\
& =f(g) f(k) \\
& =f(g) \\
& =\hat{f}(g K) \\
& =h .
\end{aligned}
$$

So $h \in \operatorname{im} f$.
So $\operatorname{im} \hat{f} \subseteq \operatorname{im} f$.
cab) Let $h \in \operatorname{im} f$.
Then there is some $g \in G$ such that $f(g)=h$.
So $\hat{f}(g K)=f(g)=h$.
So $h \in \operatorname{im} \hat{f}$.
So $\operatorname{im} f \subseteq \operatorname{im} \hat{f}$.
cb) To show: If $\hat{f}^{\prime}\left(g_{1} K\right)=\hat{f}^{\prime}\left(g_{2} K\right)$ then $g_{1} K=g_{2} K$.
Assume $\hat{f}^{\prime}\left(g_{1} K\right)=\hat{f}^{\prime}\left(g_{2} K\right)$.
Then $\hat{f}\left(g_{1} K\right)=\hat{f}\left(g_{2} K\right)$.
Then, since \hat{f} is injective, $g_{1} K=g_{2} K$.
So \hat{f}^{\prime} is injective.
Thus we have

$$
\begin{array}{rlll}
\hat{f}^{\prime}: \quad G / K & \rightarrow & \operatorname{im} \hat{f} \\
g K & \mapsto & f(g)
\end{array}
$$

is a well defined bijective homomorphism.

§2P. Group Actions

(1.2.3) Proposition. Suppose G is a group acting on a set S and let $s \in S$ and $g \in G$. Then a) G_{s} is a subgroup of G.
b) $G_{g s}=g G_{s} g^{-1}$.

Proof.
a)To showa) If $h_{1}, h_{2} \in G_{s}$ then $h_{1} h_{2} \in G_{s}$
ab) $1 \in G_{s}$.
ac) If $h \in G_{s}$ then $h^{-1} \in G_{s}$.
aa) Assume $h_{1}, h_{2} \in G_{s}$. Then

$$
\left(h_{1} h_{2}\right) s=h_{1}\left(h_{2} s\right)=h_{1} s=s .
$$

So $h_{1} h_{2} \in G_{s}$.
ab) Since $1 s=s, 1 \in G_{s}$.
ac) Assume $h \in G_{s}$. Then

$$
h^{-1} s=h^{-1}(h s)=\left(h^{-1} h\right) s=1 s=s .
$$

So $h^{-1} \in G_{s}$.
So G_{s} is a subgroup of G.
b) To show: ba) $G_{g s} \subseteq g G_{s} g^{-1}$.
bb) $g G_{s} g^{-1} \subseteq G_{g s}$.
ba) Assume $h \in G_{g s}$.
Then $h g s=g s$.
So $g^{-1} h g s=s$.
So $g^{-1} h g \in G_{s}$.
Since $h=g\left(g^{-1} h g\right) g^{-1}, h \in g G_{s} g^{-1}$.
So $G_{g s} \subseteq g G_{s} g^{-1}$.
bb) Assume $h \in g G_{s} g^{-1}$.
So $h=g a g^{-1}$ for some $a \in G_{s}$.
Then

$$
h g s=\left(g a g^{-1}\right) g s=g a s=g s .
$$

So $h \in G_{g s}$.
So $G_{g s} \subseteq g G_{s} g^{-1}$.
So $G_{g s}=g G_{s} g^{-1}$.
(1.2.4) Proposition. Let G be a group which acts on a set S. Then the orbits partition the set S.

Proof.
To show: a) If $s \in S$ then $s \in G t$ for some $t \in S$.
b) If $s_{1}, s_{2} \in S$ and $G s_{1} \cap G s_{2} \neq \emptyset$ then $G s_{1}=G s_{2}$.
a) Assume $s \in S$.

Then, since $s=1 s, s \in G s$.
b) Assume $s_{1}, s_{2} \in S$ and that $G s_{1} \cap G s_{2} \neq \emptyset$.

Then let $t \in G s_{1} \cap G s_{2}$.
So $t=g_{1} s_{1}$ and $t=g_{2} s_{2}$ for some elements $g_{1}, g_{2} \in G$.
So

$$
s_{1}=g_{1}^{-1} g_{2} s_{2} \text { and } s_{2}=g_{2}^{-1} g_{1} s_{1} .
$$

To show: $G s_{1}=G s_{2}$.
To show: ba) $G s_{1} \subseteq G s_{2}$.
bb) $G s_{2} \subseteq G s_{1}$.
ba) Let $t_{1} \in G s_{1}$.
So $t=h_{1} s_{1}$ for some $h_{1} \in G$.
Then

$$
t_{1}=h_{1} s_{1}=h_{1} g_{1}^{-1} g_{2} s_{2} \in G s_{2}
$$

So $G s_{1} \subseteq G s_{2}$.
bb) Let $t_{2} \in G s_{s}$.
So $t_{2}=h_{2} s_{2}$ for some $h_{2} \in G$.
Then

$$
t_{2}=h_{2} s_{2}=h_{2} g_{2}^{-1} g_{1} s_{1} \in G s_{1}
$$

So $G s_{2} \subseteq G s_{1}$.
So $G s_{1}=G s_{2}$.
So the orbits partition S.
(1.2.5) Corollary. If G is a group acting on a set S and $G s_{i}$ denote the orbits of the action of G on S then

$$
\operatorname{Card}(S)=\sum_{\substack{\text { distinct } \\ \text { orbits }}} \operatorname{Card}\left(G s_{i}\right)
$$

Proof.
By Proposition 1.2.4, S is a disjoint union of orbits.
So $\operatorname{Card}(S)$ is the sum of the cardinalities of the orbits.
(1.2.6) Proposition. Let G be a group acting on a set S and let $s \in S$. If $G s$ is the orbit containing s and G_{s} is the stabilizer of s then

$$
\left|G: G_{s}\right|=\operatorname{Card}(G s)
$$

where $\left|G: G_{s}\right|$ is the index of $G_{s} \in G$.
Proof.
Recall that $\left|G: G_{s}\right|=\operatorname{Card}\left(G / G_{s}\right)$.
To show: There is a bijective map

$$
\varphi: \quad G / G_{s} \rightarrow G s
$$

Let us define

$$
\begin{aligned}
\varphi: \quad G / G_{s} & \rightarrow G s \\
g G_{s} & \mapsto
\end{aligned}
$$

To show: a) φ is well defined.
b) φ is bijective.
a) To show: aa) $\varphi\left(g G_{s}\right) \in G s$ for every $g \in G$.
ab) If $g_{1} G_{s}=g_{2} G_{s}$ then $\varphi\left(g_{1} G_{s}\right)=\varphi\left(g_{2} G_{s}\right)$.
aa) Is clear from the definition of $\varphi, \varphi\left(g G_{s}\right)=g s \in G s$.
ab) Assume $g_{1}, g_{2} \in G$ and $g_{1} G_{s}=g_{2} G_{s}$.
Then $g_{1}=g_{2} h$ for some $h \in G_{s}$.
To show: $g_{1} s=g_{2} s$.
Then

$$
g_{1} s=g_{2} h s=g_{2} s
$$

since $h \in G_{s}$.
So $\varphi\left(g_{1} G_{s}\right)=\varphi\left(g_{2} G_{s}\right)$.
So φ is well defined.
b) To show: ba) φ is injective, i.e. if $\varphi\left(g_{1} G_{s}\right)=\varphi\left(g_{2} G_{2}\right)$ then $g_{1} G_{s}=g_{2} G_{s}$.
bb) φ is surjective, i.e. if $g s \in G_{s}$ then there exists $h G_{s} \in G / G_{s}$ such that $\varphi\left(h G_{s}\right)=g s$.
ba) Assume $\varphi\left(g_{1} G_{s}\right)=\varphi\left(g_{2} G_{s}\right)$.
Then $g_{1} s=g_{2} s$.
So $s=g_{1}^{-1} g_{2} s$ and $g_{2}^{-1} g_{1} s=s$.
So $g_{1}^{-1} g_{2} \in G_{s}$ and $g_{2}^{-1} g_{1} \in G_{s}$.
To show: φ is injective.
To show: $g_{1} G_{s}=g_{2} G_{s}$
To show: baa) $g_{1} G_{s} \subseteq g_{2} G_{s}$.
bab) $g_{2} G_{s} \subseteq g_{1} G_{s}$.
baa) Let $k_{1} \in g_{1} G_{s}$.
So $k_{1}=g_{1} h_{1}$ for some $h_{1} \in G_{s}$.
Then

$$
\begin{aligned}
k_{1}=g_{1} h_{1} & =g_{1} g_{1}^{-1} g_{2} g_{2}^{-1} g_{1} h_{1}=g_{2}\left(g_{2}^{-1} g_{1} h_{1}\right) \in g_{2} G_{s} . \\
& \text { So } g_{1} G_{s} \subseteq g_{2} G_{s} . \\
\text { bab) } & \text { Let } k_{2} \in g_{2} G_{s} . \\
& \text { So } k_{2}=g_{2} h_{2} \text { for some } h_{2} \in G_{s} . \\
& \text { Then }
\end{aligned}
$$

$$
\begin{aligned}
& k_{2}=g_{2} h_{2}=g_{2} g_{2}^{-1} g_{1} g_{1}^{-1} g_{2} h_{2}=g_{1}\left(g_{1}^{-1} g_{2} h_{2}\right) \in g_{1} G_{s} . \\
& \\
& \text { So } g_{2} G_{s} \subseteq g_{1} G_{s} . \\
& \text { So } g_{1} G_{s}=g_{2} G_{s} .
\end{aligned}
$$

So φ is injective.
bb) To show: φ is surjective.
Assume $t \in G_{s}$.
Then $t=g s$ for some $g \in G$.
Thus,

$$
\varphi\left(g G_{s}\right)=g s=t
$$

So φ is surjective.
So φ is bijective.
(1.2.7) Corollary. Let G be a group acting on a set S. Let $s \in S$, let G_{s} denote the stabilizer of s, and let Gs denote the orbit of s. Then

$$
\operatorname{Card}(G)=\operatorname{Card}(G s) \operatorname{Card}\left(G_{s}\right) .
$$

Proof.
Multiply both sides of the identity in Proposition 1.2 .6 by $\operatorname{Card}\left(G_{s}\right)$ and use Corollary 1.1.5.
(1.2.9) Proposition. Let H be a subgroup of G and let N_{H} be the normalizer of H in G. Then
a) H is a normal subgroup of N_{H}.
b) If K is a subgroup of G such that $H \subseteq K \subseteq G$ and H is a normal subgroup of K then $K \subseteq N_{H}$.

Proof.
b) Let $k \in K$.

To show: $k \in N_{H}$.
To show: $k h k^{-1} \in H$ for all $h \in H$.
This is true since H is normal in K.
So $K \subseteq N_{H}$.
a) This is the special case of b) when $K=H$.
(1.2.10) Proposition. Let G be a group and let \mathcal{S} be the set of subsets of G. Then
a) G acts on \mathcal{S} by

$$
\begin{array}{cccc}
\alpha: & G \times \mathcal{S} & \rightarrow & \mathcal{S} \\
& (g, S) & \mapsto & g S g^{-1}
\end{array}
$$

where $g S g^{-1}=\left\{g s g^{-1} \mid s \in S\right\}$. We say that G acts on \mathcal{S} by conjugation.
b) If S is a subset of G then N_{S} is the stabilizer of S under the action of G on \mathcal{S} by conjugation.

Proof.
a) To show: aa) α is well defined.
ab) $\alpha(1, S)=S$ for all $S \in \mathcal{S}$.
ac) $\alpha(g, \alpha(h, S))=\alpha(g h, S)$ for all $g, h \in G$, and $S \in \mathcal{S}$.
aa) To show: aaa) $g S g^{-1} \in \mathcal{S}$.
aab) If $S=T$ and $g=h$ then $g S g^{-1}=h T h^{-1}$.
Both of these are clear from the definitions.
ab) Let $S \in \mathcal{S}$.
Then

$$
\alpha(1, S)=1 S 1^{-1}=S
$$

ac) Let $g, h \in G$ and $S \in \mathcal{S}$.
Then

$$
\begin{aligned}
\alpha(g, \alpha(h, S)) & =\alpha\left(g, h S h^{-1}\right)=g\left(h S h^{-1}\right) g^{-1} \\
& =(g h) S\left(h^{-1} g^{-1}\right)=(g h) S(g h)^{-1}=\alpha(g h, S) .
\end{aligned}
$$

b) This follows immediately from the definitions of N_{S} and of stabilizer.
(1.2.12) Proposition. Let G be a group. Then
a) G acts on G by

$$
\begin{array}{ccc}
G \times G & \rightarrow & G \\
(g, s) & \mapsto & g s g^{-1}
\end{array}
$$

We say that G acts on itself by conjugation.
b) Two elements $g_{1}, g_{2} \in G$ are conjugate if and only if they are in the same orbit under the action of G on itself by conjugation.
c) The conjugacy class, \mathcal{C}_{g}, of $g \in G$ is the orbit of g under the action of G on itself by conjugation.
d) The centralizer, Z_{g}, of $g \in G$ is the stablilizer of g under the action of G on itself by conjugation.

Proof.
a) The proof is exactly the same as the proof of a) in Proposition 1.2.10.

Replace all the capital S 's by lower case s 's.
b), c), and d) follow easily from the definitons.
(1.2.14) Lemma. Let G_{s} be the stabilizer of $s \in G$ under the action of G on itself by conjugation. Then a) For each subset $S \subseteq G$,

$$
Z_{S}=\bigcap_{s \in S} G_{s}
$$

b) $Z(G)=Z_{G}$, where $Z(G)$ denotes the center of G.
c) $s \in Z(G)$ if and only if $Z_{S}=G$.
d) $s \in Z(G)$ if and only if $\mathcal{C}_{s}=\{s\}$.

Proof.
a) aa) Assume $s \in Z_{s}$.

Then $s x s^{-1}=s$ for all $s \in S$.
So $x \in G_{s}$ for all $s \in S$.
So $x \cap_{s \in S} G_{s}$.
So $Z_{s} \subseteq \cap_{s \in S} G_{s}$.
ab) Assume $x \in \cap_{s \in S} G_{s}$.
Then $x s x^{-1}=s$ for all $s \in S$.
So $x \in Z_{s}$.
So $\cap_{s \in S} G_{s}$.
b) This is clear from the definitions of Z_{G} and $Z(G)$.
c) \Longrightarrow : Let $s \in Z(G)$.

To show: $Z_{S}=G$.
By definiton $Z_{S} \subseteq G$.
To show: $G \subseteq Z_{S}$.
Let $g \in G$.
Then $g s g^{-1}=s$ since $s \in Z(G)$.
So $g \in Z_{S}$.
So $G \subseteq Z_{S}$.
So $Z_{S}=G$.
\Longleftarrow : Assume $Z_{S}=G$.
Then $g s g^{-1}=s$ for all $g \in G$.
So $g s=s g$ for all $g \in G$.
So $s \in Z(G)$.
d) \Longrightarrow : Assume $s \in Z(G)$.

