
Lecture 29: Review – Subspace examples

Example V6. Is W = {|x , y , z→ ∈ R3 | x + y + z = 0} a R-subspace of
R3?

A R-subspace of R3 is a subset W ⊆ R3 such that

(a) If w1,w2 ∈ W then w1 + w2 ∈ W ,

(b) 0 ∈ W ,

(c) If w ∈ W then −w ∈ W ,

(d) If w ∈ W and c ∈ R then cw ∈ W .

Proof.

(a) Assume w1 = |a, b, c→ ∈ W and w2 = |x , y , z→ ∈ W .

Then a + b + c = 0 and x + y + z = 0.

Then w1 + w2 = |a + x , b + y , c + z→ and
(a+ x)+ (b+ y)+ (c + z) = (a+ b+ c)+ (x + y + z) = 0+0 = 0.

So w1 + w2 ∈ W .
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(b) 0 = |0, 0, 0→ satisfies 0 + 0 + 0 = 0. So 0 ∈ W .

(c) Assume w = |x , y , z→ ∈ W .

Then x + y + z = 0.

Then −w = |− x ,−y ,−z→ and
(−x) + (−y) + (−z) = −(x + y + z) = −0 = 0.

So −w ∈ W .

(d) Assume w = |x , y , z→ ∈ W and c ∈ R.

Then x + y + z = 0.

Then cw = |cx , cy , cz→ and
cx + cy + cz = c(x + y + z) = c · 0 = 0.

So cw ∈ W .

So W is a subspace of R3.
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Example V7. Is the line L = {|x , y→ ∈ R2 | y = 2x + 1} a subspace of
R2?

A subspace of R2 is a subset L ⊆ R2 such that

(a) If w1,w2 ∈ L then w1 + w2 ∈ L,

(b) 0 ∈ L,

(c) If w ∈ L then −w ∈ L,

(d) If w ∈ L and c ∈ R then cw ∈ L.

Since 0 = |0, 0→ and 0 %= 2 · 0 + 1 then 0 %∈ L.
So L is not a subspace of R2.
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Example V8. Is W = {a1x + a2x2 | a1, a2 ∈ R} a subspace of R[x ]!2?

A subspace of R[x ]!2 is a subset W ⊆ R[x ]!2 such that

(a) If w1,w2 ∈ W then w1 + w2 ∈ W ,

(b) 0 ∈ W ,

(c) If w ∈ W then −w ∈ W ,

(d) If w ∈ W and c ∈ R then cw ∈ W .

Proof.

(a) Assume w1 = a1x + a2x2 ∈ W and w2 = b1x + b2x2 ∈ W .

Then a1, a2 ∈ R and b1, b2 ∈ R.

Then
w1 + w2 = a1x + a2x2 + b1x + b2x2 = (a1 + a1)x + (b1 + b2)x2

and a1 + b1 ∈ R and a2 + b2 ∈ R.

So w1 + w2 ∈ W .

(b) 0 = 0x + 0x2 satisfies 0 ∈ R and 0 ∈ R. So 0 ∈ W .
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(c) Assume w = a1x + a2x2 ∈ W .

Then a1, a2 ∈ R.

Then −w = −(a1x + a2x2) = −a1x + (−a2)x2 and −a1 ∈ R and
−a2 ∈ R.

So −w ∈ W .

(d) Assume w = a1x + a2x2 ∈ W and c ∈ R.

Then a1, a2 ∈ R.

Then cw = c(a1x + a2x2) = (ca1)x + (ca2)x2 and ca1 ∈ R and
ca2 ∈ R.

So cw ∈ W .

So W is a subspace of R[x ]!2.
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Example V9. Is the set of real 2× 2 matrices whose trace is equal to 0
a subspace of M2→2(R)?

A subspace of M2→2(R) is a subset W ⊆ M2→2(R) such that
(a) If w1,w2 ∈ W then w1 + w2 ∈ W ,
(b) 0 ∈ W ,
(c) If w ∈ W then −w ∈ W ,
(d) If w ∈ W and c ∈ R then cw ∈ W .
Proof. The set of real 2× 2 matrices whose trace is equal to 0 is

W =

{(

a11 a12
a21 a22

)

∣

∣

∣
a11 + a22 = 0

}

.

(a) Assume w1 =

(

a11 a12
a21 a22

)

∈ W and w2 =

(

b11 b12
b21 b22

)

∈ W .

Then a11 + a22 = 0 and b11 + b22 = 0.

Then w1 + w2 =

(

a11 + b11 a12 + b12
a21 + b21 a22 + b22

)

and

(a11 + b11) + (a22 + b22) = (a11 + a22) + (b11 + b22) = 0 + 0 = 0.

