Questions for Assignment 4

MAST90017 Representation Theory Semester II 2015 Lecturer: Arun Ram to be turned in on 27 August 2015 before 5pm

(1) (The GL_n -crystal $B^{\otimes k}$) Let p_i be the straight line path to ε_i and let $B = \{p_1, \ldots, p_n\}$ be the GL_n -crystal generated by p_1 . Show that the crystal action on the tensor product $B^{\otimes k}$ is given by the following:

For $i \in \{1, \ldots, n-1\}$ define

$$\tilde{f}_i \colon B(p_1)^{\otimes k} \longrightarrow B(p_1)^{\otimes k} \cup \{0\} \text{ and } \tilde{e}_i \colon B(p_1)^{\otimes k} \longrightarrow B(p_1)^{\otimes k} \cup \{0\}$$

as follows. For $b \in B(p_1)^{\otimes k}$,

place +1 under each p_i in b, place -1 under each p_{i+1} in b, and place 0 under each p_j , $j \neq i, i+1$.

Ignoring 0s, successively pair adjacent (+1, -1) pairs to obtain a sequence of unpaired -1s and +1s

-1 -1 -1 -1 -1 -1 -1 +1 +1 +1 +1

(after pairing and ignoring 0s). Then

 $\tilde{f}_i b$ = same as b except the letter corresponding to the leftmost unpaired +1 is changed to p_{i+1} , $\tilde{e}_i b$ = same as b except the letter corresponding to the rightmost unpaired -1 is changed to p_i .

If there is no unpaired +1 after pairing then $\tilde{f}_i b = 0$. If there is no unpaired -1 after pairing then $\tilde{e}_i b = 0$.

Before launching the general proof do some illustrative small and smallish examples.

(2) (The GL_n -crystal $B(\lambda)$) Let λ be a partition with k boxes and let

 $B(\lambda) = \{ \text{column strict tableaux of shape } \lambda \}.$

The set $B(\lambda)$ is a subset of $B(\varepsilon_1)^{\otimes k}$ via the injection

where the arabic reading of p is $\varepsilon_{i_1} \otimes \varepsilon_{i_2} \otimes \cdots \otimes \varepsilon_{i_k}$ if the entries of p are i_1, i_2, \ldots, i_k read right to left by rows with the rows read in sequence beginning with the first row. Show that this embedding determines a GL_n -crystal structure on $B(\lambda)$, in particular that $B(\lambda)$ is closed under the action of $\tilde{e}_1, \ldots, \tilde{e}_{n-1}, \tilde{f}_1, \ldots, \tilde{f}_{n-1}$. Before launching the general proof do some illustrative small and smallish examples.

(3) (RSK insertion) Let λ be a partition with k boxes and let

 $B(\lambda) = \{ \text{column strict tableaux of shape } \lambda \}.$

Give (with proof) a crystal isomorphism

$$B(\lambda) \otimes B \cong \bigoplus_{\mu/\lambda = \Box} B(\mu)$$

where the sum is over partitions μ obtained from λ by adding a box. Before launching the general proof do some illustrative small and smallish examples.

(4) (RSK insertion) Let λ be a partition with k boxes and let

 $B(\lambda) = \{ \text{column strict tableaux of shape } \lambda \}.$

Give (with proof) a crystal isomorphism

$$B \otimes B(\lambda) \cong \bigoplus_{\mu/\lambda = \Box} B(\mu),$$

where the sum is over partitions μ obtained from λ by adding a box. Before launching the general proof do some illustrative small and smallish examples.

(5) (Knuth transformations) Define S_k -crystal operators on $B^{\otimes k}$ so that the RSK bijection

$$B^{\otimes k} \cong \bigoplus_{\lambda \vdash k} B(\lambda) \otimes S(\lambda).$$

is a $(GL_n \times S_k)$ -crystal isomorphism. Before launching the general proof do some illustrative small and smallish examples.

(6) (The dimension of $\mathbb{C}S_k$) Let f^{λ} be the number of standard tableaux of shape λ . Prove that

$$k! = \sum_{\lambda \vdash k} (f^{\lambda})^2.$$

Before launching the general proof do some illustrative small and smallish examples.

(7) (The character of $B^{\otimes k}$) Let f^{λ} be the number of standard tableaux of shape λ . Prove that, as elements of $\mathbb{C}[x_1^{\pm 1}, \ldots, x_n^{\pm 1}]$,

$$(x_1 + x_2 + \dots + x_n)^k = \sum_{\lambda \vdash k} f^\lambda s_\lambda.$$

Before launching the general proof do some illustrative small and smallish examples.

(8) (The dimension of $B^{\otimes k}$) Let f^{λ} be the number of standard tableaux of shape λ . Let d_{λ} be the number of column strict tableaux of shape λ filled from $\{1, \ldots, n\}$. Prove that

$$n^k = \sum_{\lambda \vdash k} f^\lambda d_\lambda$$

Before launching the general proof do some illustrative small and smallish examples.