Then $g s g^{-1}=s$ for all $s \in G$.
So $\mathcal{C}_{s}=\left\{g s g^{-1} \mid g \in G\right\}=\{s\}$.
\Longleftarrow : Assume $\mathcal{C}_{s}=\{s\}$.
Then $g s g^{-1}=s$ for all $g \in G$.
So $s \in Z(g)$.
(1.2.15) Proposition. (The Class Equation) Let $\mathcal{C}_{g_{i}}$ denote the conjugacy classes in a group G and let $\left|\mathcal{C}_{g_{i}}\right|$ denote $\operatorname{Card}\left(\mathcal{C}_{g_{i}}\right)$. Then

$$
|G|=|Z(G)|+\sum_{\left|\mathcal{C}_{g_{i}}\right|>1} \operatorname{Card}\left(\mathcal{C}_{g_{i}}\right) .
$$

Proof.
By Corollary 1.2.5 and the fact that the $\mathcal{C}_{g_{i}}$ are the orbits of G acting on itself by conjugation we know that

$$
|G|=\sum_{\mathcal{C}_{g_{i}}} \operatorname{Card}\left(\mathcal{C}_{g_{i}}\right)
$$

By Lemma 1.2.14 d) we know that

$$
Z(G)=\bigcup_{\left|\mathcal{C}_{g_{i}}\right|=1} \mathcal{C}_{g_{i}} .
$$

So

$$
\begin{aligned}
|G| & =\sum_{\left|\mathcal{C}_{g_{i}}\right|=1} \operatorname{Card}\left(\mathcal{C}_{g_{i}}\right)+\sum_{\left|\mathcal{C}_{g_{i}}\right|>1} \operatorname{Card}\left(\mathcal{C}_{g_{i}}\right) \\
& =\operatorname{Card}(Z(G))+\sum_{\left|\mathcal{C}_{g_{i}}\right|>1} \operatorname{Card}\left(\mathcal{C}_{g_{i}}\right) .
\end{aligned}
$$

Chapter 2. RINGS AND MODULES

§1P. Rings

(2.0.4) Proposition. Let R be a ring and let I be an additive subgroup of R. Then the cosets of I in R partition R.

Proof.
To show: a) If $r \in R$ then $r \in r^{\prime}+I$ for some $r^{\prime} \in R$.
b) If $\left(r_{1}+I\right) \cap\left(r_{2}+I\right) \neq \emptyset$ then $r_{1}+I=r_{2}+I$.
a) Let $r \in R$.

Then $r=r+0 \in r+I$, since $0 \in I$.
So $r \in r+I$.
b) Assume $\left(r_{1}+I\right) \cap\left(r_{2}+I\right) \neq \emptyset$.

To show: ba) $r_{1}+I \subseteq r_{2}+I$.
bb) $r_{2}+I \subseteq r_{1}+I$.
Let $s \in\left(r_{1}+I\right) \cap\left(r_{2}+I\right)$.
Suppose $s=r_{1}+i_{1}$ and $s=r_{2}+i_{2}$ where $i_{1}, i_{2} \in I$.
Then

$$
\begin{aligned}
& r_{1}=r_{1}+i_{1}-i_{1}=s-i_{1}=r_{2}+i_{2}-i_{1} \quad \text { and } \\
& r_{2}=r_{2}+i_{2}-i_{2}=s-i_{2}=r_{1}+i_{1}-i_{2} .
\end{aligned}
$$

ba) Let $r \in r_{1}+I$.
Then $r=r_{1}+i$ for some $i \in I$.
Then

$$
r=r_{1}+i=r_{2}+i_{2}-i_{1}+i \in r_{2}+I,
$$

since $i_{2}-i_{1}+i \in I$.
So $r_{1}+I \subseteq r_{2}+I$.
bb) Let $r \in r_{2}+I$.
Then $r=r_{2}+i$ for some $i \in I$.
So

$$
r=r_{2}+i=r_{1}+i_{1}-i_{2}+i \in r_{1}+I,
$$

since $i_{1}-i_{2}+i \in I$.
So $r_{2}+I \subseteq r_{1}+I$.

$$
\text { So } r_{1}+I=r_{2}+I \text {. }
$$

So the cosets of I in R partition R.
(2.0.6) Proposition. Let I be an additive subgroup of a ring R. I is an ideal of R if and only if R / I with operations given by

$$
\begin{aligned}
\left(r_{1}+I\right)+\left(r_{2}+I\right) & =\left(r_{1}+r_{2}\right)+I \quad \text { and } \\
\left(r_{1}+I\right)\left(r_{2}+I\right) & =r_{1} r_{2}+I
\end{aligned}
$$

is a ring.
Proof.
\Longrightarrow : Assume I is an ideal of R.
To show: a) $\left(r_{1}+I\right)+\left(r_{2}+I\right)=\left(r_{1}+r_{2}\right)+I$ is a well defined operation on R / I.
b) $\left(r_{1}+I\right)\left(r_{2}+I\right)=\left(r_{1} r_{2}\right)+I$ is a well defined operation on R / I.
c) $\left(\left(r_{1}+I\right)+\left(r_{2}+I\right)\right)+\left(r_{3}+I\right)=\left(r_{1}+I\right)+\left(\left(r_{2}+I\right)+\left(r_{3}+I\right)\right)$ for all $r_{1}+I, r_{2}+I, r_{3}+I \in R / I$.
d) $\left(r_{1}+I\right)+\left(r_{2}+I\right)=\left(r_{2}+I\right)+\left(r_{1}+I\right)$ for all $r_{1}+I, r_{2}+I \in R / I$.
e) $0+I=I$ is the zero in R / I.
f) $-r+I$ is the additive inverse of $r+I$.
g) $\left(\left(r_{1}+I\right)\left(r_{2}+I\right)\right)\left(r_{3}+I\right)=\left(r_{1}+I\right)\left(\left(r_{2}+I\right)\left(r_{3}+I\right)\right)$ for all $r_{1}+I, r_{2}+I, r_{3}+I \in R / I$.
h) $1+I$ is the identity in R / I.
i) If $r_{1}+I, r_{2}+I, r_{3}+I \in R / I$ then

$$
\begin{aligned}
\left(r_{1}+I\right)\left(\left(r_{2}+I\right)+\left(r_{3}+I\right)\right) & =\left(r_{1}+I\right)\left(r_{2}+I\right)+\left(r_{1}+I\right)\left(r_{3}+I\right) \quad \text { and } \\
\left(\left(r_{2}+I\right)+\left(r_{3}+I\right)\right)\left(r_{1}+I\right) & =\left(r_{2}+I\right)\left(r_{1}+I\right)+\left(r_{3}+I\right)\left(r_{1}+I\right) .
\end{aligned}
$$

a) We want the operation on R / I given by

$$
\begin{array}{ccc}
R / I \times R / I & \rightarrow & R / I \\
(r+I, s+I) & \mapsto & (r+s)+I
\end{array}
$$

to be well defined.
Let $\left(r_{1}+I, s_{1}+I\right),\left(r_{2}+I, s_{2}+I\right) \in R / I \times R / I$ such that $\left(r_{1}+I, s_{1}+I\right)=\left(r_{2}+I, s_{2}+I\right)$.
Then $r_{1}+I=r_{2}+I$ and $s_{1}+I=s_{2}+I$.
To show: $\left(r_{1}+s_{1}\right)+I=\left(r_{2}+s_{2}\right)+I$.
So we must show: aa) $\left(r_{1}+s_{1}\right)+I \subseteq\left(r_{2}+s_{2}\right)+I$.
ab) $\left(r_{2}+s_{2}\right)+I \subseteq\left(r_{1}+s_{1}\right)+I$.
aa) We know $r_{1}=r_{1}+0 \in r_{2}+I$ since $r_{1}+I=r_{2}+I$.
So $r_{1}=r_{2}+k_{1}$ for some $k_{1} \in I$.
Similarly $s_{1}=s_{2}+k_{2}$ for some $k_{2} \in I$.
Let $t \in\left(r_{1}+s_{1}\right)+I$.
Then $t=r_{1}+s_{1}+k$ for some $k \in I$.
So

$$
\begin{aligned}
t & =r_{1}+s_{1}+k \\
& =r_{2}+k_{1}+s_{2}+k_{2}+k \\
& =r_{2}+s_{2}+k_{1}+k_{2}+k,
\end{aligned}
$$

since addition is commutative.
So $t=\left(r_{2}+s_{2}\right)+\left(k_{1}+k_{2}+k\right) \in r_{2}+s_{2}+I$.
So $\left(r_{1}+s_{1}\right)+I \subseteq\left(r_{2}+s_{2}\right)+I$.
ab) Since $r_{1}+I=r_{2}+I$, we know $r_{1}+k_{1}=r_{2}$ for some $k_{1} \in I$.
Since $s_{1}+I=s_{2}+I$, we know $s_{1}+k_{2}=s_{2}$ for some $k_{2} \in I$.
Let $t \in\left(r_{2}+s_{2}\right)+I$.
Then $t=r_{2}+s_{2}+k$ for some $k \in I$.
So

$$
\begin{aligned}
t & =r_{2}+s_{2}+k \\
& =r_{1}+k_{1}+s_{1}+k_{2}+k \\
& =r_{1}+s_{1}+k_{1}+k_{2}+k,
\end{aligned}
$$

since addition is commutative.
So $t=\left(r_{1}+s_{1}\right)+\left(k_{1}+k_{2}+k\right) \in\left(r_{1}+s_{1}\right)+I$.
So $\left(r_{2}+s_{2}\right)+I \subseteq\left(r_{1}+s_{1}\right)+I$.
So $\left(r_{1}+s_{s}\right)+I=\left(r_{2}+s_{2}\right)+I$.
So the operation given by $\left(r_{1}+I\right)+\left(r_{2}+I\right)=\left(r_{1}+r_{2}\right)+I$ is a well defined operation on R / I.
b) We want the operation on R / I given by

$$
\begin{array}{ccc}
R / I \times R / I & \rightarrow & R / I \\
(r+I, s+I) & \mapsto & (r s)+I
\end{array}
$$

to be well defined.
Let $\left(r_{1}+I, s_{1}+I\right),\left(r_{2}+I, s_{2}+I\right) \in R / I \times R / I$ such that
$\left(r_{1}+I, s_{1}+I\right)=\left(r_{2}+I, s_{2}+I\right)$.
Then $r_{1}+I=r_{2}+I$ and $s_{2}+I=s_{2}+I$.
To show: $r_{1} s_{1}+I=r_{2} s_{2}+I$.
So we must show: ba) $r_{1} s_{1}+I \subseteq r_{2} s_{2}+I$.

$$
\text { bb) } r_{2} s_{2}+I \subseteq r_{1} s_{1}+I
$$

ba) Since $r_{1}+I=r_{2}+I$, we know $r_{1}=r_{2}+k_{1}$ for some $k_{1} \in I$.
Since $s_{1}+I=s_{2}+I$, we know $s_{1}=s_{2}+k_{2}$ for some $k_{2} \in I$.
Let $t \in r_{1} s_{1}+I$.
Then $t=r_{1} s_{1}+k$ for some $k \in I$.
So

$$
\begin{aligned}
t & =r_{1} s_{1}+k \\
& =\left(r_{2}+k_{1}\right)\left(s_{2}+k_{2}\right)+k \\
& =r_{2} s_{2}+k_{1} s_{2}+r_{2} k_{2}+k_{1} k_{2}+k,
\end{aligned}
$$

by using the distributive law.
$k_{1} s_{2}+r_{2} k_{2}+k_{1} k_{2}+k \in I$ by the definition of ideal.
So $t \in r_{2} s_{2}+I$.
So $r_{1} s_{1}+I \subseteq r_{2} s_{2}+I$.
bb) Since $r_{1}+I=r_{2}+I$, we know $r_{1}+k_{1}=r_{2}$ for some $k_{1} \in I$.
Since $s_{1}+I=s_{2}+I$, we know $s_{1}+k_{2}=s_{2}$ for some $k_{2} \in I$.
Let $t \in r_{2} s_{2}+I$.
Then $t=r_{2} s_{2}+k$ for some $k \in I$.
So

$$
\begin{aligned}
t & =r_{2} s_{2}+k \\
& =\left(r_{1}+k_{1}\right)\left(s_{1}+k_{2}\right)+k \\
& =r_{1} s_{1}+r_{1} k_{2}+k_{1} s_{1}+k_{1} k_{2}+k
\end{aligned}
$$

by using the distributive law.
$r_{1} k_{2}+k_{1} s_{1}+k_{1} k_{2}+k \in I$ by the definition of ideal.
So $t \in r_{1} s_{1}+I$.
So $r_{2} s_{2}+I \subseteq r_{1} s_{1}+I$.
So $r_{1} s_{1}+I=r_{2} s_{2}+I$.
So the operation given by $(r+I)(s+I)=r s+I$ is a well defined operation on R / I.
c) By the associativity of addition in R and the definition of the operation in R / I,

$$
\begin{aligned}
\left(\left(r_{1}+I\right)+\left(r_{2}+I\right)\right)+\left(r_{3}+I\right) & =\left(\left(r_{1}+r_{2}\right)+I\right)+\left(r_{3}+I\right) \\
& =\left(\left(r_{1}+r_{2}\right)+r_{3}\right)+I \\
& =\left(r_{1}+\left(r_{2}+r_{3}\right)\right)+I \\
& =\left(r_{1}+I\right)+\left(\left(r_{2}+r_{3}\right)+I\right) \\
& =\left(r_{1}+I\right)+\left(\left(r_{2}+I\right)+\left(r_{3}+I\right)\right)
\end{aligned}
$$

for all $r_{1}+I, r_{2}+I, r_{3}+I \in R / I$.
d) By the commutativity of addition in R and the definition of the operation in R / I,

$$
\begin{aligned}
\left(r_{1}+I\right)+\left(r_{2}+I\right) & =\left(r_{1}+r_{2}\right)+I \\
& =\left(r_{2}+r_{1}\right)+I \\
& =\left(r_{2}+I\right)+\left(r_{1}+I\right)
\end{aligned}
$$

for all $r_{1}+I, r_{2}+I \in R / I$.
e) The coset $I=0+I$ is the zero in R / I since

$$
\begin{aligned}
I+(r+I) & =(0+r)+I \\
& =r+I \\
& =(r+0)+I=(r+I)+I
\end{aligned}
$$

for all $r+I \in R / I$.
f) Given any coset $r+I$, its additive inverse is $(-r)+I$ since

$$
\begin{aligned}
(r+I)+(-r+I) & =r+(-r)+I \\
& =0+I \\
& =I \\
& =(-r+r)+I \\
& =(-r+I)+(r+I)
\end{aligned}
$$

for all $r+I \in R / I$.
g) By the associativity of multiplication in R and the definition of the operation in R / I,

$$
\begin{aligned}
\left(\left(r_{1}+I\right)\left(r_{2}+I\right)\right)\left(r_{3}+I\right) & =\left(r_{1} r_{2}+I\right)\left(r_{3}+I\right) \\
& =\left(r_{1} r_{2}\right) r_{3}+I \\
& =r_{1}\left(r_{2} r_{3}\right)+I \\
& =\left(r_{1}+I\right)\left(r_{2} r_{3}+I\right) \\
& =\left(r_{1}+I\right)\left(\left(r_{2}+I\right)\left(r_{3}+I\right)\right)
\end{aligned}
$$

for all $r_{1}+I, r_{2}+I, r_{3}+I \in R / I$.
h) The coset $1+I$ is the identity in R / I since

$$
\begin{aligned}
(1+I)(r+I) & =1 \cdot r+I \\
& =r+I \\
& =r \cdot 1+I \\
& =(r+I)(1+I)
\end{aligned}
$$

for all $r+I \in R / I$.
i) Assume $r, s, t \in R$. Then by definition of the operations

$$
\begin{aligned}
(r+I)((s+I)+(t+I)) & =(r+I)((s+t)+I) \\
& =r(s+t)+I \\
& =(r s+r t)+I \\
& =(r s+I)+(r t+I) \\
& =(r+I)(s+I)+(r+I)(t+I)
\end{aligned}
$$

and

$$
\begin{aligned}
((s+I)+(t+I))(r+I) & =((s+t)+I)(r+I) \\
& =(s+t) r+I \\
& =(s r+t r)+I \\
& =(s r+I)+(t r+I) \\
& =(s+I)(r+I)+(t+I)(r+I) .
\end{aligned}
$$

