
Lecture 30: Review – Linear transformation examples

Example LT3. Is the functionT : M2(R) → R given by

T

(

a b
c d

)

= det

(

a b
c d

)

= ad − bc a linear transformation?

A linear transformation from M2(R) to R is a function f : M2(R) → R

such that

(a) If v1, v2 ∈ M2(R) then f (v1 + v2) = f (v1) + f (v2),

(b) If c ∈ R and v ∈ M2(R) then f (cv) = cf (v).

Since

1 = T

(

1 0
0 1

)

= T

((

1 0
0 0

)

+

(

0 0
0 1

))

is not equal to

0 = 0 + 0 = T

(

1 0
0 0

)

+ T

(

0 0
0 1

)

then condition (a) does not hold and T is not a linear transformation.
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Example LT4. Is the function T : R3 → R2 given by

T (x1, x2, x3) = (x2 − 2x3, 3x1 + x3) a linear transformation?

A linear transformation from R3 to R2 is a function f : R3 → R2 such
that
(a) If u, v ∈ R3 then f (u + v) = f (u) + f (v),
(b) If c ∈ R and v ∈ R3 then f (cv) = cf (v).
(a) Assume u, v ∈ R3 with u = |u1, u2, u3〉 and v = |v1, v2, v3〉. Then

T (|u1, u2, u3〉+ |v1, v2, v3〉 = T (|u1 + v1, u2 + v2, u3 + v3〉)
= |(u2 + v2 − 2(u3 + v3), 3(u1 + v1) + (u3 + v3)〉
= |u2 − 2u3 + v2 − 2v3, 3u1 + u3 + 3v1 + v3〉
= |u2 − 2u3, 3u1 + u3〉+ |v2 − 2v3, 3v1 + v3〉
= T (|u1, u2, u3〉) + T (|v1, v2, v3〉)

(b) Assume c ∈ R and u ∈ R3 with u = |u1, u2, u3〉. Then
T (c · |u1, u2, u3〉) = T (|cu1, cu2, cu3〉) = |cu2 − 2cu3, 3cu1 + cu3〉

= c |u2 − 2u3, 3u1 + u3〉 = cT (|u1, u2, u3〉).
So T is a linear transformation.
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Lecture 31: Review – Span examples

Example V12. In R3, is |1, 2, 3〉 ∈ R-span{|1,−1, 2〉, |−1, 1, 2〉}?
By definition R-span{|1,−1, 2〉, |−1, 1, 2〉}

= {c1|1,−1, 2〉 + c2|−1, 1, 2〉 | c1, c2 ∈ R}.

So we need to show that there exist c1, c2 ∈ R such that

|1, 2, 3〉 = c1|1,−1, 2〉 + c2|−1, 1, 2〉.

So we need to show that the system
c1 − c2 = 1,
−c1 + c2 = 2,
2c1 + 2c2 = 3,

has a solution.

In matrix form the equations are





2 2
1 −1
−1 1





(

c1
c2

)

=





3
1
2



 .

267



Left multiply both sides by





1 0 0
0 0 1
0 1 1



 to get





2 2
−1 1
0 0





(

c1
c2

)

=





3
2
3



 .

Already this gives an equation 0c1 + 0c2 = 3, which has no solution.

So |1, 2, 3〉 %∈ R-span{|1,−1, 2〉 and |−1, 1, 2〉}.
So |1, 2, 3〉 is not a linear combination of |1,−1, 2〉 and |−1, 1, 2〉.
So |1, 2, 3〉 %∈ R-span{|1,−1, 2〉, |−1, 1, 2〉}.
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Example V13. In R[x ]!2, is 1− 2x − x2 ∈ R-span{1 + x + x2, 3 + x2}?
By definition R-span{1 + x + x2, 3 + x2}

= {c1(1 + x + x2) + c2(3 + x2) | c1c2 ∈ R}.
So we need to show that there exist c1, c2 ∈ R such that

c1(1 + x + x2) + c2(3 + x2) = 1− 2x − x2.

So we need to show that the system
c1 + 3c2 = 1,
c1 + 0c2 = −2,
c1 + c2 = −1,

has a solution.