(9) (The Weyl denominator) Let

$$\mathbb{C}[x_1^{\pm 1}, \dots, x_n^{\pm 1}]^{\det} = \{ f \in \mathbb{C}[x_1^{\pm 1}, \dots, x_n^{\pm 1}] \mid \text{if } w \in S_n \text{ then } wf = \det(w)f \}, \text{ and} \\ \mathbb{C}[x_1^{\pm 1}, \dots, x_n^{\pm 1}]^{S_n} = \{ f \in \mathbb{C}[x_1^{\pm 1}, \dots, x_n^{\pm 1}] \mid \text{if } w \in S_n \text{ then } wf = f \},$$

and let

$$a_{\rho} = \prod_{1 \leqslant i < j \leqslant n} (x_i - x_j)$$

Show that the map

$$\begin{array}{cccc} \mathbb{C}[x_1^{\pm 1}, \dots, x_n^{\pm 1}]^W & \longrightarrow & \mathbb{C}[x_1^{\pm 1}, \dots, x_n^{\pm 1}]^{\det} \\ f & \longmapsto & a_{\rho}f \end{array}$$

is an isomorphism of $\mathbb{C}[x_1^{\pm 1}, \ldots, x_n^{\pm 1}]^W$ modules $(\mathbb{C}[x_1^{\pm 1}, \ldots, x_n^{\pm 1}]^W$ acts by left multiplication). Before launching the general proof do some illustrative small and smallish examples.

(10) (The Vandermonde determinant) Show that, as elements of $\mathbb{C}[x_1, \ldots, x_n]$,

$$\det(x_i^{n-j}) = \prod_{1 \le i < j \le n} (x_i - x_j).$$

Before launching the general proof do some illustrative small and smallish examples.

(11) (The Weyl character formula) Prove that, as elements of $\mathbb{C}[x_1, \ldots, x_n]$,

$$s_{\lambda} = \frac{\det(x_i^{\lambda_j + n - j})}{\det(x_i^{n - j})},$$

where, as defined in class s_{λ} is the character of the GL_n -crystal $B(\lambda)$. Before launching the general proof do some illustrative small and smallish examples.

(12) (The Cauchy identity) Show that, as elements of $\mathbb{C}[[x_1, \ldots, x_m, y_1, \ldots, y_m]]$,

$$\prod_{i=1}^{m} \prod_{j=1}^{n} \frac{1}{1 - x_i y_j} = \sum_{\lambda} s_{\lambda}(x) s_{\lambda}(y),$$

where $s_{\lambda}(x) \in \mathbb{C}[x_1, \ldots, x_m]$ is the Schur function labeled by λ in x_1, \ldots, x_m and $s_{\lambda}(y)$ is the Schur function labeled by λ in y_1, \ldots, y_n and the sum is over partitions λ with at most $\min(m, n)$ rows.

(13) (The dual Cauchy identity) For a partition λ , let λ' be the *conjugate*, or *transpose*, partition, obtained by flipping λ about the main diagonal. Show that, as elements of $\mathbb{C}[[x_1, \ldots, x_m, y_1, \ldots, y_m]]$,

$$\prod_{i=1}^{m} \prod_{j=1}^{n} (1 + x_i y_j) = \sum_{\lambda} s_{\lambda}(x) s_{\lambda'}(y),$$

where $s_{\lambda}(x) \in \mathbb{C}[x_1, \ldots, x_m]$ is the Schur function labeled by λ in x_1, \ldots, x_m and $s_{\lambda'}(y)$ is the Schur function labeled by λ' in y_1, \ldots, y_n and the sum is over partitions λ such that λ has at most m rows and λ' has at most n rows. Before launching the general proof do some illustrative small and smallish examples.

(14) (The $\widehat{\mathfrak{sl}}_2$ -crystal $B(\Lambda_0)$) A partition $\mu = (\mu_1, \mu_2, \ldots)$ is *p*-regular if μ satisfies:

if
$$k \in \mathbb{Z}_{>0}$$
 then $\operatorname{Card}\{j \mid \mu_j = k\} < p$.

Let

$$\mathfrak{h}_{\mathbb{Z}}^* = \mathbb{Z}\operatorname{-span}\{\varepsilon_1, \varepsilon_2\} \cong \mathbb{Z}^2 \quad \text{and} \quad \mathfrak{h}_{\mathbb{R}}^* = \mathbb{R}\operatorname{-span}\{\varepsilon_1, \varepsilon_2\} \cong \mathbb{R}^2$$

and let $\omega_1 = \varepsilon_1$, $\Lambda_0 = \varepsilon_2$ and

$$\alpha_1 = 2\omega_1$$
 and $\alpha_0 = -\alpha_1$.

For $\lambda = \lambda_1 \varepsilon_1 + \lambda_2 \varepsilon_2$ let

$$\langle \lambda, \alpha_1^{\vee} \rangle = \lambda_1, \quad \text{and} \quad \langle \lambda, \alpha_0^{\vee} \rangle = \lambda_1 - \lambda_2.$$

Let p^+ be the straight line path to Λ_0 and let

 $B(\Lambda_0)$ be the crystal generated by the action of \tilde{f}_0 and \tilde{f}_1 on p^+ ,

where \tilde{f}_0 , \tilde{f}_1 (and \tilde{e}_0 and \tilde{e}_1) are the root operators on paths corresponding to α_0 and α_1 . In other words,

$$B(\Lambda_0) = \{ \tilde{f}_{i_1} \cdots \tilde{f}_{i_k} \mid k \in \mathbb{Z}_{\geq 0}, \ i_1, \dots, i_k \in \{0, 1\} \}.$$

Find a bijection between

 $B(\lambda_0) \longleftrightarrow \{2\text{-regular partitions}\}$

(If the action of \tilde{f}_0 and \tilde{f}_1 is not clear enough to get going drawing some pictures of these paths then come ask me.) Before launching the general proof do some illustrative small and smallish examples.