So w1 + w2 ∈ W .
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(b) 0 =

(

0 0
0 0

)

(0, 0, 0) satisfies 0 + 0 = 0. So 0 ∈ W .

(c) Assume w =

(

a11 a12
a21 a22

)

∈ W .

Then a11 + a22 = 0.

Then −w = −
(

a11 a12
a21 a22

)

=

(

−a11 −a12
−a21 −a22

)

and

(−a11) + (−a22) = −(a11 + a22) = −0 = 0.

So −w ∈ W .

(d) Assume w =

(

a11 a12
a21 a22

)

∈ W and c ∈ R.

Then a11 + a22 = 0.

Then cw = c

(

a11 a12
a21 a22

)

=

(

ca11 ca12
ca21 ca22

)

and

ca11 + ca22 = c(a11 + a22) = c · 0 = 0.

So cw ∈ W .

So W is a subspace of M2→2(R).
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Example V10. Is

S =

{(

a b
c d

)

∈ M2(R)
∣

∣ ad − bc = 0

}

a subspace of M2(R)?.

A subspace of M2→2(R) is a subset S ⊆ M2→2(R) such that

(a) If w1,w2 ∈ S then w1 + w2 ∈ S ,
(b) 0 ∈ S ,
(c) If w ∈ S then −w ∈ S ,
(d) If w ∈ S and c ∈ R then cw ∈ S .

Let w1 =

(

1 0
0 0

)

. Since 1 · 0− 0 · 0 = 0− 0 = 0 then w1 ∈ S .

Let w2 =

(

0 0
0 1

)

. Since 0 · 1− 0 · 0 = 0− 0 = 0 then w2 ∈ S .

Then

w1 + w2 =

(

1 0
0 0

)

+

(

0 0
0 1

)

=

(

1 0
0 1

)

and 1 · 1− 0 · 0 = 1.

So w1 + w2 %∈ S .

So S is not a subspace of M2→2(R).
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Lecture 30: Review – Linear transformation examples

Example LT3. Is the functionT : M2(R) → R given by

T

(

a b
c d

)

= det

(

a b
c d

)

= ad − bc a linear transformation?

A linear transformation from M2(R) to R is a function f : M2(R) → R

such that

(a) If v1, v2 ∈ M2(R) then f (v1 + v2) = f (v1) + f (v2),

(b) If c ∈ R and v ∈ M2(R) then f (cv) = cf (v).

Since

1 = T

(

1 0
0 1

)

= T

((

1 0
0 0

)

+

(

0 0
0 1

))

is not equal to

0 = 0 + 0 = T

(

1 0
0 0

)

+ T

(

0 0
0 1

)

then condition (a) does not hold and T is not a linear transformation.
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Example LT4. Is the function T : R3 → R2 given by

T (x1, x2, x3) = (x2 − 2x3, 3x1 + x3) a linear transformation?

A linear transformation from R3 to R2 is a function f : R3 → R2 such
that
(a) If u, v ∈ R3 then f (u + v) = f (u) + f (v),
(b) If c ∈ R and v ∈ R3 then f (cv) = cf (v).
(a) Assume u, v ∈ R3 with u = |u1, u2, u3→ and v = |v1, v2, v3→. Then

T (|u1, u2, u3→+ |v1, v2, v3→ = T (|u1 + v1, u2 + v2, u3 + v3→)
= |(u2 + v2 − 2(u3 + v3), 3(u1 + v1) + (u3 + v3)→
= |u2 − 2u3 + v2 − 2v3, 3u1 + u3 + 3v1 + v3→
= |u2 − 2u3, 3u1 + u3→+ |v2 − 2v3, 3v1 + v3→
= T (|u1, u2, u3→) + T (|v1, v2, v3→)

(b) Assume c ∈ R and u ∈ R3 with u = |u1, u2, u3→. Then
T (c · |u1, u2, u3→) = T (|cu1, cu2, cu3→) = |cu2 − 2cu3, 3cu1 + cu3→

= c |u2 − 2u3, 3u1 + u3→ = cT (|u1, u2, u3→).
So T is a linear transformation.
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Lecture 31: Review – Span examples

Example V12. In R3, is |1, 2, 3→ ∈ R-span{|1,−1, 2→, |−1, 1, 2→}?
By definition R-span{|1,−1, 2→, |−1, 1, 2→}

= {c1|1,−1, 2→ + c2|−1, 1, 2→ | c1, c2 ∈ R}.

So we need to show that there exist c1, c2 ∈ R such that

|1, 2, 3→ = c1|1,−1, 2→ + c2|−1, 1, 2→.

