
Lecture 39: Subspaces

Definition (Kernel and image of a linear transformation)

The kernel of an F-linear transformation f : V → W is the set

ker(f ) = {v ∈ V | f (v) = 0}.

The image of an F-linear transformation f : V → W is the set

im(f ) = {f (v) | v ∈ V }.

Definition (Kernel and image of a matrix)

Let A ∈ Mt→s(Q). The kernel of A is

ker(A) = {x ∈ Qs | Ax = 0}

and the image of A is

im(A) = {Ax | s ∈ Qs}.
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A subspace of Qs is a subset W ⊆ Qs such that

(a) 0 ∈ W ,

(b) If w1,w2 ∈ W then w1 + w2 ∈ W ,

(c) If w ∈ W and c ∈ Q then cw ∈ W .

Proposition

Let A ∈ Mt→s(Q). Then ker(A) is a subspace of Qs .

Proof. (a) Since A0 = 0 then 0 ∈ ker(A).

(b) Assume w1,w2 ∈ ker(A). Then Aw1 = 0 and Aw2 = 0. So

A(w1 + w2) = Aw1 + Aw2 = 0 + 0 = 0. So w1 + w2 ∈ ker(A).

(c) Assume w ∈ ker(A) and c ∈ Q. Then Aw = 0 and

A(cw) = cAw = c0 = 0. So cw ∈ ker(A).

So ker(A) is a subspace of Qs .
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A subspace of Qt is a subset Y ⊆ Qt such that

(a) 0 ∈ Y ,

(b) If y1, y2 ∈ Y then y1 + y2 ∈ Y ,

(c) If y ∈ Y and c ∈ Q then cy ∈ Y .

Proposition

Let A ∈ Mt→s(Q). Then im(A) is a subspace of Qt .

Proof. (a) Since 0 = A0 then 0 ∈ im(A).

(b)Assume y1, y2 ∈ im(A). Then there exist x1, x2 ∈ Qs such that
y1 = Ax1 and y2 = Ax2. Then

y1 + y2 = Ax1 + Ax2 = A(x1 + x2). So y1 + y2 ∈ im(A).

(c) Assume y ∈ im(A) and c ∈ Q. Then there exists x ∈ Qs such that
y = Ax . Then

cy = cAx = A(cx). So cy ∈ im(A).

So im(A) is a subspace of Qt .
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Example A5. Let T : V → W be an R-linear transformation.
Show that ker(T ) = {v ∈ V | T (v) = 0} is a subspace of V .

Let v1, v2 ∈ ker(T ). Then

T (v1 + v2) = T (v1) + T (v2) = 0 + 0 = 0. So v1 + v2 ∈ ker(T ).

Subtracting T (0) from each side of the equation
T (0) = T (0 + 0) = T (0) + T (0) gives

0 = T (0), and so 0 ∈ ker(T ).

Let v ∈ ker(T ) and let c ∈ R. Then

T (cv) = cT (v) = c · 0 = 0 and so cv ∈ ker(T ).

So ker(T ) is a subspace of V .
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Example A6. Let T : V → W be an R-linear transformation.
Show that im(T ) = {T (v) | v ∈ V } is a subspace of W .
Subtracting T (0) from each side of the equation
T (0) = T (0 + 0) = T (0) + T (0) gives

0 = T (0), and so 0 ∈ im(T ).

Let w1,w2 ∈ W . Then there exist v1, v2 ∈ V such that

T (v1) = w1 and T (v2) = w2.

Then w1 + w2 = T (v1) + T (v2) = T (v1 + v2),

and so w1 + w2 ∈ im(T ).

Let w ∈ W and let c ∈ R. Then there exists v ∈ V such that

T (v) = w .

Then cw = cT (v) = T (cv)

and so cw ∈ im(T ).

So im(T ) is a subspace of W .
321



Example V27&28. Let

S = {|1, 3,−1, 1〉, |2, 6, 0, 4〉, |3, 9,−2, 4〉 }.

Then
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R-span(S) = im(A), where A =
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Lecture 40: The minimax basis theorem

Definition (Spanning set, linearly independent set, basis)

Let V be an F-vector space and let B = {v1, . . . , vk} be a subset of V .
The subset B is a spanning set of V if B satisfies

{c1v1 + · · ·+ ckvk | c1, . . . , ck ∈ F} = V .

The subset B is a linearly independent set in V if B satisfies

if c1, . . . , ck ∈ F and c1v1 + · · · + ckvk = 0

then c1 = 0, . . . , ck = 0.

