## Questions for Assignment 3

MAST90017 Representation Theory Semester II 2015 Lecturer: Arun Ram to be turned in on 20 August 2015 before 5pm

- (1) (a) Let A be a finite dimensional  $\mathbb{C}$ -algebra. Show that every indecomposable A-module is simple if and only if there exist positive integers  $\ell$  and  $n_1, \ldots, n_\ell$  such that  $A \to M_{n_1}(\mathbb{C}) \oplus \cdots \oplus M_{n_\ell}(\mathbb{C})$ .
  - (b) Let A be a finite dimensional  $\mathbb{C}$ -algebra. Explain how to determine the indecomposable A-modules from the knowledge of the radical filtration of A.
- (2) (a) Let A be a finite dimensional  $\mathbb{C}$ -algebra. Show that every indecomposable Amodule is simple if and only if there exist positive integers  $\ell$  and  $n_1, \ldots, n_\ell$ such that  $A \to M_{n_1}(\mathbb{C}) \oplus \cdots \oplus M_{n_\ell}(\mathbb{C})$ .
  - (b) Let  $\mu_r$  be a cyclic group of order r and let  $G_{r,r,2}$  be the dihedral group of order 2r. For each of the groups  $G = \mu_r$  and  $G = G_{r,r,2}$  find positive integers  $\ell$  and  $n_1, \ldots, n_\ell$  and an explicit isomorphism  $\mathbb{C}G \to M_{n_1}(\mathbb{C}) \oplus \cdots \oplus M_{n_\ell}(\mathbb{C})$ .
- (3) (a) Let A be a finite dimensional  $\mathbb{C}$ -algebra. Show that every indecomposable Amodule is simple if and only if there exist positive integers  $\ell$  and  $n_1, \ldots, n_\ell$ such that  $A \to M_{n_1}(\mathbb{C}) \oplus \cdots \oplus M_{n_\ell}(\mathbb{C})$ .
  - (b) Let p be a prime and let  $G = G_p$  be the group of  $3 \times 3$  upper unitriangular matrices with entries in  $\mathbb{F}_p$ . For each of these groups find positive integers  $\ell$  and  $n_1, \ldots, n_\ell$  and an explicit isomorphism  $\mathbb{C}G \to M_{n_1}(\mathbb{C}) \oplus \cdots \oplus M_{n_\ell}(\mathbb{C})$ .
- (4) (a) Let A be a finite dimensional  $\mathbb{C}$ -algebra. Show that every indecomposable Amodule is simple if and only if there exist positive integers  $\ell$  and  $n_1, \ldots, n_\ell$ such that  $A \to M_{n_1}(\mathbb{C}) \oplus \cdots \oplus M_{n_\ell}(\mathbb{C})$ .
  - (b) Let  $S_n$  denote the symmetric group. For each of the groups  $G = S_2$ ,  $G = S_3$ and  $G = S_4$ , find positive integers  $\ell$  and  $n_1, \ldots, n_\ell$  and an explicit isomorphism  $\mathbb{C}G \to M_{n_1}(\mathbb{C}) \oplus \cdots \oplus M_{n_\ell}(\mathbb{C}).$

