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These slides have been made by Arun Ram, for teaching of the summer session of MAST10007 Linear Algebra at University
of Melbourne in 2026. The template is from the University of Melbourne School of Mathematics and Statistics slide deck
produced by members of the School. Some examples from that slide deck have been retained, All the solutions and writing
has been reworked, as well as the exposition and ordering of the material.

I found slides to be an unusual medium. Each slide has very little space (compared to a page of ordinary LaTeX) and there
is some necessity to assume that the reader has little specific recall of other slides. I found it important to repeat slides
often and to continually insert cues and portions of material that had appeared in previous slides.

Slides form some unusual medium between a book and a lecture: there is an impetus for completeness and linearity that
one often strives for in a book format, but it is not appropriate for the storytelling framework of a lecture situation. At the
same time, one cannot revert to a story telling framework, as the slide need to hold together in broader arcs and structure
because they will certainly be being used as a book type resource by students.

As a result there were many places that choices were made that are absolutely not appropriate for engaging lectures and
other places that choices were made that are absolutely not appropriate for a coherent book type resource. Slide decks sit in
a strange medium between lecturing and printed resource materials. Having done this exercise I am even more convinced
that reading from slides is not an optimally healthy or effective way to deliver quality mathematics lectures.
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The Hilbert space Rn

(a) Rn, basis, inner product, length, distance, angles, projection

(b) Equations of lines and planes in R3

(c) Cross products (are only available in R3

Matrices

(a) addition, scalar multiplication, basis, multiplication, inverses

(b) Factoring for matrices

(c) The rank theorem

Linear systems and kernels

(a) Finding inverses

(b) Solutions of linear systems

(c) Kernels and images
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Eigenvalues, eigenvectors and diagonalization

(a) Bases of kernels and images

(b) Eigenvectors, eigenvalues and diagonlization

(c) Symmetric, Hermitian and orthogonal matrices

Vector spaces and linear transformations

(a) Definitions, examples and bases

(b) Linear transformations

(c) span, linear independence and bases

Bases and matrices

(a) The minimax basis theorem

(b) Kernels and images of linear transformations

(c) With respect to a basis
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Inner product spaces

(a) Definitions, examples and Gram matrices

(b) Gram-Schmidt orthogonalization

(c) Projections using an orthonormal basis

Applications

(a) Graphs and networks

(b) Application of diagonalization to dynamics

(c) Data correlation and line of best fit

Additional topics

(a) Traces and determinants

(b) Singular value decomposition

(c) Learning to do proofs
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Lecture 1: The Hilbert space Rn

Definition (The vector space Rn)

Let n ∈ Z>0. The R-vector space Rn is

Rn = Mn×1(R) = {|x1, . . . , xn〉 | xi ∈ R} where |x1, . . . , xn〉 =











x1
x2
...
xn











.

The addition and scalar multiplication are given by

|x1, x2, . . . , xn〉+ |y1, y2, . . . , yn〉 = |x1 + y1, x2 + y2, . . . , xn + yn〉

and
c |x1, x2, . . . , xn〉 = |cx1, cx2, . . . , cxn〉 for c ∈ R.

The notation |x1, . . . , xn〉 is Dirac’s ket notation for the column vector
with entries x1, . . . , xn.
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Definition (The favorite basis of Rn)

Let e1, . . . , en be the length n column vectors given by

ei has 1 in the ith spot and 0 elsewhere.

Every vector in Rn is a (unique) linear combination of e1, . . . , en.

(‘linear’ means using scalar multiplication and addition).

For example, if n = 4 then

e1 =









1
0
0
0









, e2 =









0
1
0
0









, e3 =









0
0
1
0









, e4 =









0
0
0
1









and









3
5
−2
0









= 3









1
0
0
0









+ 5









0
1
0
0









+ (−2)









0
0
1
0









+ 0









0
0
0
1









= 3e1 + 5e2 + (−2)e3 + 0e4.
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Definition (Inner product, length function and distance function)

The standard inner product on Rn is 〈 | 〉 : Rn × Rn → R given by

〈x1, . . . , xn|y1, . . . , yn〉 =
(

x1 x2 · · · xn
)











y1
y2
...
yn











= x1y1 + · · · + xnyn.

The length function is ‖ ‖ : Rn → R>0 given by

‖ |x1, . . . , xn〉‖ =
√

x21 + x22 + · · ·+ x2n .

