
Lecture 37: Orthogonality and linear independence

Definition (Orthogonal and orthonormal sequences.)

Let V be an F-vector space with an inner product →, 〉 : V × V → F.

Let u, v ∈ V . The vectors u and v are

orthogonal if →u, v〉 = 0.

An orthogonal sequence is a sequence (b1, . . . , bk) of vectors in V such
that

if i , j ∈ {1, . . . , k} and i &= j then →bi , bj 〉 = 0.

An orthonormal sequence is an orthogonal sequence (b1, . . . , bk) such
that

if i ∈ {1, . . . , k} then →bi , bi 〉 = 1.

An ordered orthonormal basis of V is an orthonormal sequence
(b1, . . . , bk) in V such that B is a basis of V .
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Theorem (Pythagorean Theorem)

Let V be a C-vector space with an inner product →, 〉 : V × V → C. Let
u, v ∈ V . If →u, v〉 = 0 then

‖u + v‖2 = ‖u‖2 + ‖v‖2.

Proof. Assume →u, v〉 = 0.
To show ‖u + v‖2 = ‖u‖2 + ‖v‖2.

‖u + v‖2 = →u + v , u + v〉
= →u, u〉+ →u, v〉+ →v , u〉+ →v , v〉
= →u, u〉+ →u, v〉+ →u, v〉+ →v , v〉
= ‖u‖2 + 0 + 0 + ‖v‖2

= ‖u‖2 + ‖v‖2.

311



Proposition (Orthogonal sets are linearly independent)

Let V be a vector space with inner product →, 〉 : V × V → C.
Let B = {b1, . . . , bk} be an orthogonal set in V .
Then B is linearly independent.

Proof. Assume B is an orthogonal set in V .
To show: B is linearly independent.
To show: If c1, . . . , ck ∈ C and c1b1 + · · · + ckbk = 0

then c1 = 0, c2 = 0, . . . , ck = 0.

Assume c1, . . . , ck ∈ C and c1b1 + · · ·+ ckbk = 0.

To show: c1 = 0, c2 = 0, . . . , ck = 0.

To show: If i ∈ {1, . . . , k} then ci = 0.
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Assume i ∈ {1, . . . , k}. To show: ci = 0.

0 = →c1b1 + · · ·+ ckbk , bi 〉
= c1→b1, bi 〉+ · · ·+ ci→1→bi→1, bi〉+ ci →bi , bi 〉

+ ci+1→bi+1, bi 〉+ · · ·+ ck→bk , bi 〉
= c1 · 0 + · · · + ci→1 · 0 + ci →bi , bi 〉

+ ci+1 · 0 + · · · + ck · 0
= ci →bi , bi 〉.

Since →, 〉 is an inner product and bi &= 0 then →bi , bi 〉 &= 0. So

ci =
1

→bi , bi 〉
· 0 = 0.

So B is linearly independent.
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Lecture 38: Linear transformations

Linear transformations are for comparing vector spaces.

Definition (Linear transformation)

Let F be a field and let V and W be F-vector spaces. An F-linear
transformation from V to W is a function f : V → W such that

(a) If v1, v2 ∈ V then f (v1 + v2) = f (v1) + f (v2),

(b) If c ∈ F and v ∈ V then f (cv) = cf (v).

V

f
v f (v) W
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Example A2. Let t, s ∈ Z>0 and A ∈ Mt×s(R). Let TA : Rs → Rt be
the function given by

TA(x) = Ax .
TA

x Ax

Show that TA is a linear transformation.
Let u, v ∈ Rs . Then, by the distributive property of matrix
multiplication for matrices,

TA(u + v) = A(u + v) = Au + Av = TA(u) + TA(v).

Let u ∈ Rs and c ∈ R. Then, by the associative property of scalar
multiplication for matrices,

TA(cu) = Acu = cAu = cTA(u).

So TA is a linear transformation.
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Let T : V → W be a linear transformation. Assume that T has an
inverse function T→1 : W → V . Show that T→1 is a linear
transformation.
Assume w1,w2 ∈ W . Then

T→1(w1 + w2) = T→1(T (T→1(w1)) + T (T→1(w2)))

= T→1(T (T→1(w1) + T→1(w2))

= T→1(w1) + T→1(w2),

where the first equality is because T ⇐ T→1 = Id), the second equality is
because T is a linear transformation) and the third equality is because
T→1 ⇐ T = Id. Assume w ∈ W and c ∈ R. Then

T→1(cw) = T→1(c · T (T→1(w))) = T→1T (c · T→1(w)) = c · T→1(w).

So T→1 is a linear transformation.
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