- (5) (a) Let A be a finite dimensional  $\mathbb{C}$ -algebra. Show that every indecomposable Amodule is simple if and only if there exist positive integers  $\ell$  and  $n_1, \ldots, n_\ell$ such that  $A \to M_{n_1}(\mathbb{C}) \oplus \cdots \oplus M_{n_\ell}(\mathbb{C})$ .
  - (b) Let  $A_n$  denote the alternating group. For each of the groups  $G = A_2$ ,  $G = A_3$ and  $G = A_4$ , find positive integers  $\ell$  and  $n_1, \ldots, n_\ell$  and an explicit isomorphism  $\mathbb{C}G \to M_{n_1}(\mathbb{C}) \oplus \cdots \oplus M_{n_\ell}(\mathbb{C}).$
- (6) (a) Let A be a finite dimensional  $\mathbb{C}$ -algebra. Show that every indecomposable Amodule is simple if and only if there exist positive integers  $\ell$  and  $n_1, \ldots, n_\ell$ such that  $A \to M_{n_1}(\mathbb{C}) \oplus \cdots \oplus M_{n_\ell}(\mathbb{C})$ .
  - (b) For each of the groups  $G = G_{r,1,2}$  with  $r \in \mathbb{Z}_{>0}$  find positive integers  $\ell$  and  $n_1, \ldots, n_\ell$  and an explicit isomorphism  $\mathbb{C}G \to M_{n_1}(\mathbb{C}) \oplus \cdots \oplus M_{n_\ell}(\mathbb{C})$ .
- (7) (a) Let A be a finite dimensional  $\mathbb{C}$ -algebra. Show that every indecomposable Amodule is simple if and only if there exist positive integers  $\ell$  and  $n_1, \ldots, n_\ell$ such that  $A \to M_{n_1}(\mathbb{C}) \oplus \cdots \oplus M_{n_\ell}(\mathbb{C})$ .
  - (b) For each of the groups  $G = PGL_2(\mathbb{F}_2)$ ,  $G = PGL(\mathbb{F}_3)$  and  $G = PGL(\mathbb{F}_4)$ find positive integers  $\ell$  and  $n_1, \ldots, n_\ell$  and an explicit isomorphism  $\mathbb{C}G \to M_{n_1}(\mathbb{C}) \oplus \cdots \oplus M_{n_\ell}(\mathbb{C})$ .
- (8) (a) Let A be a finite dimensional  $\mathbb{C}$ -algebra. Show that every indecomposable Amodule is simple if and only if there exist positive integers  $\ell$  and  $n_1, \ldots, n_\ell$ such that  $A \to M_{n_1}(\mathbb{C}) \oplus \cdots \oplus M_{n_\ell}(\mathbb{C})$ .
  - (b) Let G be the tetrahedral group. Find positive integers  $\ell$  and  $n_1, \ldots, n_\ell$  and an explicit isomorphism  $\mathbb{C}G \to M_{n_1}(\mathbb{C}) \oplus \cdots \oplus M_{n_\ell}(\mathbb{C})$ .
- (9) (a) Let A be a finite dimensional  $\mathbb{C}$ -algebra. Show that every indecomposable Amodule is simple if and only if there exist positive integers  $\ell$  and  $n_1, \ldots, n_\ell$ such that  $A \to M_{n_1}(\mathbb{C}) \oplus \cdots \oplus M_{n_\ell}(\mathbb{C})$ .
  - (b) Let G be the octahedral group. Find positive integers  $\ell$  and  $n_1, \ldots, n_\ell$  and an explicit isomorphism  $\mathbb{C}G \to M_{n_1}(\mathbb{C}) \oplus \cdots \oplus M_{n_\ell}(\mathbb{C})$ .
- (10) (a) Let A be a finite dimensional  $\mathbb{C}$ -algebra. Show that every indecomposable Amodule is simple if and only if there exist positive integers  $\ell$  and  $n_1, \ldots, n_\ell$ such that  $A \to M_{n_1}(\mathbb{C}) \oplus \cdots \oplus M_{n_\ell}(\mathbb{C})$ .
  - (b) Let G be the icosahedral group. Find positive integers  $\ell$  and  $n_1, \ldots, n_\ell$  and an explicit isomorphism  $\mathbb{C}G \to M_{n_1}(\mathbb{C}) \oplus \cdots \oplus M_{n_\ell}(\mathbb{C})$ .
- (11) (a) Let A be a finite dimensional  $\mathbb{C}$ -algebra. Show that every indecomposable Amodule is simple if and only if there exist positive integers  $\ell$  and  $n_1, \ldots, n_\ell$ such that  $A \to M_{n_1}(\mathbb{C}) \oplus \cdots \oplus M_{n_\ell}(\mathbb{C})$ .

