Questions for Assignment 1

MAST90017 Representation Theory Semester II 2015 Lecturer: Arun Ram to be turned in on 6 August 2015 before 5pm

- (1) Determine the irreducible representations, the indecomposable modules, the ideals, the radical, the center, and the traces on the algebra $A = M_{n_1}(\mathbb{C}) \oplus M_{n_2}(\mathbb{C}) \oplus M_{n_3}(\mathbb{C}) \oplus M_{n_4}(\mathbb{C}).$
- (2) Determine the irreducible representations, the indecomposable representations, the ideals, the radical, the center, and the traces on the algebra A of $n \times n$ upper triangular matrices.
- (3) Determine the irreducible representations, the indecomposable representations, the ideals, the radical, the center, and the traces on the algebra A of $n \times n$ strictly upper triangular matrices.
- (4) Let μ_r be a cyclic group of order r and let $G_{r,r,2}$ be the dihedral group of order 2r. Determine the irreducible representations and the indecomposable representations of the group algebras $\mathbb{C}\mu_r$ and $\mathbb{C}G_{r,r,2}$.
- (5) Let p be a prime and let G be the group of upper unitriangular matrices with entries in \mathbb{F}_p .
 - (a) Show that if p = 2 then G is isomorphic to the quaternion group of order 8.
 - (b) Determine the irreducible representations and the indecomposable representations of the group algebra $\mathbb{C}G$.
- (6) Let S_n denote the symmetric group. Determine the irreducible representations and the indecomposable representations of the group algebras $\mathbb{C}S_2$, $\mathbb{C}S_3$ and $\mathbb{C}S_4$.
- (7) Let A_n denote the alternating group. Determine the irreducible representations and the indecomposable representations of the group algebras $\mathbb{C}A_2$, $\mathbb{C}A_3$ and $\mathbb{C}A_4$.

- (8) Determine the irreducible representations and the indecomposable representations of the group algebras $\mathbb{C}G_{r,1,2}$, for $r \in \mathbb{Z}_{>0}$.
- (9) Determine the irreducible representations and the indecomposable representations of the group algebras $\mathbb{C}PGL_2(\mathbb{F}_2)$, $\mathbb{C}PGL_2(\mathbb{F}_3)$ and $\mathbb{C}PGL_2(\mathbb{F}_4)$.
- (10) Determine the finite dimensional irreducible representations and the finite dimensional indecomposable representations of $U\mathfrak{sl}_2$.
- (11) Determine the finite dimensional irreducible representations and the finite dimensional indecomposable representations of $U_q\mathfrak{sl}_2$.
- (12) Determine the irreducible representations (including infinite dimensional irreducible representations) and the finite dimensional indecomposable representations of the algebra generated by p, q, h with relations [p, q] = h, [h, p] = 0, and [h, q] = 0.
- (13) Determine the finite dimensional irreducible representations and the finite dimensional indecomposable representations of the algebra $\mathbb{C}[x_1, x_2]$.
- (14) Determine the irreducible representations and the indecomposable representations of the algebra generated by x_1, x_2, x_3 with relations $x_i x_j = x_j x_i$ and $x_1^3 = 0$, $x_2^5 = 0$ and $x_3^4 = 0$.
- (15) Determine the finite dimensional irreducible representations and the finite dimensional indecomposable representations of the algebra generated by x_1, x_2 with relations $x_1x_2 = 0, x_2x_1 = 0, (x_1 5)^{231} = 0$ and $(x_2 7)^{37} = 0$.
- (16) Determine the finite dimensional irreducible representations and the finite dimensional indecomposable representations of the group algebras $\mathbb{C}T$, where T is the tetrahedral group.
- (17) Determine the finite dimensional irreducible representations and the finite dimensional indecomposable representations of the group algebras $\mathbb{C}O$, where O is the octahedral group.
- (18) Determine the finite dimensional irreducible representations and the finite dimensional indecomposable representations of the group algebras $\mathbb{C}I$, where I is the icosahedral group.
- (19) Let \mathbb{F} be a field. Determine the conjugacy classes of $GL_n(\mathbb{F})$.
- (20) Determine the conjugacy classes of the groups $G_{r,p,n}$.