So R / I is a ring.
\Longleftarrow : Assume R / I is a ring with operations given by

$$
\begin{aligned}
(r+I)+(s+I) & =(r+s)+I \quad \text { and } \\
(r+I)(s+I) & =r s+I
\end{aligned}
$$

for all $r+I, s+I \in R / I$.
To show: If $k \in I$ and $r \in R$ then $k r \in I$ and $r k \in I$.
First we show: If $k \in I$ then $k+I=I$.
To show: a) $k+I \subseteq I$.
b) $I \subseteq k+I$.
a) Let $i \in k+I$.

Then $i=k+k_{1}$ for some $k_{1} \in I$.
Then, since I is a subgroup, $i=k+k_{1} \in I$.
So $k+I \subseteq I$.
b) Assume $k_{1} \in I$.

Since $k_{1}-k \in I, k_{1}=k+\left(k_{1}-k\right) \in k+I$.
So $I \subseteq k+I$.
Now assume $r \in R$ and $k \in I$.
Then by definition of the operation

$$
\begin{aligned}
r k+I & =(r+I)(k+I) \\
& =(r+I) I \\
& =(r+I)(0+I) \\
& =0+I \\
& =I
\end{aligned}
$$

and

$$
\begin{aligned}
k r+I & =(k+I)(r+I) \\
& =(0+I)(r+I) \\
& =0+I \\
& =I .
\end{aligned}
$$

So $k r \in I$ and $r k \in I$.
So I is an ideal of R.
(2.0.9) Proposition. Let $f: R \rightarrow S$ be a ring homomorphism. Let 0_{R} and 0_{S} be the zeros for R and S respectively. Then
a) $f\left(0_{R}\right)=0_{S}$.
b) For any $r \in R, f(-r)=-f(r)$.

Proof.

a) Add $-f\left(0_{R}\right)$ to each side of the following equation.

$$
f\left(0_{R}\right)=f\left(0_{R}+0_{R}\right)=f\left(0_{R}\right)+f\left(0_{R}\right)
$$

b) Since

$$
\begin{aligned}
& f(r)+f(-r)=f(r+(-r))=f\left(0_{R}\right)=0_{S} \quad \text { and } \\
& f(-r)+f(r)=f((-r)+r)=f\left(0_{R}\right)=0_{S}
\end{aligned}
$$

then $f(-r)=-f(r)$.
(2.0.11) Proposition. Let $f: R \rightarrow S$ be a ring homomorphism. Then
a) $\operatorname{ker} f$ is an ideal of R.
b) $\operatorname{im} f$ is a subring of S.

Proof.
Let 0_{R} and 0_{S} be the zeros of R and S respectively.
a) To show: $\operatorname{ker} f$ is an ideal of R.

To show: aa) If $k_{1}, k_{2} \in \operatorname{ker} f$ then $k_{1}+k_{2} \in \operatorname{ker} f$.
ab) $0_{R} \in \operatorname{ker} f$.
ac) If $k \in \operatorname{ker} f$ then $-k \in \operatorname{ker} f$.
ad) If $k \in \operatorname{ker} f$ and $r \in R$ then $k r \in \operatorname{ker} f$ and $r k \in \operatorname{ker} f$.
aa) Assume $k_{1}, k_{2} \in \operatorname{ker} f$.
Then $f\left(k_{1}\right)=0_{S}$ and $f\left(k_{2}\right)=0_{S}$.
So $f\left(k_{1}+k_{2}\right)=f\left(k_{1}\right)+f\left(k_{2}\right)=0_{S}$.
So $k_{1}+k_{2} \in \operatorname{ker} f$.
ab) Since $f\left(0_{R}\right)=0_{S}, 0_{R} \in \operatorname{ker} f$.
ac) Assume $k \in \operatorname{ker} f$.
So $f(k)=0_{S}$.
Then

$$
f(-k)=-f(k)=0_{S}
$$

So $-k \in \operatorname{ker} f$.
ad) Assume $k \in \operatorname{ker} f$ and $r \in R$.
Then

$$
\begin{aligned}
& f(k r)=f(k) f(r)=0_{S} \cdot f(r)=0_{S} \quad \text { and } \\
& f(r k)=f(r) f(k)=f(r) \cdot 0_{S}=0_{S} .
\end{aligned}
$$

So $k r \in \operatorname{ker} f$ and $r k \in \operatorname{ker} f$.
So $\operatorname{ker} f$ is an ideal of R.
b) To show: ba) If $s_{1}, s_{2} \in \operatorname{im} f$ then $s_{1}+s_{2} \in \operatorname{im} f$.
bb) $0_{S} \in \operatorname{im} f$.
bc) If $s \in \operatorname{im} f$ then $-s \in \operatorname{im} f$.
bd) If $s_{1}, s_{2} \in \operatorname{im} f$ then $s_{1} s_{2} \in \operatorname{im} f$. be) $1_{S} \in \operatorname{im} f$.
ba) Assume $s_{1}, s_{2} \in \operatorname{im} f$. Then $s_{1}=f\left(r_{1}\right)$ and $s_{2}=f\left(r_{2}\right)$ for some $r_{1}, r_{2} \in R$.
Then

$$
s_{1}+s_{2}=f\left(r_{1}\right)+f\left(r_{2}\right)=f\left(r_{1}+r_{2}\right)
$$

since f is a homomorphism.

So $s_{1}+s_{2} \in \operatorname{im} f$.
bb) By Proposition 2.1.9 a), $f\left(0_{R}\right)=0_{S}$, so $0_{S} \in \operatorname{im} f$.
bc) Assume $s \in \operatorname{im} f$. Then $s=f(r)$ for some $r \in R$. Then, by Proposition 2.1.9 b),

$$
-s=-f(r)=f(-r)
$$

So $-s \in \operatorname{im} f$.
bd) Assume $s_{1}, s_{2} \in \operatorname{im} f$. Then $s_{1}=f\left(r_{1}\right)$ and $s_{2}=f\left(r_{2}\right)$ for some $r_{1}, r_{2} \in R$. Then

$$
s_{1} s_{2}=f\left(r_{1}\right) f\left(r_{2}\right)=f\left(r_{1} r_{2}\right)
$$

since f is a homomorphism.
So $s_{1} s_{2} \in \operatorname{im} f$.
be) By the definition of ring homomorphism, $f\left(1_{R}\right)=1_{S}$, so $1_{S} \in \operatorname{im} f$.
So $\operatorname{im} f$ is a subring of S.
(2.0.12) Proposition. Let $f: R \rightarrow S$ be a ring homomorphism. Let 0_{R} be the zero in R. Then
a) $\operatorname{ker} f=\left(0_{R}\right)$ if and only if f is injective.
b) $\operatorname{im} f=S$ if and only if f is surjective.

Proof.

a) Let 0_{R} and 0_{S} be the zeros in R and S respectively.
\Longrightarrow : Assume ker $f=\left(0_{R}\right)$.
To show: If $f\left(r_{1}\right)=f\left(r_{2}\right)$ then $r_{1}=r_{2}$.
Assume $f\left(r_{1}\right)=f\left(r_{2}\right)$.
Then, by the fact that f is a homomorphism,

$$
0_{S}=f\left(r_{1}\right)-f\left(r_{2}\right)=f\left(r_{1}-r_{2}\right)
$$

So $r_{1}-r_{2} \in \operatorname{ker} f$.
But ker $f=\left(0_{S}\right)$.
So $r_{1}-r_{2}=0_{R}$.
So $r_{1}=r_{2}$.
So f is injective.
\Longleftarrow : Assume f is injective.
To show: aa) $\left(0_{R}\right) \subseteq \operatorname{ker} f$.
ab) $\operatorname{ker} f \subseteq\left(0_{R}\right)$.
aa) Since $f\left(0_{R}\right)=0_{S}, 0_{R} \in \operatorname{ker} f$.
So $\left(0_{R}\right) \subseteq \operatorname{ker} f$.
ab) Let $k \in \operatorname{ker} f$.
Then $f(k)=0_{S}$.
So $f(k)=f\left(0_{R}\right)$.
Thus, since f is injective, $k=0_{R}$.
So ker $f \subseteq\left(0_{R}\right)$.
So ker $f=\left(0_{R}\right)$.
b) \Longrightarrow : Assume $\operatorname{im} f=S$.

To show: If $s \in S$ then there exists $r \in R$ such that $f(r)=s$.
Assume $s \in S$.
Then $s \in \operatorname{im} f$.
So there is some $r \in R$ such that $f(r)=s$.
So f is surjective.
\Longleftarrow : Assume f is surjective.
To show: a) $\operatorname{im} f \subseteq S$.
b) $S \subseteq \operatorname{im} f$.
a) Let $x \in \operatorname{im} f$.

Then $x=f(r)$ for some $r \in R$.
By the definition of $f, f(r) \in S$.
So $x \in S$.
So $\operatorname{im} f \subseteq S$.
b) Assume $x \in S$.

Since f is surjective there is an r such that $f(r)=x$.
So $x \in \operatorname{im} f$.
So $S \subseteq \operatorname{im} f$.
So $\operatorname{im} f=S$.

(2.0.13) Theorem.

a) Let $f: R \rightarrow S$ be a ring homomorphism and let $K=\operatorname{ker} f$. Define

$$
\begin{array}{ccc}
\hat{f}: & R / \operatorname{ker} f & \rightarrow \\
& r+K & \mapsto
\end{array} \quad f(r) .
$$

Then \hat{f} is a well defined injective ring homomorphism.
b) Let $f: R \rightarrow S$ be a ring homomorphism and define

$$
\begin{array}{llll}
f^{\prime}: & R & \rightarrow & \operatorname{im} f \\
r & \mapsto & f(r) .
\end{array}
$$

Then f^{\prime} is a well defined surjective ring homomorphism.
c) If $f: R \rightarrow S$ is a ring homomorphism, then

$$
R / \operatorname{ker} f \simeq \operatorname{im} f
$$

where the isomorphism is a ring isomorphism.
Proof.
Let 1_{R} and 1_{S} be the identities in R and S respectively.
a) To show: aa) \hat{f} is well defined.
ab) \hat{f} is injective.
ac) \hat{f} is a ring homomorphism.
aa) To show: aaa) If $r \in R$ then $\hat{f}(r+K) \in S$.
aab) If $r_{1}+K=r_{2}+K \in R / K$ then $\hat{f}\left(r_{1}+K\right)=\hat{f}\left(r_{2}+K\right)$.
aaa) Assume $r \in R$.
Then $\hat{f}(r+K)=f(r)$, and $f(r) \in S$, by the definition of \hat{f} and f.
aab) Assume $r_{1}+K=r_{2}+K$.
Then $r_{1}=r_{2}+k$ for some $k \in K$.
To show: $\hat{f}\left(r_{1}+K\right)=\hat{f}\left(r_{2}+K\right)$, i.e.,
To show: $f\left(r_{1}\right)=f\left(r_{2}\right)$.
Since $k \in \operatorname{ker} f$, we have $f(k)=0$ and so

$$
\begin{aligned}
& f\left(r_{1}\right)=f\left(r_{2}+k\right)=f\left(r_{2}\right)+f(k)=f\left(r_{2}\right)+0=f\left(r_{2}\right) \\
& \text { So } \hat{f}\left(r_{1}+K\right)=\hat{f}\left(r_{2}+K\right)
\end{aligned}
$$

So \hat{f} is well defined.
ab) To show: If $\hat{f}\left(r_{1}+K\right)=\hat{f}\left(r_{2}+K\right)$ then $r_{1}+K=r_{2}+K$.