- (b) For each of the finite subgroups G of the group  $SU_2(\mathbb{C})$  find positive integers  $\ell$  and  $n_1, \ldots, n_\ell$  and an explicit isomorphism  $\mathbb{C}G \to M_{n_1}(\mathbb{C}) \oplus \cdots \oplus M_{n_\ell}(\mathbb{C})$ .
- (12) (a) Let A be a finite dimensional  $\mathbb{C}$ -algebra. Show that every indecomposable Amodule is simple if and only if there exist positive integers  $\ell$  and  $n_1, \ldots, n_\ell$ such that  $A \to M_{n_1}(\mathbb{C}) \oplus \cdots \oplus M_{n_\ell}(\mathbb{C})$ .
  - (b)  $q \in \mathbb{C}^{\times}$ , not a root of unity. Let A be the C-algebra given by generators  $T_1, T_2$  with relations

$$T_i^2 = (q - q^{-1})T_i + 1,$$
 and  $T_1T_2T_1 = T_1T_2T_1.$ 

Find positive integers  $\ell$  and  $n_1, \ldots, n_\ell$  and an explicit isomorphism  $A \to M_{n_1}(\mathbb{C}) \oplus \cdots \oplus M_{n_\ell}(\mathbb{C})$ .

- (13) (a) Let A be a finite dimensional  $\mathbb{C}$ -algebra. Show that every indecomposable Amodule is simple if and only if there exist positive integers  $\ell$  and  $n_1, \ldots, n_\ell$ such that  $A \to M_{n_1}(\mathbb{C}) \oplus \cdots \oplus M_{n_\ell}(\mathbb{C})$ .
  - (b)  $q \in \mathbb{C}^{\times}$ , not a root of unity. Let A be the C-algebra given by generators  $X_1, T_1$  with relations

$$(X_1 - 365)(X_1 - \sqrt{751})(X_1 - 38)(X_1 - \pi) = 0, \qquad T_1^2 = (q - q^{-1})T_1 + 1,$$
  
and  $X_1T_1X_1T_1 = T_1X_1T_1X_1.$ 

Find positive integers  $\ell$  and  $n_1, \ldots, n_\ell$  and an explicit isomorphism  $A \to M_{n_1}(\mathbb{C}) \oplus \cdots \oplus M_{n_\ell}(\mathbb{C})$ .

- (14) (a) Let A be a finite dimensional  $\mathbb{C}$ -algebra. Show that every indecomposable Amodule is simple if and only if there exist positive integers  $\ell$  and  $n_1, \ldots, n_\ell$ such that  $A \to M_{n_1}(\mathbb{C}) \oplus \cdots \oplus M_{n_\ell}(\mathbb{C})$ .
  - (b) Let n = 3642 and let  $TL_k(n)$  denote the Temperley-Lieb algebra spanned by diagrams on k dots without crossings. For  $A = TL_2(n)$ ,  $A = TL_3(n)$  and  $A = TL_4(n)$ , find positive integers  $\ell$  and  $n_1, \ldots, n_\ell$  and an explicit isomorphism  $A \to M_{n_1}(\mathbb{C}) \oplus \cdots \oplus M_{n_\ell}(\mathbb{C})$ .
- (15) (a) Let A be a finite dimensional  $\mathbb{C}$ -algebra. Show that every indecomposable Amodule is simple if and only if there exist positive integers  $\ell$  and  $n_1, \ldots, n_\ell$ such that  $A \to M_{n_1}(\mathbb{C}) \oplus \cdots \oplus M_{n_\ell}(\mathbb{C})$ .
  - (b) Let n = 3642 and let  $B_k(n)$  denote the Brauer algebra spanned by diagrams on k dots (with a product as in the Temperley-Lieb algebra except that crossings of edges are now allowed). For  $A = B_2(n)$  and  $A = B_3(n)$ , find positive integers  $\ell$  and  $n_1, \ldots, n_\ell$  and an explicit isomorphism  $A \to M_{n_1}(\mathbb{C}) \oplus \cdots \oplus M_{n_\ell}(\mathbb{C})$ .