The distance function is d : Rn × Rn → R>0 given by

d(|x1, . . . , xn〉, |y1, . . . , yn〉) = ‖ |x1, . . . , xn〉 − |y1, . . . , yn〉‖.
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Theorem (Cauchy-Schwarz and the triangle inequality)

Let u, v ∈ Rn. Then

|〈u, v〉| 6 ‖u‖ · ‖v‖ and ‖u+ v‖ 6 ‖u‖+ ‖v‖

If
x = |x1, x2, . . . , xn〉 and y = |y1, y2, . . . , yn〉

then
〈x, y〉 = xTy = x1y1 + x2y2 + · · ·+ xnyn

and
‖x‖ =

√

〈x, x〉 and ‖x‖2 = 〈x, x〉 and

d(x, y) = ‖y − x‖ =
√

〈y − x, y − x〉

=
√

(y1 − x1)2 + · · · + (yn − xn)2.
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Easy to establish properties that are used VERY often.

Let x, y, z ∈ Rn and let c ∈ R.

〈y, x〉 = y1x1 + y2x2 + · · ·+ ynxn

= x1y1 + x2y2 + · · · xnyn = 〈x, y〉,

〈x, y + z〉 = xT (y + z) = xTy + xT z = 〈x, y〉 + 〈x, z〉,

〈x+ y, z〉 = 〈z, x + y〉 = 〈z, x〉 + 〈z, y〉 = 〈x, z〉 + 〈y, z〉,

〈x, cy〉 = xT cy = cxT y = c〈x, y〉, 〈cx, y〉 = 〈y, cx〉 = c〈y, x〉 = c〈x, y〉,

‖cx‖ =
√

〈cx, cx〉 =
√

c2〈x, x〉 =
√
c2
√

〈x, x〉 = |c | · ‖x‖.
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Definition (Angle and projection)

Let u, v ∈ Rn with u 6= 0 and v 6= 0. The angle between u and v is
θ(u, v) given by

cos(θ(u, v)) =
〈u, v〉

‖u‖ · ‖v‖ . x

y

y = cos(x)

The projection of v onto u is

proju v =
〈u, v〉
〈u,u〉 u.

proju(v)
u

v

θ

Let u, v ∈ Rn. The vectors u and v are perpendicular if 〈u, v〉 = 0.
The vectors u and v are parallel if 〈u, v〉 ∈ {1,−1}.
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Example E1. If u = |1, 3, 1, 2〉 and v = |2, 1,−1, 3〉 in R4 then

u− v = |1,−2, 0, 1〉

and the distance between the points (1, 3, 1, 2) and (2, 1,−1, 3) is

d(u, v) = ‖ |1,−2, 0, 1〉 ‖ =
√

12 + (−2)2 + 02 + 11

=
√
1 + 4 + 0 + 1 =

√
6.

Example E2. If u = |0, 2, 2,−1〉 and v = |−1, 1, 1,−1〉 in R4 then

〈u, v〉 = 〈0, 2, 2,−1|−1, 1, 1,−1〉
= 0 · (−1) + 2 · 1 + 2 · 1 + (−1) · (−1)

= 0 + 2 + 1 + 1 = 5

and
‖u‖ =

√
0 + 4 + 4 + 1 =

√
9 = 3

and
‖v‖ =

√
1 + 1 + 1 + 1 =

√
4 = 2.
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Since |5| 6 3 · 2 we observe that, in this case,

|〈u, v〉| 6 ‖u‖ · ‖v‖.

Example E4. Let u = (2,−1,−2) and v = (2, 1, 3). Find vectors v1 and
v2 such that

v = v1 + v2

where v1 is parallel to u and v2 is perpendicular to u.

Solution: Since the projection of v onto u is parallel to u then let

v1 = proju v =
〈u, v〉
〈u,u〉u =

−3

9
u

= −1
3 |2,−1,−2〉 = |−2

3 , 13 ,
2
3 〉

and
v2 = u− v1 = |2,−1,−2〉 − |−2

3 , 13 ,
2
3〉 = |83 , 23 , 73〉.

Then u = v1 + v2 and v1 is parallel to u and v2 is perpendicular to u.
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Lecture 2: Equations of lines and planes in R3

Let u, v ∈ R3. The set of linear combinations of v is

R-span{v} = {tv | t ∈ R}.