The subset B is a basis of V if B satisfies:

B is a spanning set of V and B is a linearly independent set in V .
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Theorem (Basis Minimax Theorem)

Let V be an F-vector space and let B be a subset of V . The following
are equivalent:

(a) B is a basis of V .

(b) B is a minimal spanning set of V .

(c) B is a maximal linearly independent set of V .

Theorem (Exchange Theorem)

Let V be an F-vector space. Let B = {v1, . . . , vk} be a basis of V and
let D = {d1, . . . , d!} be another basis of V . Then there exists di1 ∈ D
such that

{di1 , b2, b3, . . . , bk} is a basis of V .

Theorem (Dimension Theorem)

Let V be an F-vector space. Any two bases of V have the same
number of elements.
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The Dimension Theorem is the reason that

dim(V ) makes sense to consider.

Definition (Dimension)

Let V be a vector space. The dimension of V is

dim(V ) = (number of elements in a basis B of V ).
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The following provides an example of a spanning set that is not minimal,
and another spanning set for the same subspace that is minimal.

Example V14. Let S be the subset of R3 given by

S = {(1, 1, 1), (2, 2, 2), (3, 3, 3)}. Determine R-span(S).

In this case

R-span(S) = {c1 |1, 1, 1〉 + c2 |2, 2, 2〉 + c3 |3, 3, 3〉 | c1, c2, c3 ∈ R}
= {c1 |1, 1, 1〉 + 2c2 |1, 1, 1〉 + 3c3 |1, 1, 1〉 | c1, c2, c3 ∈ R}
= {(c1 + 2c2 + 3c3) |1, 1, 1〉 | c1, c2, c3 ∈ R}
= {t |1, 1, 1〉 | t ∈ R} = R-span{|1, 1, 1〉}
= {|t, t, t〉 | t ∈ R}.

Here { |1, 1, 1〉 } is a basis of R-span(S) and

dim(R-span(S)) = 1 (even though S has 3 elements).
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Proposition (Span is a subspace)

Let V be a vector space. Let B = {b1, . . . , bk} be a subset of V . Then
span(B) is a subspace of V .

Proof.
To show: (1) 0 ∈ span(B).

(2) If v1, v2 ∈ span(B) then v1 + v2 ∈ span(B).
(3) If v ∈ span(B) and c ∈ R then cv ∈ span(B).

(1) Since 0 = 0b1 + · · · 0bk then 0 ∈ span{b1, . . . , bk} = span(B).

(2) Assume v1, v2 ∈ span(B). To show v1 + v2 ∈ span(B).
Since v1, v2 ∈ span(B)
then there exist a1, . . . , ak , c1, . . . , ck ∈ R such that

v1 = a1b1 + · · ·+ akbk and v2 = c1b1 + · · ·+ ckbk .
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Then

v1 + v2 = (a1b1 + · · ·+ akbk) + (c1b1 + · · ·+ ckbk)

= (a1 + c1)b1 + · · ·+ (ak + ck)bk .

So v1 + v2 ∈ span{b1, . . . , bk} = span(B).

(3) Assume v ∈ span(B) and c ∈ R.
To show cv ∈ span(B).
Since v ∈ span(B) then there exist a1, . . . , ak ∈ R such that

v = a1b1 + · · ·+ akbk .

Then

cv = c(a1b1 + · · ·+ akbk) = (ca1)b1 + · · · + (cak)bk .

So cv ∈ span{b1, . . . , bk}. So cv ∈ span(B).
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Proof of the Dimension Theorem
Assume

B = {b1, . . . , bk} is a basis of V and

D = {d1, . . . , d!} is another basis of V .

Using the Exchange theorem, there exists di1 ∈ D such that
di1 &∈ span(B − b1). Then

B1 = {di1 , b2, b3, b4, . . . bk} is a basis of V .

Using the Exchange theorem, there exists di2 ∈ D such that
di2 &∈ span(B1 − b2). Then

B2 = {di1 , di2 , b3, b4, . . . bk} is a basis of V .

Continue this replacement process to obtain

B ′ = {di1 , . . . , dik} ⊆ D, such that B ′ is a basis of V .

By the Minimax Theorem D is a minimal spanning set.
So B ′ = D and k = !.

329



Proof of the Exchange Theorem
Assume

B = {b1, . . . , bk} is a basis of V and

D = {d1, . . . , d!} is another basis of V .