So we need to show that the system
c1 − c2 = 1,
−c1 + c2 = 2,
2c1 + 2c2 = 3,

has a solution.

In matrix form the equations are





2 2
1 −1
−1 1





(

c1
c2

)

=





3
1
2



 .
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Left multiply both sides by





1 0 0
0 0 1
0 1 1



 to get





2 2
−1 1
0 0





(

c1
c2

)

=





3
2
3



 .

Already this gives an equation 0c1 + 0c2 = 3, which has no solution.

So |1, 2, 3→ %∈ R-span{|1,−1, 2→ and |−1, 1, 2→}.
So |1, 2, 3→ is not a linear combination of |1,−1, 2→ and |−1, 1, 2→.
So |1, 2, 3→ %∈ R-span{|1,−1, 2→, |−1, 1, 2→}.
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Example V13. In R[x ]!2, is 1− 2x − x2 ∈ R-span{1 + x + x2, 3 + x2}?
By definition R-span{1 + x + x2, 3 + x2}

= {c1(1 + x + x2) + c2(3 + x2) | c1c2 ∈ R}.
So we need to show that there exist c1, c2 ∈ R such that

c1(1 + x + x2) + c2(3 + x2) = 1− 2x − x2.

So we need to show that the system
c1 + 3c2 = 1,
c1 + 0c2 = −2,
c1 + c2 = −1,

has a solution.

In matrix form the equations are





1 3
1 0
1 1





(

c1
c2

)

=





1
−2
−1



 .
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Left multiply both sides by





1 0 0
0 0 1
0 1 −1



 to get





1 3
1 1
0 −1





(

c1
c2

)

=





1
−1
−1



 .

Left multiply both sides by





0 1 0
1 −1 0
0 0 1



 to get





1 1
0 2
0 −1





(

c1
c2

)

=





−1
2
−1



 .

Left multiply both sides by





1 0 0
0 0 1
0 1 −2



 to get





1 1
0 −1
0 0





(

c1
c2

)

=





−1
−1
0



 .
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Left multiply both sides by





1 0 0
0 −1 0
0 0 1



 to get





1 1
0 1
0 0





(

c1
c2

)

=





−1
1
0



 .

Left multiply both sides by





1 −1 0
0 1 0
0 0 1



 to get





1 0
0 1
0 0





(

c1
c2

)

=





−2
1
0



 .

So c1 = −2 and c2 = 1 is a solution.

So −2(1 + x + x2) + (3 + x2) = 1− 2x − x2.

So 1− 2x − x2 ∈ R-span{1 + x + x2, 3 + x2}.
So 1− 2x − x2 is a linear combination of 1 + x + x2 and 3 + x2.
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Example V14. Let S be the subset of R3 given by

S = {(1, 1, 1), (2, 2, 2), (3, 3, 3)}. Determine R-span(S).

In this case

R-span(S) = {c1 |1, 1, 1→ + c2 |2, 2, 2→ + c3 |3, 3, 3→ | c1, c2, c3 ∈ R}
= {c1 |1, 1, 1→ + 2c2 |1, 1, 1→ + 3c3 |1, 1, 1→ | c1, c2, c3 ∈ R}
= {(c1 + 2c2 + 3c3) |1, 1, 1→ | c1, c2, c3 ∈ R}
= {t |1, 1, 1→ | t ∈ R}
= {|t, t, t→ | t ∈ R}.
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Example V15. Let S be the subset of R2 given by

S = {|1,−1→, |2, 4→}. Show that span(S) = R2.

Proof. By definition R-span(S) = {c1|1,−1→ + c2|2, 4→ | c1, c2 ∈ R}.
To show: (a) R-span(S) ⊆ R2

(b) R2 ⊆ R-span(S).

(a) Since S ⊆ R2 and R2 is closed under addition and scalar
mutliplication then R-span(S) ⊆ R2.

(b) To show: R2 ⊆ R-span(S).
To show: R-span{|1, 0→, |0, 1→} ⊆ R-span(S).

Since R-span(S) is closed under addition and scalar multiplication, we
can show {|1, 0→, |0, 1→} ⊆ R-span(S).

To show: There exist c1, c2, d1, d2 ∈ R such that

c1|1,−1→ + c2|2, 4→ = |1, 0→ and d1|1,−1→ + d2|2, 4→ = |0, 1→.
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To show: There exist c1, c2, d1, d2 ∈ R such that

(

1 2
−1 4

)(

c1 d1
c2 d2

)

=

(

1 0
0 1

)

.