Assume $\hat{f}\left(r_{1}+K\right)=\hat{f}\left(r_{2}+K\right)$.
Then $f\left(r_{1}\right)=f\left(r_{2}\right)$.
So $f\left(r_{1}\right)-f\left(r_{2}\right)=0$.
So $f\left(r_{1}-r_{2}\right)=0$.
So $r_{1}-r_{2} \in \operatorname{ker} f$.
So $r_{1}-r_{2}=k$, for some $k \in \operatorname{ker} f$.
So $r_{1}=r_{2}+k$, for some $k \in \operatorname{ker} f$.
To show: aba) $r_{1}+K \subseteq r_{2}+K$.
abb) $r_{2}+K \subseteq r_{1}+K$.
aba) Let $r \in r_{1}+K$.
Then $r=r_{1}+k_{1}$, for some $k_{1} \in K$.
So $r=r_{2}+k+k_{1} \in r_{2}+K$ since $k+k_{1} \in K$.
So $r_{1}+K \subseteq r_{2}+K$.
abb) Let $r \in r_{2}+K$.
Then $r=r_{2}+k_{2}$, for some $k_{2} \in K$.
So $r=r_{2}+k_{2}=r_{1}-k+k_{2} \in r_{1}+K$ since $-k+k_{2} \in K$.
So $r_{2}+K \subseteq r_{1}+K$.
So $r_{1}+K=r_{2}+K$.
So \hat{f} is injective.
ac) To show: aca) If $r_{1}+K, r_{2}+K \in R / K$
then $\hat{f}\left(\left(r_{1}+k\right)+\left(r_{2}+K\right)\right)=\hat{f}\left(r_{1}+K\right)+\hat{f}\left(r_{2}+K\right)$.
acb) If $r_{1}+K, r_{2}+K \in R / K$
then $\hat{f}\left(\left(r_{1}+K\right)\left(r_{2}+K\right)\right)=\hat{f}\left(r_{1}+K\right) \hat{f}\left(r_{2}+K\right)$.
acc) $\hat{f}\left(1_{R}+K\right)=1_{S}$.
aca) Let $r_{1}+K, r_{2}+K \in R / K$.
Since f is a homomorphism,

$$
\begin{aligned}
\hat{f}\left(r_{1}+K\right)+\hat{f}\left(r_{2}+K\right) & =f\left(r_{1}\right)+f\left(r_{2}\right) \\
& =f\left(r_{1}+r_{2}\right) \\
& =\hat{f}\left(\left(r_{1}+r_{2}\right)+K\right) \\
& =\hat{f}\left(\left(r_{1}+K\right)+\left(r_{2}+K\right)\right) .
\end{aligned}
$$

acb) Let $r_{1}+K, r_{2}+K \in R / K$.
Since f is a homomorphism,

$$
\begin{aligned}
\hat{f}\left(r_{1}+K\right) \hat{f}\left(r_{2}+K\right) & =f\left(r_{1}\right) f\left(r_{2}\right) \\
& =f\left(r_{1} r_{2}\right) \\
& =\hat{f}\left(r_{1} r_{2}+K\right) \\
& =\hat{f}\left(\left(r_{1}+K\right)\left(r_{2}+K\right)\right) .
\end{aligned}
$$

acc) Since f is a homomorphism,

$$
\begin{aligned}
\hat{f}\left(1_{R}+K\right) & =f\left(1_{R}\right) \\
& =1_{S} .
\end{aligned}
$$

So \hat{f} is a ring homomorphism.
So \hat{f} is a well defined injective ring homomorphism.
b) Let 1_{R} and 1_{S} be the identities in R and S respectively.

To show: ba) f^{\prime} is well defined.
bb) f^{\prime} is surjective.
bc) f^{\prime} is a ring homomorphism.
ba) and bb) are proved in Ex. 2.2.4 a) and b), Part I.
bc) To show: bca) If $r_{1}, r_{2} \in R$ then $f^{\prime}\left(r_{1}+r_{2}\right)=f^{\prime}\left(r_{1}\right)+f^{\prime}\left(r_{2}\right)$.
bcb) If $r_{1}, r_{2} \in R$ then $f^{\prime}\left(r_{1} r_{2}\right)=f^{\prime}\left(r_{1}\right) f^{\prime}\left(r_{2}\right)$.
bcc) $f^{\prime}\left(1_{R}\right)=1_{S}$.
bca) Let $r_{1}, r_{2} \in R$.
Then, since f is a homomorphism,

$$
f^{\prime}\left(r_{1}+r_{2}\right)=f\left(r_{1}+r_{2}\right)=f\left(r_{1}\right)+f\left(r_{2}\right)=f^{\prime}\left(r_{1}\right)+f^{\prime}\left(r_{2}\right) .
$$

bcb) Let $r_{1}, r_{2} \in R$.
Then, since f is a homomorphism,

$$
f^{\prime}\left(r_{1} r_{2}\right)=f\left(r_{1} r_{2}\right)=f\left(r_{1}\right) f\left(r_{2}\right)=f^{\prime}\left(r_{1}\right) f^{\prime}\left(r_{2}\right) .
$$

bcc) Since f is a homomorphism,

$$
f^{\prime}\left(1_{R}\right)=f\left(1_{R}\right)=1_{S}
$$

So f^{\prime} is a homomorphism.
So f^{\prime} is a well defined surjective ring homomorphism.
c) Let $K=\operatorname{ker} f$.

By a), the function

$$
\begin{array}{lclc}
\hat{f}: & R / K & \rightarrow & S \\
r+K & \mapsto & f(r)
\end{array}
$$

is a well defined injective ring homomorphism.
By b), the function

$$
\begin{array}{lccc}
\hat{f}^{\prime}: & R / K & \rightarrow & \operatorname{im} \hat{f} \\
& r+K & \mapsto & \hat{f}(r+K)=f(r)
\end{array}
$$

is a well defined surjective ring homomorphism.
To show: ca) $\operatorname{im} \hat{f}=\operatorname{im} f$.
cb) \hat{f}^{\prime} is injective.
ca) To show: caa) $\operatorname{im} \hat{f} \subseteq \operatorname{im} f$.
cab) $\operatorname{im} f \subseteq \operatorname{im} \hat{f}$.
caa) Let $s \in \operatorname{im} \hat{f}$.
Then there is some $r+K \in R / K$ such that $\hat{f}(r+K)=s$.
Let $r^{\prime} \in r+K$.
Then $r^{\prime}=r+k$ for some $k \in K$.
Then, since f is a homomorphism and $f(k)=0$,

$$
\begin{aligned}
f\left(r^{\prime}\right) & =f(r+k) \\
& =f(r)+f(k) \\
& =f(r) \\
& =\hat{f}(r+k) \\
& =s .
\end{aligned}
$$

So $s \in \operatorname{im} f$.

So $\operatorname{im} \hat{f} \subseteq \operatorname{im} f$.
cab) Let $s \in \operatorname{im} \hat{f}$.
Then there is some $r \in R$ such that $f(r)=s$.
So $\hat{f}(r+K)=f(r)=s$.
So $s \in \operatorname{im} f$.
So $\operatorname{im} f \subseteq \operatorname{im} \hat{f}$.
So $\operatorname{im} f=\operatorname{im} \hat{f}$.
cb) To show: If $\hat{f}^{\prime}\left(r_{1}+K\right)=\hat{f}^{\prime}\left(r_{2}+K\right)$ then $r_{1}+K=r_{2}+K$.
Assume $\hat{f}^{\prime}\left(r_{1}+K\right)=\hat{f}^{\prime}\left(r_{2}+K\right)$.
Then $\hat{f}\left(r_{1}+K\right)=\hat{f}\left(r_{2}+K\right)$.
Then, since \hat{f} is injective, $r_{1}+K=r_{2}+K$.
So \hat{f}^{\prime} is injective.
Thus we have

$$
\begin{array}{lclc}
\hat{f}^{\prime}: & R / K & \rightarrow & \operatorname{im} f \\
r+K & \mapsto & f(r)
\end{array}
$$

is a well defined bijective ring homomorphism.
(2.0.17) Proposition. Let R be a ring. Let 0_{R} and 1_{R} be the zero and the identity in R respectivelly.
a) There is a unique ring homomorphism $\varphi: \mathbb{Z} \rightarrow R$ given by

$$
\begin{aligned}
\varphi(0) & =0_{R}, \\
\varphi(m) & =\underbrace{1_{R}+\cdots+1_{R}}_{m \text { times }}, \quad \text { and } \\
\varphi(-m) & =-\varphi(m)
\end{aligned}
$$

for every $m \in \mathbb{Z}, m>0$.
b) $\operatorname{ker} \varphi=n \mathbb{Z}=\{n k \mid k \in \mathbb{Z}\}$ where $n=\operatorname{char}(R)$ is the characteristic of the ring R.

Proof.
Let 1_{R} and 0_{R} be the identity and zero of the ring R.
a) Define $\varphi: \mathbb{Z} \rightarrow R$ by defining, for each $m>0, m \in \mathbb{Z}$,

$$
\begin{aligned}
\varphi(m) & =\underbrace{1_{R}+\cdots+1_{R}}_{m \text { times }}, \\
\varphi(-m) & =-\varphi(m), \\
\varphi(0) & =0_{R} .
\end{aligned}
$$

To show: aa) φ is unique.
ab) φ is well defined.
ac) φ is a homomorphism.
aa) To show: If $\varphi^{\prime}: \mathbb{Z} \rightarrow R$ is a homomorphism then $\varphi^{\prime}=\varphi$.
Assume $\varphi^{\prime}: \mathbb{Z} \rightarrow R$ is a homomorphism.
To show: If $m \in \mathbb{Z}$ then $\varphi^{\prime}(m)=\varphi(m)$.
If $m=1$ then $\varphi^{\prime}(1)=1_{R}=\varphi(1)$.
If $m>0$ then

$$
\begin{aligned}
& \varphi^{\prime}(m)=\varphi^{\prime} \underbrace{(1+\cdots+1)}_{m \text { times }}=\underbrace{\varphi^{\prime}(1)+\cdots+\varphi^{\prime}(1)}_{m \text { times }}=\underbrace{1_{R}+\cdots+1_{R}}_{m \text { times }}=\varphi(m) . \\
& \varphi^{\prime}(-m)=-\varphi^{\prime}(m)=-\varphi(m)=\varphi(-m) . \\
& \text { If } m=0 \text { then } \varphi^{\prime}(0)=0_{R}=\varphi(0) .
\end{aligned}
$$

ab) This is clear from the definitions.
ac) To show: aca) $\varphi(1)=1_{R}$.
acb) $\varphi(m n)=\varphi(m) \varphi(n)$.
acc) $\varphi(m+n)=\varphi(m)+\varphi(n)$.
aca) This follows from the definition of φ.
acb) Let $m, n>0$. Then, by the distributive law,

$$
\left.\begin{array}{c}
\begin{array}{rl}
\varphi(m) \varphi(n)= & (\underbrace{1+\cdots+1}_{m \text { times }})(\underbrace{1+\cdots+1}_{n \text { times }})=\underbrace{1+\cdots+1}_{m n \text { times }}=\varphi(m n) . \\
\varphi(m) \varphi(-n)= & \varphi(m)(-\varphi(n))=\varphi(m)\left(-1_{R}\right) \varphi(n)=\left(-1_{R}\right) \varphi(m) \varphi(n) \\
& =\left(-1_{R}\right) \varphi(m n)=-\varphi(m n)=\varphi(m(-n)) .
\end{array} \\
\begin{array}{r}
\varphi(-m) \varphi(n)=-\varphi(m) \varphi(n)=\left(-1_{R}\right) \varphi(m) \varphi(n)=\left(-1_{R}\right) \varphi(m n)=-\varphi(m n)=\varphi((-m) n) .
\end{array} \\
\varphi(-m) \varphi(-n)=\left(-1_{R}\right) \varphi(m)(-1)_{R} \varphi(n)=\varphi(m) \varphi(n)=\varphi(m n)=\varphi((-m)(-n)) . \\
\text { acc })
\end{array} \begin{array}{r}
\text { Let } m, n>0 . \\
\\
\text { Then } \\
\varphi(m)+\varphi(n)=\underbrace{1+\cdots+1}_{m \text { times }}+\underbrace{1+\cdots+1}_{n \text { times }}=\underbrace{1+\cdots+1}_{m+n \text { times }}=\varphi(m+n) .
\end{array}\right\} \begin{array}{r}
\varphi(-m)+\varphi(-n)=-\varphi(m)-\varphi(n)=-(\varphi(m)+\varphi(n))=-\varphi(m+n) \\
=\varphi(-(m+n))=\varphi((-m)+(-n)) .
\end{array}
$$

If $m \geq n, \varphi(m)+\varphi(-n)=\varphi(m)-\varphi(n)=\underbrace{(1+\cdots+1)}_{m \text { times }}-\underbrace{(1+\cdots+1)}_{n \text { times }}$

$$
=\underbrace{1+\cdots+1}_{m-n \text { times }}=\varphi(m-n)
$$

If $m<n, \varphi(m)+\varphi(-n)=\varphi(m)-\varphi(n)=-(\varphi(n)-\varphi(m))$

$$
=-\varphi(n-m)=\varphi(m-n)
$$

So φ is a homomorphism.
b) Let $n=\operatorname{char}(R)$.

To show: ba) $n \mathbb{Z} \subseteq \operatorname{ker} \varphi$.
bb) $\operatorname{ker} \varphi \subseteq n \mathbb{Z}$.
First we show $n \in \operatorname{ker} \varphi$.
By the definition of $\operatorname{char}(R)$,

$$
\varphi(n)=\underbrace{1_{R}+\cdots+1_{R}}_{n \text { times }}=0_{R} .
$$

So $n \in \operatorname{ker} \varphi$.
ba) Let $m \in n \mathbb{Z}$.

Then $m=n k$ for some $k \in \mathbb{Z}$.
Since φ is a homomorphism,

$$
\varphi(m)=\varphi(n k)=\varphi(n) \varphi(k)=0 \cdot \varphi(k)=0 .
$$

So $\varphi(m) \in \operatorname{ker} \varphi$.
So $n \mathbb{Z} \subseteq \operatorname{ker} \varphi$.
bb) Let $m \in \operatorname{ker} \varphi$.
Write $m=n r+s$ where $0 \leq s<n$ and $r \in \mathbb{Z}$.
Then, since φ is a homomorphism,
$0_{R}=\varphi(m)=\varphi(n r+s)=\varphi(n) \varphi(r)+\varphi(s)=0_{R}+\varphi(s)=\underbrace{1_{R}+\cdots+1_{R}}_{s \text { times }}$.
By definition of $\operatorname{char}(R), n$ is the smallest positive integer such that $\underbrace{1_{R}+\cdots 1_{R}}_{n \text { times }}=0_{R}$.
So $s=0$.
So $m=n r$.
So $m \in n \mathbb{Z}$.
So $\operatorname{ker} \varphi \subseteq n \mathbb{Z}$.
So $\operatorname{ker} \varphi=n \mathbb{Z}$.
(2.0.21) Proposition. Every proper ideal I of a ring R is contained in a maximal ideal of R.

Proof.
The idea is to use Zorn's lemma on the set of proper ideals of R containing I, ordered by inclusion. We will not prove Zorn's lemma, we will assume it. Zorn's lemma is equivalent to the axiom of choice. For a proof see Isaacs book [I].

Zorn's Lemma. If S is a poset such that every chain in S has an upper bound then S has a maximal element.

Let S be the set of proper ideals of R containing I, ordered by inclustion.
To show: Given any chain of ideals in S

$$
\cdots \subseteq I_{k-1} \subseteq I_{k} \subseteq I_{k+1} \subseteq \cdots
$$

there is a proper ideal J of R containing I that contains all the I_{k}.
Let

$$
J=\bigcup_{k} I_{k} .
$$

To show: a) J is an ideal.
b) J is a proper ideal.
a) To show: aa) If $i, j \in J$ then $i+j \in J$.
ab) If $i \in J$ and $r \in R$ then ir $\in J$ and $r i \in J$.
aa) Assume $i, j \in J$.
Then $i \in I_{k}$ and $j \in I_{k^{\prime}}$ for some k and k^{\prime}.
So either $i, j \in I_{k}$ or $i, j \in I_{k^{\prime}}$ since either $I_{k} \subseteq I_{k^{\prime}}$ or $I_{k^{\prime}} \subseteq I_{k}$.
So either $i+j \in I_{k}$ or $i+j \in I_{k^{\prime}}$ since I_{k} and $I_{k^{\prime}}$ are ideals.
So

$$
i+j \in \bigcup_{k} I_{k}=J
$$

ab) Assume $i \in J$ and $r \in R$.