In matrix form the equations are





1 3
1 0
1 1





(

c1
c2

)

=





1
−2
−1



 .
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Left multiply both sides by





1 0 0
0 0 1
0 1 −1



 to get





1 3
1 1
0 −1





(

c1
c2

)

=





1
−1
−1



 .

Left multiply both sides by





0 1 0
1 −1 0
0 0 1



 to get





1 1
0 2
0 −1





(

c1
c2

)

=





−1
2
−1



 .

Left multiply both sides by





1 0 0
0 0 1
0 1 −2



 to get





1 1
0 −1
0 0





(

c1
c2

)

=





−1
−1
0



 .
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Left multiply both sides by





1 0 0
0 −1 0
0 0 1



 to get





1 1
0 1
0 0





(

c1
c2

)

=





−1
1
0



 .

Left multiply both sides by





1 −1 0
0 1 0
0 0 1



 to get





1 0
0 1
0 0





(

c1
c2

)

=





−2
1
0



 .

So c1 = −2 and c2 = 1 is a solution.

So −2(1 + x + x2) + (3 + x2) = 1− 2x − x2.

So 1− 2x − x2 ∈ R-span{1 + x + x2, 3 + x2}.
So 1− 2x − x2 is a linear combination of 1 + x + x2 and 3 + x2.
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Example V14. Let S be the subset of R3 given by

S = {(1, 1, 1), (2, 2, 2), (3, 3, 3)}. Determine R-span(S).

In this case

R-span(S) = {c1 |1, 1, 1〉 + c2 |2, 2, 2〉 + c3 |3, 3, 3〉 | c1, c2, c3 ∈ R}
= {c1 |1, 1, 1〉 + 2c2 |1, 1, 1〉 + 3c3 |1, 1, 1〉 | c1, c2, c3 ∈ R}
= {(c1 + 2c2 + 3c3) |1, 1, 1〉 | c1, c2, c3 ∈ R}
= {t |1, 1, 1〉 | t ∈ R}
= {|t, t, t〉 | t ∈ R}.
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Example V15. Let S be the subset of R2 given by

S = {|1,−1〉, |2, 4〉}. Show that span(S) = R2.

Proof. By definition R-span(S) = {c1|1,−1〉 + c2|2, 4〉 | c1, c2 ∈ R}.
To show: (a) R-span(S) ⊆ R2

(b) R2 ⊆ R-span(S).

(a) Since S ⊆ R2 and R2 is closed under addition and scalar
mutliplication then R-span(S) ⊆ R2.

(b) To show: R2 ⊆ R-span(S).
To show: R-span{|1, 0〉, |0, 1〉} ⊆ R-span(S).

Since R-span(S) is closed under addition and scalar multiplication, we
can show {|1, 0〉, |0, 1〉} ⊆ R-span(S).

To show: There exist c1, c2, d1, d2 ∈ R such that

c1|1,−1〉 + c2|2, 4〉 = |1, 0〉 and d1|1,−1〉 + d2|2, 4〉 = |0, 1〉.
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To show: There exist c1, c2, d1, d2 ∈ R such that

(

1 2
−1 4

)(

c1 d1
c2 d2

)

=

(

1 0
0 1

)

.

Since
(

1 2
−1 4

)(2
3 −1

3
1
6

1
6

)

=

(

1 0
0 1

)

then
2
3 |1,−1〉 + 1

6 |2, 4〉 = |1, 0〉, and

−1
3 |1,−1〉 + 1

6 |2, 4〉 = |0, 1〉.

So |1, 0〉 ∈ R-span(S) and |0, 1〉 ∈ R-span(S).
So R-span{|1, 0〉, |0, 1〉} ⊆ R-span(S).
So R2 ⊆ R-span(S).
So R-span(S) = R2.
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Example V16. Let S be the subset of R3 given by

S = {|1, 2, 0〉, |1, 5, 3〉, |0, 1, 1〉}. Show that span(S) = R3.

Proof. By definition

R-span(S) = {c1|1, 2, 0〉 + c2|1, 5, 3〉 + c3|0, 1, 1〉 | c1, c2, c3 ∈ R}.

To show: (a) R-span(S) ⊆ R3

(b) R3 ⊆ R-span(S).

(a) Since S ⊆ R3 and R3 is closed under addition and scalar
multiplication then R-span(S) ⊆ R3.