If d1, . . . , d! ∈ span(B − {b1}) then

V = span(d1, . . . , d!) ⊆ span(B − {b1}) ⊆ V

giving V = span(B − {b1}).
But since B is a minimal spanning set then V &= span(B − {b1}) and so

there exists di1 ∈ D such that di1 &∈ span(B − {b1}).

di1 = c1b1 + c2b2 + · · ·+ ckbk , with c1 &= 0.

To show: B1 = {di1 , b2, . . . , bk} is a basis of V .
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To show: (1) span{di1 , b2, . . . , bk} = V .
(2) {di1 , b2, . . . , bk} is linearly independent.

(1) Since
b1 = c−1

1 (−di1 + c2b2 + · · ·+ ckvk)

then b1, b2, . . . , bk ∈ span{di1 , b2, . . . , bk}. So
V = span{b1, . . . , bk} ⊆ span{di1 , b2, . . . , bk} ⊆ V . So

V = span(di1 , b2, . . . , bk}.

(2) If a1di1 + a2b2 + · · ·+ akbk = 0 then

a1(c1b1 + c2b2 + · · · + ckbk) + a2b2 + · · · + akbk = 0.

Since B is linearly independent then a1c1 = 0.
Since c1 &= 0 then a1 = 0 and a2b2 + · · ·+ akbk = 0.
Since B is linearly independent then a2 = 0, . . . , ak = 0.
So {di1 , b2, . . . , bk} is linearly independent.
So {di1 , b2, . . . , bk} is a basis of V .
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Proof of the Minimax Basis Theorem
(a) ⇒ (b): Assume B = {b1, . . . , bk} is a basis of B .
To show: B is a minimal spanning set of V .
To show: (1) B Is a spanning set.

(2) If i ∈ {1, . . . , k} then B − {bi} is not a spanning set.

(1) Since B is a basis then B is a spanning set.

(2) To show: If i ∈ {1, . . . , k} and B − {bi} is a spanning set then B is
not a basis.
Assume i ∈ {1, . . . , k} and B − {bi} is a spanning set.
Then there exist c1, . . . , ci−1, ci+1, . . . , ck ∈ R such that

bi = c1b1 + · · ·+ ci−1bi−1 + ci+1bi+1 + · · ·+ ckbk .

Then

0 = c1b1 + · · · + ci−1bi−1 − bi + ci+1bi+1 + · · ·+ ckbk .

So {b1, . . . , bk} is not linearly independent.
So B is not a basis.

So if i ∈ {1, . . . , k} then B − {bi} is not a spanning set.
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(b) ⇒ (c): Assume B is a minimal spanning set.
To show: B is a maximal linearly independent set in V .
To show: (1) B is a linearly independent set in V .

(2) If v ∈ V then B ⇐ {v} is not linearly independent.

(1) To show: If B is a spanning set and B is not linearly independent
then B is not a minimal spanning set.
Assume B is a spanning set and B is not linearly independent.
Then there exist c1, . . . , ck ∈ R and i ∈ {1, . . . , k} such that

c1b1 + · · ·+ ckbk = 0 and ci &= 0.

Then bi = −c−1
i (c1b1 + · · ·+ ci−1bi−1 + ci+1bi+1 + · · ·+ ckbk).

So span(B − {bi}) ⇒ span(b1, . . . , bk) = V .
So span(B − {bi}) = V and B is not a minimal spanning set of B .
So if B is a minimal spanning set then B is linearly independent.

(2) To show: If v ∈ V then B ⇐ {v} is not linearly independent.
Assume v ∈ V . To show: B ⇐ {v} is not linearly independent.
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Since span(B) = V then there exist c1, . . . , ck ∈ R such that

v = c1b1 + · · · ckbk .

So 0 = c1b1 + · · ·+ ckbk − v .
So B ⇐ {v} = {b1, . . . , bk , v} is not linearly independent.

(c) ⇒ (a): Assume B is a maximal linearly independent set.
To show: B is a basis.
To show: span(B) = V .
Assume v ∈ V . To show v ∈ span(B).
Since B is a maximal linearly independent set then B ⇐ {v} is not
linearly independent.
So there exist c1, . . . , ck , ck+1 ∈ R and i ∈ {1, . . . , k + 1} such that

c1b1 + · · · + ckbk + ck+1v = 0 and ci &= 0.

The case ck+1 = 0 cannot occur since B is linearly independent.
So ck+1 &= 0 and v = −c−1

k+1(c1b1 + · · · ckbk).
So v ∈ span{b1, . . . , bk} = span(B).
So V = span(B). So B is a basis of V .
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