Tutorial Sheet for Lecture 1
 MAST90017 Representation Theory
 Semester II 2015
 Lecturer: Arun Ram

28 July 2015
(1) Define category, define the category of algebras, and prove that the category of algebras is a category.
(2) Define category, define the category of vector spaces, and prove that the category of vector spaces is a category.
(3) Define category, define the category of sets, and prove that the category of sets is a category.
(4) Define category, define the category of rings, and prove that the category of rings is a category.
(5) Define category, define the category of fields, and prove that the category of fields is a category. Show that all morphisms in the category of fields are injective.
(6) Let A be an algebra. Define category, define the category of A-modules, and prove that the category of A-modules is a category.
(7) Define tensor product $V \otimes W$ of vector spaces and show that a function $f: V \times W \rightarrow Z$ is bilinear if and only if $f: V \otimes W \rightarrow Z$ is a linear transformation.
(8) Let M be a finite dimensional A-module. Let b_{1}, \ldots, b_{n} and v_{1}, \ldots, v_{d} be two bases of M. Let

$$
\rho_{b}: A \rightarrow M_{d}(\mathbb{C}) \quad \text { and } \quad \rho_{v}: A \rightarrow M_{d}(\mathbb{C})
$$

be the corresponding algebra homomorphisms. Let $a \in A$. Determine a formula for $\rho_{v}(a)$ in terms of $\rho_{b}(a)$ and the transition matrix between the two bases.
(9) Let $f: M \rightarrow N$ be an A-module homomorphism. Show that $\operatorname{ker} f$ is a submodule of M and $\operatorname{im} f$ is a submodule of N.
(10) Let $d \in \mathbb{Z}_{>0}$. Show that $M_{d}(\mathbb{C})$ is an algebra.
(11) Show that $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ is an algebra.
(12) Show that $\mathbb{C}[x]$ is an algebra.
(13) Show that \mathbb{C} is an \mathbb{R}-algebra.
(14) Let $f: A \rightarrow B$ be a morphism of algebras. Define a map

$$
\operatorname{Res}_{A}^{B}: \begin{array}{clc}
\{B \text {-modules }\} & \longrightarrow & \{A \text {-modules }\} \\
M & \longmapsto & M
\end{array} \quad \text { given by setting } \quad a m=f(a) m,
$$

for $m \in M$ and $a \in A$. Define functor and show that $\operatorname{Res}_{A}^{B}$ is a functor.
(15) Let $f: A \rightarrow B$ be a morphism of algebras and let $\operatorname{Res}_{A}^{B}$ be as defined in the previous exercise. Show that if f is surjective and M is a simple B-module then $M=\operatorname{Res}_{A}^{B}(M)$ is a simple A-module.
(16) Let A be an algebra and let I be an ideal of A. Show that A / I is an algebra and if M is a simple A / I-module then M is a simple A-module.
(17) Show that a simple module is indecomposable and give an example of an indecomposable module that is not simple.