Then $i \in I_{k}$ for some k.
Since I_{k} is an ideal, $r i \in I_{k}$ and ir $\in I_{k}$.
So

$$
r i \in \bigcup_{k} I_{k}=J \quad \text { and } \quad \text { ir } \in \bigcup_{k} I_{k}=J
$$

So J is an ideal.
b) To show: $1 \notin J$.

Since the I_{k} are all proper ideals, $1 \notin I_{k}$ for any k.
So

$$
1 \notin \bigcup_{k} I_{k}=J
$$

So J is a proper ideal of R.
So every chain of proper ideals in R that contain I has an upper bound.
Thus, by Zorn's lemma, the set S of proper ideals containing I has a maximal element. So I is contained in a maximal ideal.

§2P. Modules

(2.2.4) Proposition. Let M be a left R-module and let N be a subgroup of M. Then the cosets of N in M partition M.
Proof.
To show: a) If $m \in M$ then $m \in m^{\prime}+N$ for some $m^{\prime} \in M$.
b) If $\left(m_{1}+N\right) \cap\left(m_{2}+N\right) \neq \emptyset$ then $m_{1}+N=m_{2}+N$.
a) Let $m \in M$.

Then, since $0 \in N, m=m+0 \in m+N$.
So $m \in m+N$.
b) Assume $\left(m_{1}+N\right) \cap\left(m_{2}+N\right) \neq \emptyset$.

To show: ba) $m_{1}+N \subseteq m_{2}+N$.
bb) $m_{2}+N \subseteq m_{1}+N$.
Let $a \in\left(m_{1}+N\right) \cap\left(m_{2}+N\right)$.
Suppose $a=m_{1}+n_{1}$ and $a=m_{2}+n_{2}$ where $n_{1}, n_{2} \in N$.
Then

$$
\begin{aligned}
& m_{1}=m_{1}+n_{1}-n_{1}=a-n_{1}=m_{2}+n_{2}-n_{1} \quad \text { and } \\
& m_{2}=m_{2}+n_{2}-n_{2}=a-n_{2}=m_{1}+n_{1}-n_{2} .
\end{aligned}
$$

ba) Let $m \in m_{1}+N$.
Then $m=m_{1}+n$ for some $n \in N$.
Then

$$
m=m_{1}+n=m_{2}+n_{2}-n_{1}+n \in m_{2}+N
$$

since $n_{2}-n_{1}+n \in N$.
So $m_{1}+N \subseteq m_{2}+N$.
bb) Let $m \in m_{2}+N$.
Then $m=m_{2}+n$ for some $n \in N$.
Then

$$
m=m_{2}+n=m_{1}+n_{1}-n_{2}+n \in m_{1}+N
$$

since $n_{1}-n_{2}+n \in N$.
So $m_{2}+N \subseteq m_{1}+N$.
So $m_{1}+N=m_{2}+N$.
So the cosets of N in M partition M.
(2.2.5) Theorem. Let N be a subgroup of a left R-module M. Then N is a submodule of M if and only if M / N with the operations given by

$$
\begin{aligned}
\left(m_{1}+N\right)+\left(m_{2}+N\right) & =\left(m_{1}+m_{2}\right)+N, \quad \text { and } \\
r\left(m_{1}+N\right) & =r m_{1}+N
\end{aligned}
$$

is a left R-module.
Proof.
\Longrightarrow : Assume N is a submodule of M.
To show: a) $\left(m_{1}+N\right)+\left(m_{2}+N\right)=\left(m_{1}+m_{2}\right)+N$ is a well defined operation on M / N.
b) The operation given by $r(m+N)=r m+N$ is well defined.
c) $\left(\left(m_{1}+N\right)+\left(m_{2}+N\right)\right)+\left(m_{3}+N\right)=\left(m_{1}+N\right)+\left(\left(m_{2}+N\right)+\left(m_{3}+N\right)\right)$ for all $m_{1}+N, m_{2}+N, m_{3}+N \in M / N$.
d) $\left(m_{1}+N\right)+\left(m_{2}+N\right)=\left(m_{2}+N\right)+\left(m_{1}+N\right)$ for all $m_{1}+N, m_{2}+N \in M / N$.
e) $0+N=N$ is the zero in M / N.
f) $-m+N$ is the additive inverse of $m+N$.
g) If $r_{1}, r_{2} \in R$ and $m+N \in M / N$, then $r_{1}\left(r_{2}(m+N)\right)=\left(r_{1} r_{2}\right)(m+N)$.
h) If $m+N \in M / N$ then $1(m+N)=m+N$.
i) If $r \in R$ and $m_{1}+N, m_{2}+N \in M / N$,
then $r\left(\left(m_{1}+N\right)+\left(m_{2}+N\right)\right)=r\left(m_{1}+N\right)+r\left(m_{2}+N\right)$.
j) If $r_{1}, r_{2} \in R$ and $m+N \in M / N$,
then $\left(r_{1}+r_{2}\right)(m+N)=r_{1}(m+N)+r_{2}(m+N)$.
a) We want the operation on M / N given by

$$
\begin{array}{clc}
M / N \times M / N & \rightarrow & M / N \\
\left(m_{1}+N, m_{2}+N\right) & \mapsto & \left(m_{1}+m_{2}\right)+N
\end{array}
$$

to be well defined.
Let $\left(m_{1}+N, m_{2}+N\right),\left(m_{3}+N, m_{4}+N\right) \in M / N \times M / N$ such that $\left(m_{1}+N, m_{2}+N\right)=\left(m_{3}+N, m_{4}+N\right)$.
Then $m_{1}+N=m_{3}+N$ and $m_{2}+N=m_{4}+N$.
To show: $\left(m_{1}+m_{2}\right)+N=\left(m_{3}+m_{4}\right)+N$.
So we must show: aa) $\left(m_{1}+m_{2}\right)+N \subseteq\left(m_{3}+m_{4}\right)+N$.

$$
\text { ab) }\left(m_{3}+m_{4}\right)+N \subseteq\left(m_{1}+m_{2}\right)+N \text {. }
$$

aa) We know $m_{1}=m_{1}+0 \in m_{3}+N$ since $m_{1}+N=m_{3}+N$.
So $m_{1}=m_{3}+k_{1}$ for some $k_{1} \in N$.
Similarly $m_{2}=m_{4}+k_{2}$ for some $k_{2} \in N$.
Let $t \in\left(m_{1}+m_{2}\right)+N$.
Then $t=m_{1}+m_{2}+k$ for some $k \in N$.
So

$$
\begin{aligned}
t & =m_{1}+m_{2}+k \\
& =m_{3}+k_{1}+m_{4}+k_{2}+k \\
& =m_{3}+m_{4}+k_{1}+k_{2}+k,
\end{aligned}
$$

since addition is commutative.
So $t=\left(m_{3}+m_{4}\right)+\left(k_{1}+k_{2}+k\right) \in m_{3}+m_{4}+N$.
So $\left(m_{1}+m_{2}\right)+N \subseteq\left(m_{3}+m_{4}\right)+N$.
ab) Since $m_{1}+N=m_{3}+N$, we know $m_{1}+k_{1}=m_{3}$ for some $k_{1} \in N$.
Since $m_{2}+N=m_{4}+N$, we know $m_{2}+k_{2}=m_{4}$ for some $k_{2} \in N$.
Let $t \in\left(m_{3}+m_{4}\right)+N$.
Then $t=m_{3}+m_{4}+k$ for some $k \in N$.
So

$$
\begin{aligned}
t & =m_{3}+m_{4}+k \\
& =m_{1}+k_{1}+m_{2}+k_{2}+k \\
& =m_{1}+m_{2}+k_{1}+k_{2}+k,
\end{aligned}
$$

since addition is commutative.
So $t=\left(m_{1}+m_{2}\right)+\left(k_{1}+k_{2}+k\right) \in\left(m_{1}+m_{2}\right)+N$.
So $\left(m_{3}+m_{4}\right)+N \subseteq\left(m_{1}+m_{2}\right)+N$.
So $\left(m_{1}+m_{2}\right)+N=\left(m_{3}+m_{4}\right)+N$.
So the operation given by $\left(m_{1}+N\right)+\left(m_{3}+N\right)=\left(m_{1}+m_{3}\right)+N$ is a well defined operation on M / N.
b) We want the operation given by

$$
\begin{array}{ccc}
R \times M / N & \rightarrow & M / N \\
(r, m+N) & \mapsto & r m+N
\end{array}
$$

to be well defined.
Let $\left(r_{1}, m_{1}+N\right),\left(r_{2}, m_{2}+N\right) \in(R \times M / N)$ such that $\left(r_{1}, m_{1}+N\right)=\left(r_{2}, m_{2}+N\right)$.
Then $r_{1}=r_{2}$ and $m_{1}+N=m_{2}+N$.
To show: $r_{1} m_{1}+N=r_{2} m_{2}+N$.
To show: ba) $r_{1} m_{1}+N \subseteq r_{2} m_{2}+N$.
bb) $r_{2} m_{2}+N \subseteq r_{1} m_{1}+N$.
ba) Since $m_{1}+N=m_{2}+N$, we know $m_{1}=m_{2}+n_{2}$ for some $n_{2} \in N$.
Let $k \in r_{1} m_{1}+N$.
Then $k=r_{1} m_{1}+n$ for some $n \in N$. So

$$
\begin{aligned}
k & =r_{1} m_{1}+n \\
& =r_{2}\left(m_{2}+n_{2}\right)+n \\
& =r_{2} m_{2}+r_{2} n_{2}+n .
\end{aligned}
$$

Since N is a submodule, $r_{2} n_{2} \in N$, and $r_{2} n_{2}+n \in N$.
So $k=r_{2} m_{2}+r_{2} n_{2}+n \in r_{2} m_{2}+N$.
So $r_{1} m_{1}+N \subseteq r_{2} m_{2}+N$.
bb) Since $m_{1}+N=m_{2}+N$, we know $m_{2}=m_{1}+n_{1}$ for some $n_{1} \in N$.
Let $k \in r_{2} m_{2}+N$.
Then $k=r_{2} m_{2}+n$ for some $n \in N$. So

$$
\begin{aligned}
k & =r_{2} m_{2}+n \\
& =r_{1}\left(m_{1}+n_{1}\right)+n \\
& =r_{1} m_{1}+r_{1} n_{1}+n .
\end{aligned}
$$

Since N is a submodule, $r_{1} n_{1} \in N$, and $r_{1} n_{1}+n \in N$.
So $k=r_{1} m_{1}+r_{1} n_{1}+n \in r_{1} m_{1}+N$.
So $r_{2} m_{2}+N \subseteq r_{1} m_{1}+N$.
So $r_{1} m_{1}+N=r_{2} m_{2}+N$.
So the operation is well defined.
c) By the associativity of addition in M and the definition of the operation in M / N,

$$
\begin{aligned}
\left(\left(m_{1}+N\right)+\left(m_{2}+N\right)\right)+\left(m_{3}+N\right) & =\left(\left(m_{1}+m_{2}\right)+N\right)+\left(m_{3}+N\right) \\
& =\left(\left(m_{1}+m_{2}\right)+m_{3}\right)+N \\
& =\left(m_{1}+\left(m_{2}+m_{3}\right)\right)+N \\
& =\left(m_{1}+N\right)+\left(\left(m_{2}+m_{3}\right)+N\right) \\
& =\left(m_{1}+N\right)+\left(\left(m_{2}+N\right)+\left(m_{3}+N\right)\right)
\end{aligned}
$$

for all $m_{1}+N, m_{2}+N, m_{3}+N \in M / N$.
d) By the commutativity of addition in M and the definition of the operation in M / N,

$$
\begin{aligned}
\left(m_{1}+N\right)+\left(m_{2}+N\right) & =\left(m_{1}+m_{2}\right)+N \\
& =\left(m_{2}+m_{1}\right)+N \\
& =\left(m_{2}+N\right)+\left(m_{1}+N\right)
\end{aligned}
$$

for all $m_{1}+N, m_{2}+N \in M / N$.
e) The coset $N=0+N$ is the zero in M / N since

$$
\begin{aligned}
N+(m+N) & =(0+m)+N \\
& =m+N \\
& =(m+0)+N=(m+N)+N
\end{aligned}
$$

for all $m+N \in M / N$.
f) Given any coset $m+N$, its additive inverse is $(-m)+N$ since

$$
\begin{aligned}
(m+N)+(-m+N) & =m+(-m)+N \\
& =0+N \\
& =N \\
& =(-m+m)+N \\
& =(-m+N)+(m+N)
\end{aligned}
$$

for all $m+N \in M / N$.
g) Assume $r_{1}, r_{2} \in R$ and $m+N \in M / N$.

Then, by definition of the operation,

$$
\begin{aligned}
r_{1}\left(r_{2}(m+N)\right) & =r_{1}\left(r_{2} m+N\right) \\
& =r_{1}\left(r_{2} m\right)+N \\
& =\left(r_{1} r_{2}\right) m+N \\
& =\left(r_{1} r_{2}\right)(m+N) .
\end{aligned}
$$

h) Assume $m+N \in M / N$.

Then, by definition of the operation,

$$
\begin{aligned}
1(m+N) & =(1 m)+N \\
& =m+N .
\end{aligned}
$$

i) Assume $r \in R$ and $m_{1}+N, m_{2}+N \in M / N$.

Then

$$
\begin{aligned}
r\left(\left(m_{1}+N\right)+\left(m_{2}+N\right)\right) & =r\left(\left(m_{1}+m_{2}\right)+N\right) \\
& =r\left(m_{1}+m_{2}\right)+N \\
& =\left(r m_{1}+r m_{2}\right)+N \\
& =\left(r m_{1}+N\right)+\left(r m_{2}+N\right) \\
& =r\left(m_{1}+N\right)+r\left(m_{2}+N\right) .
\end{aligned}
$$

j) Assume $r_{1}, r_{2} \in R$ and $m+N \in M / N$.

Then

$$
\begin{aligned}
\left(r_{1}+r_{2}\right)(m+N) & =\left(\left(r_{1}+r_{2}\right) m\right)+N \\
& =\left(r_{1} m+r_{2} m\right)+N \\
& =\left(r_{1} m+N\right)+\left(r_{2} m+N\right) \\
& =r_{1}(m+N)+r_{2}(m+N)
\end{aligned}
$$

So M / N is a left R-module.
\Longleftarrow : Assume N is a subgroup of M and (M / N) is a left R-module with action given by $r(m+N)=r m+N$.
To show: N is a submodule of M.