(b) To show: R3 ⊆ span(S).

To show: R-span{|1, 0, 0〉, |0, 1, 0〉, |0, 0, 1〉} ⊆ span(S).

Since R-span(S) is closed under addition and scalar multiplication,

To show: {|1, 0, 0〉, |0, 1, 0〉, |0, 0, 1〉} ⊆ R-span(S).
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To show: There exist c1, c2, c3, d1, d2, d3, r1, r2, r3 ∈ R such that

c1|1, 2, 0〉 + c2|1, 5, 3〉 + c3|0, 1, 1〉 = |1, 0, 0〉,
d1|1, 2, 0〉 + d2|1, 5, 3〉 + d3|0, 1, 1〉 = |0, 1, 0〉,
r1|1, 2, 0〉 + r2|1, 5, 3〉 + r3|0, 1, 1〉 = |0, 0, 1〉,

To show: There exist c1, c2, c3, d1, d2, d3, r1, r2, r3 ∈ R such that





1 1 0
2 5 1
0 3 1









c1 d1 r1
c2 d2 r2
c3 d3 r3



 =





1 0 0
0 1 0
0 0 1



 .

Multiply both sides by





1 0 0
−2 1 0
0 0 1



 to get





1 1 0
0 3 1
0 3 1









c1 d1 r1
c2 d2 r2
c3 d3 r3



 =





1 −2 0
0 1 0
0 0 1



 .
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Multiply both sides by





1 0 0
0 1 0
0 −1 1



 to get





1 1 0
0 3 1
0 0 0









c1 d1 r1
c2 d2 r2
c3 d3 r3



 =





1 −2 0
0 1 0
0 −1 1



 .

Since the bottom row on the left hand side is all 0 and the bottom
row on the right hand sides is not all 0 then there do not exist
c1, c2, c3, d1, d2, d3, r1, r2, r3 ∈ R such that





1 1 0
2 5 1
0 3 1









c1 d1 r1
c2 d2 r2
c3 d3 r3



 =





1 0 0
0 1 0
0 0 1



 .

So {|1, 0, 0〉, |0, 1, 0〉, |0, 0, 1〉} %⊆ R-span(S).

So span(S) %= R2.
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Example V17. Let S be the subset of R[x ]!2 given by

S = {1 + x + x2, x2}. Show that span(S) = R[x ]!2.

Proof. By definition

R-span(S) = {c1(1 + x + x2) + c2x
2 | c1, c2 ∈ R}.

To show: (a) span(S) ⊆ R[x ]!2

(b) R[x ]!2 ⊆ R-span(S).

(a) Since S ⊆ R[x ]!2 and R[x ]!2 is closed under addition and scalar
multiplication then R-span(S) ⊆ R[x ]!2.

(b) To show: R[x ]!2 ⊆ R-span(S).

To show: R-span{1, x , x2} ⊆ R-span(S).

Since R-span(S) is closed under addition and scalar multiplication,

To show: {1, x , x2} ⊆ R-span(S).
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To show: There exist c1, c2, d1, d2, r1, r2 ∈ R such that

c1(1 + x + x2) + c2x
2 = 1, d1(1 + x + x2) + d2x

2 = x ,

and
r1(1 + x + x2) + r2x

2 = x2.

To show: There exist c1, c2, d1, d2, r1, r2 ∈ R such that





1 0
1 0
1 1





(

c1 d1 r1
c2 d2 r2

)

=





1 0 0
0 1 0
0 0 1



 .

Multiply both sides by





−1 1 0
0 1 0
0 0 1



 to get





0 0
1 0
1 1





(

c1 d1 r1
c2 d2 r2

)

=





1 0 0
0 1 0
0 0 1



 .
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Since the top row on the left hand side is all 0 and the top row on
the right hand sides is not all 0 then there do not exist
c1, c2, d1, d2, r1, r2 ∈ R such that





1 0
1 0
1 1





(

c1 d1 r1
c2 d2 r2

)

=





1 0 0
0 1 0
0 0 1



 .

So {1, x , x2} %⊆ R-span(S).

So R-span{1, x , x2} %⊆ R-span(S).

So R[x ]!2 %⊆ R-span(S).

So R-span(S) %= R[x ]!2.
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