Since
(

1 2
−1 4

)(2
3 −1

3
1
6

1
6

)

=

(

1 0
0 1

)

then
2
3 |1,−1→ + 1

6 |2, 4→ = |1, 0→, and

−1
3 |1,−1→ + 1

6 |2, 4→ = |0, 1→.

So |1, 0→ ∈ R-span(S) and |0, 1→ ∈ R-span(S).
So R-span{|1, 0→, |0, 1→} ⊆ R-span(S).
So R2 ⊆ R-span(S).
So R-span(S) = R2.
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Example V16. Let S be the subset of R3 given by

S = {|1, 2, 0→, |1, 5, 3→, |0, 1, 1→}. Show that span(S) = R3.

Proof. By definition

R-span(S) = {c1|1, 2, 0→ + c2|1, 5, 3→ + c3|0, 1, 1→ | c1, c2, c3 ∈ R}.

To show: (a) R-span(S) ⊆ R3

(b) R3 ⊆ R-span(S).

(a) Since S ⊆ R3 and R3 is closed under addition and scalar
multiplication then R-span(S) ⊆ R3.

(b) To show: R3 ⊆ span(S).

To show: R-span{|1, 0, 0→, |0, 1, 0→, |0, 0, 1→} ⊆ span(S).

Since R-span(S) is closed under addition and scalar multiplication,

To show: {|1, 0, 0→, |0, 1, 0→, |0, 0, 1→} ⊆ R-span(S).
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To show: There exist c1, c2, c3, d1, d2, d3, r1, r2, r3 ∈ R such that

c1|1, 2, 0→ + c2|1, 5, 3→ + c3|0, 1, 1→ = |1, 0, 0→,
d1|1, 2, 0→ + d2|1, 5, 3→ + d3|0, 1, 1→ = |0, 1, 0→,
r1|1, 2, 0→ + r2|1, 5, 3→ + r3|0, 1, 1→ = |0, 0, 1→,

To show: There exist c1, c2, c3, d1, d2, d3, r1, r2, r3 ∈ R such that





1 1 0
2 5 1
0 3 1









c1 d1 r1
c2 d2 r2
c3 d3 r3



 =





1 0 0
0 1 0
0 0 1



 .

Multiply both sides by





1 0 0
−2 1 0
0 0 1



 to get





1 1 0
0 3 1
0 3 1









c1 d1 r1
c2 d2 r2
c3 d3 r3



 =





1 −2 0
0 1 0
0 0 1



 .
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Multiply both sides by





1 0 0
0 1 0
0 −1 1



 to get





1 1 0
0 3 1
0 0 0









c1 d1 r1
c2 d2 r2
c3 d3 r3



 =





1 −2 0
0 1 0
0 −1 1



 .

Since the bottom row on the left hand side is all 0 and the bottom
row on the right hand sides is not all 0 then there do not exist
c1, c2, c3, d1, d2, d3, r1, r2, r3 ∈ R such that





1 1 0
2 5 1
0 3 1









c1 d1 r1
c2 d2 r2
c3 d3 r3



 =





1 0 0
0 1 0
0 0 1



 .

So {|1, 0, 0→, |0, 1, 0→, |0, 0, 1→} %⊆ R-span(S).

So span(S) %= R2.
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Example V17. Let S be the subset of R[x ]!2 given by

S = {1 + x + x2, x2}. Show that span(S) = R[x ]!2.

Proof. By definition

R-span(S) = {c1(1 + x + x2) + c2x
2 | c1, c2 ∈ R}.

To show: (a) span(S) ⊆ R[x ]!2

(b) R[x ]!2 ⊆ R-span(S).

(a) Since S ⊆ R[x ]!2 and R[x ]!2 is closed under addition and scalar
multiplication then R-span(S) ⊆ R[x ]!2.

(b) To show: R[x ]!2 ⊆ R-span(S).

To show: R-span{1, x , x2} ⊆ R-span(S).

Since R-span(S) is closed under addition and scalar multiplication,

To show: {1, x , x2} ⊆ R-span(S).
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To show: There exist c1, c2, d1, d2, r1, r2 ∈ R such that

c1(1 + x + x2) + c2x
2 = 1, d1(1 + x + x2) + d2x

2 = x ,

and
r1(1 + x + x2) + r2x

2 = x2.

To show: There exist c1, c2, d1, d2, r1, r2 ∈ R such that





1 0
1 0
1 1





(

c1 d1 r1
c2 d2 r2

)

=





1 0 0
0 1 0
0 0 1



 .