To show: If $r \in R$ and $n \in N$ then $r n \in N$.
First we show: If $n \in N$ then $n+N=N$.
To show: a) $n+N \subseteq N$.
b) $N \subseteq n+N$.
a) Let $k \in n+N$.

So $k=n+n_{1}$ for some $n_{1} \in N$.
Since N is a subgroup, $k=n+n_{1} \in N$.
So $n+N \subseteq N$.
b) Let $k \in N$.

Since $k-n \in N, k=n+(k-n) \in n+N$.
So $N \subseteq n+N$.
Now assume $r \in R$ and $n \in N$.
Then, by definition of the R-action on M / N,

$$
\begin{aligned}
r n+N & =r(n+N) \\
& =r(0+N) \\
& =r \cdot 0+N \\
& =0+N \\
& =N .
\end{aligned}
$$

So $r n=r n+0 \in N$.
So N is a submodule of M.
(2.2.9) Proposition. Let $f: M \rightarrow N$ be an R-module homomorphism. Then
a) $\operatorname{ker} f$ is a submodule of M.
b) $\operatorname{im} f$ is a submodule of N.

Proof.
a) By condition a) in the definition of R-module homomorphism, f is a group homomorphism.

By Proposition 1.1.13 a), ker f is a subgroup of M.
To show: If $r \in R$ and $k \in \operatorname{ker} f$ then $r k \in \operatorname{ker} f$.
Assume $r \in R$ and $k \in \operatorname{ker} f$.
Then, by the definition of R-module homomorphism,

$$
f(r k)=r f(k)=r \cdot 0=0 .
$$

So $r k \in \operatorname{ker} f$.
So ker f is a submodule of M.
b) By condition a) in the definition of R-module homomorphism, f is a group homomorphism.

By Proposition 1.1.13 b), im f is a subgroup of N.
To show: If $r \in R$ and $a \in \operatorname{im} f$ then $r a \in \operatorname{im} f$.
Assume $r \in R$ and $a \in \operatorname{im} f$.
Then $a=f(m)$ for some $m \in M$.
By the definition of R-module homomorphism,

$$
r a=r f(m)=f(r m)
$$

So $r a \in \operatorname{im} f$.
So $\operatorname{im} f$ is a submodule of N.
(2.2.10) Proposition. Let $f: M \rightarrow N$ be an R-module homomorphism. Let 0_{M} be the zero in M. Then
a) $\operatorname{ker} f=\left(0_{M}\right)$ if and only if f is injective.
b) $\operatorname{im} f=N$ if and only if f is surjective.

Proof.

Let 0_{M} and 0_{N} be the zeros in M and N respectively.
a) \Longrightarrow : Assume ker $f=\left(0_{M}\right)$.

To show: If $f\left(m_{1}\right)=f\left(m_{2}\right)$ then $m_{1}=m_{2}$.
Assume $f\left(m_{1}\right)=f\left(m_{2}\right)$.
Then, by the fact that f is a homomorphism,

$$
0_{N}=f\left(m_{1}\right)-f\left(m_{2}\right)=f\left(m_{1}-m_{2}\right)
$$

So $m_{1}-m_{2} \in \operatorname{ker} f$.
But ker $f=\left(0_{M}\right)$.
So $m_{1}-m_{2}=0_{M}$.
So $m_{1}=m_{2}$.
So f is injective.
\Longleftarrow : Assume f is injective.
To show: aa) $\left(0_{M}\right) \subseteq \operatorname{ker} f$.
ab) $\operatorname{ker} f \subseteq\left(0_{M}\right)$.
aa) Since $f\left(0_{M}\right)=0_{N}, 0_{M} \in \operatorname{ker} f$.
So $\left(0_{M}\right) \subseteq \operatorname{ker} f$.
ab) Let $k \in \operatorname{ker} f$.
Then $f(k)=0_{N}$.
So $f(k)=f\left(0_{M}\right)$.
Thus, since f is injective, $k=0_{M}$.
So ker $f \subseteq\left(0_{M}\right)$.
So ker $f=\left(0_{M}\right)$.
b) \Longrightarrow : Assume $\operatorname{im} f=N$.

To show: If $n \in N$ then there exists $m \in M$ such that $f(m)=n$.
Assume $n \in N$.
Then $n \in \operatorname{im} f$.
So there is some $m \in M$ such that $f(m)=n$.
So f is surjective.
\Longleftarrow : Assume f is surjective.
To show: ba) $\operatorname{im} f \subseteq N$.
bb) $N \subseteq \operatorname{im} f$.
ba) Let $x \in \operatorname{im} f$.
Then $x=f(m)$ for some $m \in M$.
By the definition of $f, f(m) \in N$.
So $x \in N$.
So $\operatorname{im} f \subseteq N$.
bb) Assume $x \in N$.
Since f is surjective there is an m such that $f(m)=x$.
So $x \in \operatorname{im} f$.
So $N \subseteq \operatorname{im} f$.
So $\operatorname{im} f=N$.

(2.2.11) Theorem.

a) Let $f: M \rightarrow N$ be an R-module homomorphism and let $K=\operatorname{ker} f$. Define

$$
\begin{array}{cccc}
\hat{f}: & M / \operatorname{ker} f & \rightarrow & N \\
& m+K & \mapsto & f(m) .
\end{array}
$$

Then \hat{f} is a well defined injective R-module homomorphism.
b) Let $f: M \rightarrow N$ be an R-module homomorphism and define

$$
\begin{array}{lccc}
f^{\prime}: & M & \rightarrow & \operatorname{im} f \\
& m & \mapsto & f(m) .
\end{array}
$$

Then f^{\prime} is a well defined surjective R-module homomorphism.
c) If $f: M \rightarrow N$ is an R-module homomorphism, then

$$
M / \operatorname{ker} f \simeq \operatorname{im} f
$$

where the isomorphism is an R-module isomorphism.
Proof.
a) To show: aa) \hat{f} is well defined.
ab) \hat{f} is injective.
ac) \hat{f} is an R-module homomorphism.
aa) To show: aaa) If $m \in M$ then $\hat{f}(m+K) \in N$.
aab) If $m_{1}+K=m_{2}+K \in M / K$ then $\hat{f}\left(m_{1}+K\right)=\hat{f}\left(m_{2}+K\right)$.
aaa) Assume $m \in M$.
Then $\hat{f}(m+K)=f(m)$ and $f(m) \in N$, by the definition of \hat{f} and f.
aab) Assume $m_{1}+K=m_{2}+K$.
Then $m_{1}=m_{2}+k$, for some $k \in K$.
To show: $\hat{f}\left(m_{1}+K\right)=\hat{f}\left(m_{2}+K\right)$, i.e.,
To show: $f\left(m_{1}\right)=f\left(m_{2}\right)$.
Since $k \in \operatorname{ker} f$, we have $f(k)=0$ and so

$$
f\left(m_{1}\right)=f\left(m_{2}+k\right)=f\left(m_{2}\right)+f(k)=f\left(m_{2}\right)
$$

$$
\text { So } \hat{f}\left(m_{1}+K\right)=\hat{f}\left(m_{2}+K\right)
$$

So \hat{f} is well defined.
ab) To show: If $\hat{f}\left(m_{1}+K\right)=\hat{f}\left(m_{2}+K\right)$ then $m_{1}+K=m_{2}+K$.
Assume $\hat{f}\left(m_{1}+K\right)=\hat{f}\left(m_{2}+K\right)$.
Then $f\left(m_{1}\right)=f\left(m_{2}\right)$.
So $f\left(m_{1}\right)-f\left(m_{2}\right)=0$.
So $f\left(m_{1}-m_{2}\right)=0$.
So $m_{1}-m_{2} \in \operatorname{ker} f$.
So $m_{1}-m_{2}=k$, for some $k \in \operatorname{ker} f$.
So $m_{1}=m_{2}+k$, for some $k \in \operatorname{ker} f$.
To show: aba) $m_{1}+K \subseteq m_{2}+K$.
abb) $m_{2}+K \subseteq m_{1}+K$.
aba) Let $m \in m_{1}+K$. Then $m=m_{1}+k_{1}$, for some $k_{1} \in K$.
So $m=m_{2}+k+k_{1} \in m_{2}+K$, since $k+k_{1} \in K$.
So $m_{1}+K \subseteq m_{2}+K$.
abb) Let $m \in m_{2}+K$. Then $m=m_{2}+k_{2}$, for some $k_{2} \in K$.
So $m=m_{1}-k+k_{2} \in m_{1}+K$ since $-k+k_{2} \in K$.
So $m_{2}+K \subseteq m_{1}+K$.
So $m_{1}+K=m_{2}+\bar{K}$.
So \hat{f} is injective.
ac) To show: aca) If $m_{1}+K, m_{2}+K \in M / K$
then $\hat{f}\left(m_{1}+K\right)+\hat{f}\left(m_{2}+K\right)=\hat{f}\left(\left(m_{1}+K\right)+\left(m_{2}+K\right)\right)$.
acb) If $r \in R$ and $m+K \in M / K$ then $\hat{f}(r(m+K))=r \hat{f}(m+K)$.
aca) Let $m_{1}+K, m_{2}+K \in M / K$.

Since f is a homomorphism,

$$
\begin{aligned}
\hat{f}\left(m_{1}+K\right)+\hat{f}\left(m_{2}+K\right) & =f\left(m_{1}\right)+f\left(m_{2}\right) \\
& =f\left(m_{1}+m_{2}\right) \\
& =\hat{f}\left(\left(m_{1}+m_{2}\right)+K\right) \\
& =\hat{f}\left(\left(m_{1}+K\right)+\left(m_{2}+K\right)\right) .
\end{aligned}
$$

acb) Let $r \in R$ and $m+K \in M / K$.
Since f is a homomorphism,

$$
\begin{aligned}
\hat{f}(r(m+K)) & =\hat{f}(r m+K) \\
& =f(r m) \\
& =r f(m) \\
& =r \hat{f}(m+K) .
\end{aligned}
$$

So \hat{f} is an R-module homomorphism.
So \hat{f} is a well defined injective R-module homomorphism.
b) To show: ba) f^{\prime} is well defined.
bb) f^{\prime} is surjective.
bc) f^{\prime} is an R-module homomorphism.
ba) and bb) are proved in Ex. 2.2.3 a), Part I.
bc) To show: bca) If $m_{1}, m_{2} \in M$ then $f^{\prime}\left(m_{1}+m_{2}\right)=f^{\prime}\left(m_{1}\right)+f^{\prime}\left(m_{2}\right)$.
bcb) If $r \in R$ and $m \in M$ then $f^{\prime}(r m)=r f^{\prime}(m)$.
$\mathrm{bca}) \quad$ Let $m_{1}, m_{2} \in M$.
Then, since f is a homomorphism,
$f^{\prime}\left(m_{1}+m_{2}\right)=f\left(m_{1}+m_{2}\right)=f\left(m_{1}\right)+f\left(m_{2}\right)=f^{\prime}\left(m_{1}\right)+f^{\prime}\left(m_{2}\right)$.
bcb) Let $m_{1}, m_{2} \in M$.
Then, since f is an R-module homomorphism,

$$
f^{\prime}(r m)=f(r m)=r f(m)=r f^{\prime}(m)
$$

So f^{\prime} is an R-module homomorphism.
So f^{\prime} is a well defined surjective R-module homomorphism.
c) Let $K=\operatorname{ker} f$.

By a), the function

$$
\begin{array}{cccc}
\hat{f}: & M / K & \rightarrow & N \\
m+K & \mapsto & f(m)
\end{array}
$$

is a well defined injective R-module homomorphism.
By b), the function

$$
\begin{array}{rcc}
\hat{f}^{\prime}: & M / K & \rightarrow \\
\operatorname{im} \hat{f} \\
m+K & \mapsto & \hat{f}(m+K) \quad=f(m)
\end{array}
$$

is a well defined surjective R-module homomorphism.
To show: ca) $\operatorname{im} \hat{f}=\operatorname{im} f$.
cb) \hat{f}^{\prime} is injective.
ca) To show: caa) $\operatorname{im} \hat{f} \subseteq \operatorname{im} f$.
cab) $\operatorname{im} f \subseteq \operatorname{im} \hat{f}$.
caa) Let $n \in \operatorname{im} \hat{f}$.
Then there is some $m+K \in M / K$ such that $\hat{f}(m+K)=n$.
Let $m^{\prime} \in m+K$.
Then $m^{\prime}=m+k$ for some $k \in K$.
Then, since f is a homomorphism and $f(k)=0$,

$$
\begin{aligned}
f\left(m^{\prime}\right) & =f(m+k) \\
& =f(m)+f(k) \\
& =f(m) \\
& =\hat{f}(m+k) \\
& =n .
\end{aligned}
$$

So $n \in \operatorname{im} f$.
So $\operatorname{im} \hat{f} \subseteq \operatorname{im} f$.
cab) Let $n \in \operatorname{im} f$.
Then there is some $m \in M$ such that $f(m)=n$.
So $\hat{f}(m+K)=f(m)=n$.
So $n \in \operatorname{im} \hat{f}$.
So $\operatorname{im} f \subseteq \operatorname{im} \hat{f}$.
So $\operatorname{im} f=\operatorname{im} \hat{f}$.
cb) To show: If $\hat{f}^{\prime}\left(m_{1}+K\right)=\hat{f}^{\prime}\left(m_{2}+K\right)$ then $m_{1}+K=m_{2}+K$.
Assume $\hat{f}^{\prime}\left(m_{1}+K\right)=\hat{f}^{\prime}\left(m_{2}+K\right)$.
Then $\hat{f}\left(m_{1}+K\right)=\hat{f}\left(m_{2}+K\right)$.
Then, since \hat{f} is injective, $m_{1}+K=m_{2}+K$.
So \hat{f}^{\prime} is injective.
Thus we have

$$
\begin{array}{rccc}
\hat{f}^{\prime}: & M / K & \rightarrow & \operatorname{im} f \\
m+K & \mapsto & f(m)
\end{array}
$$

is a well defined bijective R-module homomorphism.

Chapter 3. FIELDS AND VECTOR SPACES

§1P. Fields

(3.1.3) Proposition. If $f: K \rightarrow F$ is a field homomorphism then f is injective.

Proof.
To show: $f: K \rightarrow F$ is injective.
Assume $f: K \rightarrow F$ is a field homomorphism.
To show: If $x_{1}, x_{2} \in K$ and $f\left(x_{1}\right)=f\left(x_{2}\right)$ then $x_{1}=x_{2}$.
Assume $x_{1}, x_{2} \in K$ and $f\left(x_{1}\right)=f\left(x_{2}\right)$.
To show: $x_{1}=x_{2}$.
Proof by contradiction: Assume $x_{1} \neq x_{2}$.
Let 0_{K} and 0_{F} be the additive identities in K and F respectively.
Let 1_{K} and 1_{F} be the multiplicative identities in K and F respectively.
Then $f\left(x_{1}\right)-f\left(x_{2}\right)=0_{F}$ and $x_{1}-x_{2} \neq 0_{K}$.
Let $y=\left(x_{1}-x_{2}\right)^{-1}$, which exists by property h$)$ in the definition of a field.
Then, since $f: K \rightarrow F$ is a homomorphism and $f\left(x_{1}\right)-f\left(x_{2}\right)=0_{F}$,

$$
\begin{aligned}
1_{F}=f\left(1_{K}\right) & =f\left(\left(x_{1}-x_{2}\right) y\right) \\
& =f\left(x_{1}-x_{2}\right) f(y) \\
& =\left(f\left(x_{1}\right)-f\left(x_{2}\right)\right) f(y) \\
& =0_{F} \cdot f(y) \\
& =0_{F} .
\end{aligned}
$$

This is a contradiction to property g) in the definition of a field.
So $x_{1}=x_{2}$.
So $f: K \rightarrow F$ is injective.

§2P. Vector Spaces

(3.2.4) Proposition. Let V be a vector space over a field F and let W be a subgroup of V. Then the cosets of W in V partition V.
Proof.
To show: a) If $v \in V$ then $v \in v^{\prime}+W$ for some $v^{\prime} \in V$.
b) If $\left(v_{1}+W\right) \cap\left(v_{2}+W\right) \neq \emptyset$ then $v_{1}+W=v_{2}+W$.
a) Let $v \in V$.

Then, since $0 \in W, v=v+0 \in v+W$.
So $v \in v+W$.
b) Assume $\left(v_{1}+W\right) \cap\left(v_{2}+W\right) \neq \emptyset$.

To show: ba) $v_{1}+W \subseteq v_{2}+W$.
bb) $v_{2}+W \subseteq v_{1}+W$.
Let $a \in\left(v_{1}+W\right) \cap\left(v_{2}+W\right)$.
Suppose $a=v_{1}+w_{1}$ and $a=v_{2}+w_{2}$ where $w_{1}, w_{2} \in W$.
Then

$$
\begin{aligned}
& v_{1}=v_{1}+w_{1}-w_{1}=a-w_{1}=v_{2}+w_{2}-w_{1} \quad \text { and } \\
& v_{2}=v_{2}+w_{2}-w_{2}=a-w_{2}=v_{1}+w_{1}-w_{2}
\end{aligned}
$$

ba) Let $v \in v_{1}+W$.
Then $v=v_{1}+w$ for some $w \in W$.
Then

$$
v=v_{1}+w=v_{2}+w_{2}-w_{1}+w \in v_{2}+W
$$

since $w_{2}-w_{1}+w \in W$.
So $v_{1}+W \subseteq v_{2}+W$.
bb) Let $v \in v_{2}+W$.
Then $v=v_{2}+w$ for some $w \in W$.
Then

$$
v=v_{2}+w=v_{1}+w_{1}-w_{2}+w \in v_{1}+W
$$

since $w_{1}-w_{2}+w \in W$.
So $v_{2}+W \subseteq v_{1}+W$.
So $v_{1}+W=v_{2}+W$.
So the cosets of W in V partition V.
(3.2.5) Theorem. Let W be a subgroup of a vector space V over a field F. Then W is a subspace of V if and only if V / W with operations given by

$$
\begin{aligned}
\left(v_{1}+W\right)+\left(v_{2}+W\right) & =\left(v_{1}+v_{2}\right)+W, \quad \text { and } \\
c(v+W) & =c v+W
\end{aligned}
$$

is a vector space over F.
Proof.
\Longrightarrow : Assume W is a subspace of V.
To show: a) $\left(v_{1}+W\right)+\left(v_{2}+W\right)=\left(v_{1}+v_{2}\right)+W$ is a well defined operation on V / W.
b) The operation given by $c(v+W)=c v+W$ is well defined.
c) $\left(\left(v_{1}+W\right)+\left(v_{2}+W\right)\right)+\left(v_{3}+W\right)=\left(v_{1}+W\right)+\left(\left(v_{2}+W\right)+\left(v_{3}+W\right)\right)$ for all $v_{1}+W, v_{2}+W, v_{3}+W \in V / W$.
d) $\left(v_{1}+W\right)+\left(v_{2}+W\right)=\left(v_{2}+W\right)+\left(v_{1}+W\right)$ for all $v_{1}+W, v_{2}+W \in V / W$.
e) $0+W=W$ is the zero in V / W.
f) $-v+W$ is the additive inverse of $v+W$.
g) If $c_{1}, c_{2} \in F$ and $v+W \in V / W$, then $c_{1}\left(c_{2}(v+W)\right)=\left(c_{1} c_{2}\right)(v+W)$.
h) If $v+W \in V / W$ then $1(v+W)=v+W$.
i) If $c \in F$ and $v_{1}+W, v_{2}+W \in V / W$,
then $c\left(\left(v_{1}+W\right)+\left(v_{2}+W\right)\right)=c\left(v_{1}+W\right)+c\left(v_{2}+W\right)$.
j) If $c_{1}, c_{2} \in F$ and $v+W \in V / W$,
then $\left(c_{1}+c_{2}\right)(v+W)=c_{1}(v+W)+c_{2}(v+W)$.
a) We want the operation on V / W given by

$$
\begin{array}{ccc}
V / W \times V / W & \rightarrow & V / W \\
\left(v_{1}+W, v_{2}+W\right) & \mapsto & \left(v_{1}+v_{2}\right)+W
\end{array}
$$

to be well defined.
Let $\left(v_{1}+W, v_{2}+W\right),\left(v_{3}+W, v_{4}+W\right) \in V / W \times V / W$ such that
$\left(v_{1}+W, v_{2}+W\right)=\left(v_{3}+W, v_{4}+W\right)$.
Then $v_{1}+W=v_{3}+W$ and $v_{2}+W=v_{4}+W$.
To show: $\left(v_{1}+v_{2}\right)+W=\left(v_{3}+v_{4}\right)+W$.
So we must show: aa) $\left(v_{1}+v_{2}\right)+W \subseteq\left(v_{3}+v_{4}\right)+W$.

$$
\text { ab) }\left(v_{3}+v_{4}\right)+W \subseteq\left(v_{1}+v_{2}\right)+W
$$

aa) We know $v_{1}=v_{1}+0 \in v_{3}+W$ since $v_{1}+W=v_{3}+W$.
So $v_{1}=v_{3}+w_{1}$ for some $w_{1} \in W$.
Similarly $v_{2}=v_{4}+w_{2}$ for some $w_{2} \in W$.
Let $t \in\left(v_{1}+v_{2}\right)+W$.
Then $t=v_{1}+v_{2}+w$ for some $w \in W$.
So

$$
\begin{aligned}
t & =v_{1}+v_{2}+w \\
& =v_{3}+w_{1}+v_{4}+w_{2}+w \\
& =v_{3}+v_{4}+w_{1}+w_{2}+w
\end{aligned}
$$

since addition is commutative.
So $t=\left(v_{3}+v_{4}\right)+\left(w_{1}+w_{2}+w\right) \in v_{3}+v_{4}+W$.
So $\left(v_{1}+v_{2}\right)+W \subseteq\left(v_{3}+v_{4}\right)+W$.
ab) Since $v_{1}+W=v_{3}+W$, we know $v_{1}+w_{1}=v_{3}$ for some $w_{1} \in W$.
Since $v_{2}+W=v_{4}+W$, we know $v_{2}+w_{2}=v_{4}$ for some $w_{2} \in W$.
Let $t \in\left(v_{3}+v_{4}\right)+W$.
Then $t=v_{3}+v_{4}+w$ for some $w \in W$.
So

$$
\begin{aligned}
t & =v_{3}+v_{4}+w \\
& =v_{1}+w_{1}+v_{2}+w_{2}+w \\
& =v_{1}+v_{2}+w_{1}+w_{2}+w
\end{aligned}
$$

since addition is commutative.
So $t=\left(v_{1}+v_{2}\right)+\left(w_{1}+w_{2}+w\right) \in\left(v_{1}+v_{2}\right)+W$.
So $\left(v_{3}+v_{4}\right)+W \subseteq\left(v_{1}+v_{2}\right)+W$.
So $\left(v_{1}+v_{2}\right)+W=\left(v_{3}+v_{4}\right)+W$.
So the operation given by $\left(v_{1}+W\right)+\left(v_{3}+W\right)=\left(v_{1}+v_{3}\right)+W$ is a well defined operation on V / W.
b) We want the operation given by

$$
\begin{array}{ccc}
F \times V / W & \rightarrow & V / W \\
(c, v+W) & \mapsto & c v+W
\end{array}
$$

to be well defined.
Let $\left(c_{1}, v_{1}+W\right),\left(c_{2}, v_{2}+W\right) \in(F \times V / W)$ such that $\left(c_{1}, v_{1}+W\right)=\left(c_{2}, v_{2}+W\right)$.
Then $c_{1}=c_{2}$ and $v_{1}+W=v_{2}+W$.
To show: $c_{1} v_{1}+W=c_{2} v_{2}+W$.
To show: ba) $c_{1} v_{1}+W \subseteq c_{2} v_{2}+W$.
bb) $c_{2} v_{2}+W \subseteq c_{1} v_{1}+W$.
ba) Since $v_{1}+W=v_{2}+W$, we know $v_{1}=v_{2}+w_{1}$ for some $w_{1} \in W$.
Let $t \in c_{1} v_{1}+W$.
Then $t=c_{1} v_{1}+w$ for some $w \in W$. So

$$
\begin{aligned}
t & =c_{1} v_{1}+w \\
& =c_{2}\left(v_{2}+w_{1}\right)+w \\
& =c_{2} v_{2}+c_{2} w_{1}+w
\end{aligned}
$$

since $c_{1}=c_{2}$.
Since W is a subspace, $c_{2} w_{1} \in W$, and $c_{2} w_{1}+w \in W$.
So $t=c_{2} v_{2}+c_{2} w_{1}+w \in c_{2} v_{2}+W$.
So $c_{1} v_{1}+W \subseteq c_{2} v_{2}+W$.
bb) Since $v_{1}+W=v_{2}+W$, we know $v_{2}=v_{1}+w_{2}$ for some $w_{2} \in W$.
Let $t \in c_{2} v_{2}+W$.
Then $t=c_{2} v_{2}+w$ for some $w \in W$. So

$$
\begin{aligned}
t & =c_{2} v_{2}+w \\
& =c_{1}\left(v_{1}+w_{2}\right)+w \\
& =c_{1} v_{1}+c_{1} w_{2}+w
\end{aligned}
$$

since $c_{2}=c_{1}$.
Since W is a subspace, $c_{1} w_{2} \in W$, and $c_{1} w_{2}+w \in W$.
So $t=c_{1} v_{1}+c_{1} w_{2}+w \in c_{1} v_{1}+W$.
So $c_{2} v_{2}+W \subseteq c_{1} v_{1}+W$.
So $c_{1} v_{1}+W=c_{2} v_{2}+W$.
So the operation is well defined.
c) By the associativity of addition in V and the definition of the operation in V / W,

$$
\begin{aligned}
\left(\left(v_{1}+W\right)+\left(v_{2}+W\right)\right)+\left(v_{3}+W\right) & =\left(\left(v_{1}+v_{2}\right)+W\right)+\left(v_{3}+W\right) \\
& =\left(\left(v_{1}+v_{2}\right)+v_{3}\right)+W \\
& =\left(v_{1}+\left(v_{2}+v_{3}\right)\right)+W \\
& =\left(v_{1}+W\right)+\left(\left(v_{2}+v_{3}\right)+W\right) \\
& =\left(v_{1}+W\right)+\left(\left(v_{2}+W\right)+\left(v_{3}+W\right)\right)
\end{aligned}
$$

for all $v_{1}+W, v_{2}+W, v_{3}+W \in V / W$.
d) By the commutativity of addition in V and the definition of the operation in V / W,

$$
\begin{aligned}
\left(v_{1}+W\right)+\left(v_{2}+W\right) & =\left(v_{1}+v_{2}\right)+W \\
& =\left(v_{2}+v_{1}\right)+W \\
& =\left(v_{2}+W\right)+\left(v_{1}+W\right)
\end{aligned}
$$

for all $v_{1}+W, v_{2}+W \in V / W$.
e) The coset $W=0+W$ is the zero in V / W since

$$
\begin{aligned}
W+(v+W) & =(0+v)+W \\
& =v+W \\
& =(v+0)+W \\
& =(v+W)+W
\end{aligned}
$$

for all $v+W \in V / W$.
f) Given any coset $v+W$, its additive inverse is $(-v)+W$ since

$$
\begin{aligned}
(v+W)+(-v+W) & =v+(-v)+W \\
& =0+W \\
& =W \\
& =(-v+v)+W \\
& =(-v+W)+v+W
\end{aligned}
$$

for all $v+W \in V / W$.
g) Assume $c_{1}, c_{2} \in F$ and $v+W \in V / W$.

Then, by definition of the operation,

$$
\begin{aligned}
c_{1}\left(c_{2}(v+W)\right) & =c_{1}\left(c_{2} v+W\right) \\
& =c_{1}\left(c_{2} v\right)+W \\
& =\left(c_{1} c_{2}\right) v+W \\
& =\left(c_{1} c_{2}\right)(v+W) .
\end{aligned}
$$

h) Assume $v+W \in V / W$.

Then, by definition of the operation,

$$
\begin{aligned}
1(v+W) & =(1 v)+W \\
& =v+W
\end{aligned}
$$

i) Assume $c \in F$ and $v_{1}+W, v_{2}+W \in V / W$.

Then

$$
\begin{aligned}
c\left(\left(v_{1}+W\right)+\left(v_{2}+W\right)\right) & =c\left(\left(v_{1}+v_{2}\right)+W\right) \\
& =c\left(v_{1}+v_{2}\right)+W \\
& =\left(c v_{1}+c v_{2}\right)+W \\
& =\left(c v_{1}+W\right)+\left(c v_{2}+W\right) \\
& =c\left(v_{1}+W\right)+c\left(v_{2}+W\right)
\end{aligned}
$$

j) Assume $c_{1}, c_{2} \in F$ and $v+W \in V / W$.

Then

$$
\begin{aligned}
\left(c_{1}+c_{2}\right)(v+W) & =\left(\left(c_{1}+c_{2}\right) v\right)+W \\
& =\left(c_{1} v+c_{2} v\right)+W \\
& =\left(c_{1} v+W\right)+\left(c_{2} v+W\right) \\
& =c_{1}(v+W)+c_{2}(v+W)
\end{aligned}
$$

So V / W is a vector space over F.
\Longleftarrow : Assume W is a subgroup of V and V / W is a vector space over F with action given by
$c(v+W)=c v+W$.
To show: W is a subspace of V.
To show: If $c \in F$ and $w \in W$ then $c w \in W$.
First we show: If $w \in W$ then $w+W=W$.
To show: a) $w+W \subseteq W$.
b) $W \subseteq w+W$.
a) Let $k \in w+W$.