Multiply both sides by





−1 1 0
0 1 0
0 0 1



 to get





0 0
1 0
1 1





(

c1 d1 r1
c2 d2 r2

)

=





1 0 0
0 1 0
0 0 1



 .
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Since the top row on the left hand side is all 0 and the top row on
the right hand sides is not all 0 then there do not exist
c1, c2, d1, d2, r1, r2 ∈ R such that





1 0
1 0
1 1





(

c1 d1 r1
c2 d2 r2

)

=





1 0 0
0 1 0
0 0 1



 .

So {1, x , x2} %⊆ R-span(S).

So R-span{1, x , x2} %⊆ R-span(S).

So R[x ]!2 %⊆ R-span(S).

So R-span(S) %= R[x ]!2.
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Lecture 32: Review – Linear independence examples

Example V18a Let S be the subset of C3 given by

S = {|2i ,−1, 1→, |−6,−3i , 3i→}. Is S C-linearly independent?

To show: If c1, c2 ∈ C and c1 |2i ,−1, 1→ + c2|−6,−3i , 3i→ = |0, 0, 0→
then c1 = 0, c2 = 0.
Assume c1, c2 ∈ C and c1 |2i ,−1, 1→ + c2|−6,−3i , 3i→ = |0, 0, 0→.
Then

2ic1 − 6c2 = 0,
−c1 − 3ic2 = 0,
c1 + 3ic2 = 0,

or equivalently





2i −6
−1 −3i
1 3i





(

c1
c2

)

=





0
0
0



 .

Skipping the row reduction steps (DON’T skip the row reduction steps
on an exam or an assignment!), this system has solutions

(

c1
c2

)

=

(

0
0

)

+ t

(

−3i
1

)

, with t ∈ R.

So c1 = 0, c2 = 0 is not the only solution.
So S is not linearly independent.
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Example V18b. Let B be the subset of R3 given by

B = {|2i ,−1, 1→, |4, 0, 2→}. Is B linearly independent?

To show: If c1, c2 ∈ C and c1 |2i ,−1, 1→ + c2|4, 0, 2→ = |0, 0, 0→ then
c1 = 0, c2 = 0.
Assume c1, c2 ∈ C and c1 |2i ,−1, 1→ + c2|4, 0, 2→ = |0, 0, 0→
Then

2ic1 + 4c2 = 0,
−c1 + 0c2 = 0,
c1 + 2c2 = 0,

or equivalently





2i 4
−1 0
1 2





(

c1
c2

)

=





0
0
0



 .

Skipping the row reduction steps (DON’T skip the row reduction steps
on an exam or an assignment!), this system has only one solution
c1 = 0, c2 = 0.
So S is linearly independent.
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Example V19. Let S be the subset of R3 given by

S = {(2, 0, 0), (6, 1, 7), (2,−1, 2)}. Is S linearly independent?

To show:
If c1, c2, c3 ∈ R and c1 |2, 0, 0→ + c2|6, 1, 7→ + c3|2,−1, 2→ = |0, 0, 0→
then c1 = 0, c2 = 0, c3 = 0.
Assume c1, c2, c3 ∈ R and
c1 |2, 0, 0→ + c2|6, 1, 7→ + c3|2,−1, 2→ = |0, 0, 0→.
Then

2c1 + 6c2 + 2c3 = 0,
c2 − c3 = 0,

7c2 + 2c3 = 0,
or equivalently





2 6 2
0 1 −1
0 7 2









c1
c2
c3



 =





0
0
0



 .

Skipping the row reduction steps (DON’T skip the row reduction steps
on an exam or an assignment!), this system has only one solution:
c1 = 0, c2 = 0, c3 = 0.
So S is linearly independent.
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Example V20&26. Let S be the subset of R[x ]!2 given by

S = {1 + 2x + 5x2, 1 + x + x2, 1 + 2x + 3x2}. Is S a basis of R[x ]!2?

To show: If c1, c2, c3 ∈ R and
c1(1 + 2x + 5x2) + c2(1 + x + x2) + c3(1 + 2x + 3x2) = 0
then c1 = 0, c2 = 0, c3 = 0.

Assume c1, c2, c3 ∈ R and
c1(1 + 2x + 5x2) + c2(1 + x + x2) + c3(1 + 2x + 3x2) = 0.
Then

c1 + c2 + c3 = 0,
2c1 + c2 + 2c3 = 0,
5c1 + c2 + 3c2 = 0,

or, equivalently,





1 1 1
2 1 2
5 1 3









c1
c2
c3



 =





0
0
0



 .

Skipping the row reduction steps (DON’T skip the row reduction steps
on an exam or an assignment!), this system has only one solution:
c1 = 0, c2 = 0, c3 = 0.
So S is linearly independent.

Since dim(R[x ]!2) = 3 and S contains 3 linearly independent elements
then B is a basis for R[x ]!2.
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