So $k=w+w_{1}$ for some $w_{1} \in W$.
Since W is a subgroup, $w+w_{1} \in W$.
So $w+W \subseteq W$.
b) Let $k \in W$.

Since $k-w \in W, k=w+(k-w) \in w+W$.
So $W \subseteq w+W$.
Now assume $c \in F$ and $w \in W$.
Then, by definition of the operation on V / W,

$$
\begin{aligned}
c w+W & =c(w+W) \\
& =c(0+W) \\
& =c \cdot 0+W \\
& =0+W \\
& =W .
\end{aligned}
$$

So $c w=c w+0 \in W$.
So W is a subspace of V.
(3.2.8) Proposition. Let $T: V \rightarrow W$ be a linear transformation. Let 0_{V} and 0_{W} be the zeros for V and W respectively. Then
a) $T\left(0_{V}\right)=0_{W}$.
b) For any $v \in V, T(-v)=-T(v)$.

Proof.
a) Add $-T\left(0_{V}\right)$ to both sides of the following equation.

$$
T\left(0_{V}\right)=T\left(0_{V}+0_{V}\right)=T\left(0_{V}\right)+T\left(0_{V}\right)
$$

b) Since $T(v)+T(-v)=T(v+(-v))=T\left(0_{V}\right)=0_{W}$ and

$$
T(-v)+T(v)=T((-v)+v)+T\left(0_{V}\right)=0_{W}, \text { then }
$$

$$
-T(v)=T(-v)
$$

(3.2.10) Proposition. Let $T: V \rightarrow W$ be a linear transformation. Then
a) $\operatorname{ker} T$ is a subspace of V.
b) $\operatorname{im} T$ is a subspace of W.

Proof.
a) By condition a) in the definition of linear transformation, T is a group homomorphism.

By Proposition 1.1.13 a), $\operatorname{ker} T$ is a subgroup of V.
To show: If $c \in F$ and $k \in \operatorname{ker} T$ then $c k \in \operatorname{ker} T$.
Assume $c \in F$ and $k \in \operatorname{ker} T$.
Then, by the definition of linear transformation,

$$
T(c k)=c T(k)=c \cdot 0=0 .
$$

So $c k \in \operatorname{ker} T$.

So $\operatorname{ker} T$ is a subspace of V.
b) By condition a) in the definition of linear transformation, T is a group homomorphism.

By Proposition 1.1.13 b), im T is a subgroup of W.
To show: If $c \in F$ and $a \in \operatorname{im} T$ then $c a \in \operatorname{im} T$.
Assume $c \in F$ and $c \in \operatorname{im} T$.
Then $a=T(v)$ for some $v \in V$.
By the definition of linear transformation,

$$
c a=c T(v)=T(c v) .
$$

So $c a \in \operatorname{im} T$.
So $\operatorname{im} T$ is a subspace of W.
(3.2.11) Proposition. Let $T: V \rightarrow W$ be a linear transformation. Let 0_{V} be the zero in V. Then
a) $\operatorname{ker} T=\left(0_{V}\right)$ if and only if T is injective.
b) $\operatorname{im} T=W$ if and only if T is surjective.

Proof.
Let 0_{V} and 0_{W} be the zeros in V and W respectively.
a) \Longrightarrow : Assume $\operatorname{ker} T=\left(0_{V}\right)$.

To show: If $T\left(v_{1}\right)=T\left(v_{2}\right)$ then $v_{1}=v_{2}$.
Assume $T\left(v_{1}\right)=T\left(v_{2}\right)$.
Then, by the fact that T is a homomorphism,

$$
0_{W}=T\left(v_{1}\right)-T\left(v_{2}\right)=T\left(v_{1}-v_{2}\right) .
$$

So $v_{1}-v_{2} \in \operatorname{ker} T$.
But ker $T=\left(0_{V}\right)$.
So $v_{1}-v_{2}=0_{V}$.
So $v_{1}=v_{2}$.
So T is injective.
\Longleftarrow : Assume T is injective.
To show: aa) $\left(0_{V}\right) \subseteq \operatorname{ker} T$.
ab) $\operatorname{ker} T \subseteq\left(0_{V}\right)$.
aa) Since $T\left(0_{V}\right)=0_{W}, 0_{V} \in \operatorname{ker} T$.
So $\left(0_{V}\right) \subseteq \operatorname{ker} T$.
ab) Let $k \in \operatorname{ker} T$.
Then $T(k)=0_{W}$.
So $T(k)=T\left(0_{V}\right)$.
Thus, since T is injective, $k=0_{V}$.
So ker $T \subseteq\left(0_{V}\right)$.
So $\operatorname{ker} T=\left(0_{V}\right)$.
b) \Longrightarrow : Assume im $T=W$.

To show: If $w \in W$ then there exists $v \in V$ such that $T(v)=w$.
Assume $w \in W$.
Then $w \in \operatorname{im} T$.
So there is some $v \in V$ such that $T(v)=w$.
So T is surjective.
\Longleftarrow : Assume T is surjective.
To show: ba) im $T \subseteq W$.
bb) $W \subseteq \operatorname{im} T$.
ba) Let $x \in \operatorname{im} T$.
Then $x=T(v)$ for some $v \in V$.

By the definition of $T, T(v) \in W$.
So $x \in W$.
So $\operatorname{im} T \subseteq W$.
bb) Assume $x \in W$.
Since T is surjective there is a v such that $T(v)=x$.
So $x \in \operatorname{im} T$.
So $W \subseteq \operatorname{im} T$.
So $\operatorname{im} T=W$.

(3.2.12) Theorem.

a) Let $T: V \rightarrow W$ be a linear transformation and let $K=\operatorname{ker} T$. Define

$$
\begin{array}{cccc}
\hat{T}: & V / \operatorname{ker} T & \rightarrow & W \\
& v+K & \mapsto & T(v) .
\end{array}
$$

Then \hat{T} is a well defined injective linear transformation.
b) Let $T: V \rightarrow W$ be a linear transformation and define

$$
\begin{array}{llll}
T^{\prime}: & V & \rightarrow & \operatorname{im} T \\
v & \mapsto & T(v) .
\end{array}
$$

Then T^{\prime} is a well defined surjective linear transformation.
c) If $T: V \rightarrow W$ is a linear transformation, then

$$
V / \operatorname{ker} T \simeq \operatorname{im} T
$$

where the isomorphism is a vector space isomorphism.
Proof.
a) To show: aa) \hat{T} is well defined.
ab) \hat{T} is injective.
ac) \hat{T} is a linear transformation.
aa) To show: aaa) If $v \in V$ then $\hat{T}(v+K) \in W$.
aab) If $v_{1}+K=v_{2}+K \in V / K$ then $\hat{T}\left(v_{1}+K\right)=\hat{T}\left(v_{2}+K\right)$.
aaa) Assume $v \in V$.
Then $\hat{T}(v+K)=T(v)$ and $T(v) \in W$, by the definition of \hat{T} and T.
aab) Assume $v_{1}+K=v_{2}+K$.
Then $v_{1}=v_{2}+K$, for some $k \in K$.
To show: $\hat{T}\left(v_{1}+K\right)=\hat{T}\left(v_{2}+K\right)$, i.e., To show: $T\left(v_{1}\right)=T\left(v_{2}\right)$.

Since $K \in \operatorname{ker} T$, we have $T(k)=0$ and so

$$
T\left(v_{1}\right)=T\left(v_{2}+k\right)=T\left(v_{2}\right)+T(k)=T\left(v_{2}\right)
$$

$$
\text { So } \hat{T}\left(v_{1}+K\right)=\hat{T}\left(v_{2}+K\right)
$$

So \hat{T} is well defined.
ab) To show: If $\hat{T}\left(v_{1}+K\right)=\hat{T}\left(v_{2}+K\right)$ then $v_{1}+K=v_{2}+K$.
Assume $\hat{T}\left(v_{1}+K\right)=\hat{T}\left(v_{2}+K\right)$. Then $T\left(v_{1}\right)=T\left(v_{2}\right)$.
So $T\left(v_{1}\right)-T\left(v_{2}\right)=0$.
So $T\left(v_{1}-v_{2}\right)=0$.
So $v_{1}-v_{2} \in \operatorname{ker} T$.
So $v_{1}-v_{2}=k$, for some $k \in \operatorname{ker} T$.
So $v_{1}=v_{2}+k$, for some $k \in \operatorname{ker} T$.

To show: aba) $v_{1}+K \subseteq v_{2}+K$.
abb) $v_{2}+K \subseteq v_{1}+K$.
aba) Let $v \in v_{1}+K$. Then $v=v_{1}+k_{1}$, for some $k_{1} \in K$.
So $v=v_{2}+k+k_{1} \in v_{2}+K$, since $k+k_{1} \in K$.
So $v_{1}+K \subseteq v_{2}+K$.
abb) Let $v \in v_{2}+K$. Then $v=v_{2}+k_{2}$, for some $k_{2} \in K$.
So $v=v_{1}-k+k_{2} \in v_{1}+K$ since $-k+k_{2} \in K$.
So $v_{2}+K \subseteq v_{1}+K$.
So $v_{1}+K=v_{2}+K$.
So \hat{T} is injective.
ac) To show: aca) If $v_{1}+K, v_{2}+K \in V / K$ then

$$
\hat{T}\left(v_{1}+K\right)+\hat{T}\left(v_{2}+K\right)=\hat{T}\left(\left(v_{1}+K\right)+\left(v_{2}+K\right)\right)
$$

acb) If $c \in F$ and $v+K \in V / K$ then $\hat{T}(c(v+K))=c \hat{T}(v+K)$.
aca) Let $v_{1}+K, v_{2}+K \in V / K$.
Since T is a homomorphism,

$$
\begin{aligned}
\hat{T}\left(v_{1}+K\right)+\hat{T}\left(v_{2}+K\right) & =T\left(v_{1}\right)+T\left(v_{2}\right) \\
& =T\left(v_{1}+v_{2}\right) \\
& =\hat{T}\left(\left(v_{1}+v_{2}\right)+K\right) \\
& =\hat{T}\left(\left(v_{1}+K\right)+\left(v_{2}+K\right)\right) .
\end{aligned}
$$

acb) Let $c \in F$ and $v+K \in V / K$.
Since T is a homomorphism,

$$
\begin{aligned}
\hat{T}(c(v+K)) & =\hat{T}(c v+K) \\
& =T(c v) \\
& =c T(v) \\
& =c \hat{T}(v+K)
\end{aligned}
$$

So \hat{T} is a linear transformation.
So \hat{T} is a well defined injective linear transformation.
b) To show: ba) T^{\prime} is well defined.
bb) T^{\prime} is surjective.
bc) T^{\prime} is a linear transformation.
ba) and bb) are proved in Ex. 2.2 .3 b), Part I.
bc) To show: bca) If $v_{1}, v_{2} \in V$ then $T^{\prime}\left(v_{1}+v_{2}\right)=T^{\prime}\left(v_{1}\right)+T^{\prime}\left(v_{2}\right)$.
$\mathrm{bcb})$ If $c \in F$ and $v \in V$ then $T^{\prime}(c v)=c T^{\prime}(v)$.
$\mathrm{bca})$ Let $v_{1}, v_{2} \in V$.
Then, since T is a linear transformation,

$$
T^{\prime}\left(v_{1}+v_{2}\right)=T\left(v_{1}+v_{2}\right)=T\left(v_{1}\right)+T\left(v_{2}\right)=T^{\prime}\left(v_{1}\right)+T^{\prime}\left(v_{2}\right)
$$

bcb) Let $v_{1}, v_{2} \in V$.
Then, since T is a linear transformation,

$$
T^{\prime}(c v)=T(c v)=c T(v)=c T^{\prime}(v)
$$

So T^{\prime} is a linear transformation.
So T^{\prime} is a well defined surjective linear transformation.
c) Let $K=\operatorname{ker} T$.

By a), the function

$$
\begin{array}{cccc}
\hat{T}: & V / K & \rightarrow & W \\
& v+K & \mapsto & T(v)
\end{array}
$$

is a well defined injective linear transformation.
By b), the function

$$
\begin{array}{lclc}
\hat{T}^{\prime}: & V / K & \rightarrow & \operatorname{im} \hat{T} \\
& v+K & \mapsto & \hat{T}(v+K) \quad=T(v)
\end{array}
$$

is a well defined surjective linear transformation.
To show: ca) $\operatorname{im} \hat{T}=\operatorname{im} T$.
cb) \hat{T}^{\prime} is injective
ca) To show: caa) $\operatorname{im} \hat{T} \subseteq \operatorname{im} T$.
cab) $\operatorname{im} T \subseteq \operatorname{im} \hat{T}$.
caa) Let $w \in \operatorname{im} \hat{T}$.
Then there is some $v+K \in V / K$ such that $\hat{T}(v+K)=w$.
Let $v^{\prime} \in v+K$.
Then $v^{\prime}=v+k$ for some $k \in K$.
Then, since T is a linear transformation and $T(k)=0$,

$$
\begin{aligned}
T\left(v^{\prime}\right) & =T(v+k) \\
& =T(v)+T(k) \\
& =T(v) \\
& =\hat{T}(v+k) \\
& =w .
\end{aligned}
$$

So $w \in \operatorname{im} T$.
So $\operatorname{im} \hat{T} \subseteq \operatorname{im} T$.
cab) Let $w \in \operatorname{im} T$.
Then there is some $v \in V$ such that $T(v)=w$.
So $\hat{T}(v+K)=T(v)=w$.
So $w \in \operatorname{im} \hat{T}$.
So $\operatorname{im} T \subseteq \operatorname{im} \hat{T}$.
So $\operatorname{im} T=\operatorname{im} \hat{T}$.
cb) To show: If $\hat{T}^{\prime}\left(v_{1}+K\right)=\hat{T}^{\prime}\left(v_{2}+K\right)$ then $v_{1}+K=v_{2}+K$.
Assume $\hat{T}^{\prime}\left(v_{1}+K\right)=\hat{T}^{\prime}\left(v_{2}+K\right)$.
Then $\hat{T}\left(v_{1}+K\right)=\hat{T}\left(v_{2}+K\right)$.
Then, since \hat{T} is injective, $v_{1}+K=v_{2}+K$.
So \hat{T}^{\prime} is injective.
Thus we have

$$
\begin{array}{lcll}
\hat{T}^{\prime}: & V / K & \rightarrow & \operatorname{im} \hat{T} \\
v+K & \mapsto & T(v)
\end{array}
$$

is a well defined bijective linear transformation.