Definition

The line in R3 with direction v = |v1, v2, v3〉 going through the point
p = |p1, p2, p3〉 is

p + Rv = {p + tv | t ∈ R}.
y-axis

z-axis

x-axis

(p1, p2, p3)
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The set of linear combinations of {u, v} is

R-span{u, v} = {su+ tv | s, t ∈ R},

Definition

The plane in R3 spanned in directions u = |u1, u2, u3〉 and
v = |v1, v2, v3〉 going through the point p = |p1, p2, p3〉 is

p + Ru+ Rv = {p + su+ tv | s, t ∈ R}.

y-axis

z-axis

x-axis

(p1, p2, p3)

v

u

n
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Equations of lines in R3

Definition

The line in R3 with direction v = |v1, v2, v3〉 going through the point
p = |p1, p2, p3〉 is

p + Rv = {p + tv | t ∈ R}.

The points in the line are the |x , y , z〉 in R3 such that

(x , y , z) = (p1, p2, p3) + t(v1, v2, v3), with t ∈ R, (vector equation)

or
x = p1 + tv1,
y = p2 + tv2,
z = p3 + tv3,

with t ∈ R, (parametric equation)

Solving for t gives that the points on the line are the |x , y , z〉 in R3

which satisfy the equations

x − p1
v1

=
y − p2
v2

=
z − p3
v3

. (Cartesian form)
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Equations of planes in R3

Definition

The plane in R3 spanned in directions u = |u1, u2, u3〉 and
v = |v1, v2, v3〉 going through the point p = |p1, p2, p3〉 is

p + Ru+ Rv = {p + su+ tv | s, t ∈ R}.
y-axis

z-axis

x-axis

(p1, p2, p3)

v

u

n

The points in the line are the |x , y , z〉 in R3 such that

x = p1 + su1 + tv1,
y = p2 + su2 + tv2,
z = p3 + su3 + tv3,

with s, t ∈ R. (parametric equation)
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The vector equation is

(x , y , z) = (p1, p2, p3) + s(u1, u2, u3) + t(v1, v2, v3), with s, t ∈ R.

Let n = |a, b, c〉 be such that n is perpendicular to both u and v. In
other words, n is a vector perpendicular to the plane. Then

〈n|x , y , z〉 = 〈n, p + su+ tv〉 = 〈n, p〉+ s〈n,u〉+ t〈n, v〉
= 〈n, p〉+ s · 0 + t · 0 = 〈n, r0〉,

and since 〈n|x , y , z〉 = 〈a, b, c |x , y , z〉 = ax + by + cz then the plane is
the set of |x , y , z ∈ R3 such that

ax + by + cz = 〈p,n〉. (Cartesian form)
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Example E8. Determine the vector, parametric and Cartesian equations
of the line through the points P = (−1, 2, 3) and Q = (4,−2, 5).

Since the direction of the line is

Q − P = |4,−2, 5〉 − | − 1, 2, 3〉 = |5,−4, 2〉
and

P = |−1, 2, 3〉 is a point on the line

then the line is the set of points in R3 given by

{ |−1, 2, 3〉 + t · |5,−4, 2〉 | t ∈ R}.
Parametric equations for the line are

x = −1 + 5t,
y = 2− 4t,
z = 3 + 2t,

with t ∈ R.

Solving for t, the Cartesian equation of the line is

x + 1

5
=

y − 2

−4
=

z − 3

2
.

18



Example E9. Find a vector equation of the ‘friendly’ line through the
point (2, 0, 1) that is parallel to the ‘enemy’ line

x − 1

1
=

y + 2

−2
=

z − 6

2
.

Does the point (0, 4,−3) lie on the ‘friendly’ line?

Letting

t =
x − 1

1
=

y + 2

−2
=

z − 6

2

gives
x = 1 + t,
y = −2− 2t,
z = 6 + 2t

with t ∈ R,

and
{|1,−2, 6〉 + t|1,−2, 2〉 | t ∈ R}

is the set of points in R3 that lie on the ‘enemy’ line.
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The ‘friendly’ line we want is parallel to the ‘enemy’ line and goes
through the point |2, 0, 1〉.
So the ‘friendly’ line consists of the points

{ |2, 0, 1〉 + t |1,−2, 2〉 | t ∈ R}.

Since
|2, 0, 1〉 + (−2) · |1,−2, 2〉 = |0, 4,−3〉

then |0, 4,−3〉 is on the ‘friendly’ line.
Example E11. Find the vector equation for the plane in R3 containing
the points P = |1, 0, 2〉 and Q = |1, 2, 3〉 and R = |4, 5, 6〉.
The point |1, 0, 2〉 is in the plane and two vectors in the plane are

Q − P = |0, 2, 1〉 and R − P = |3, 5, 4〉.

So the points in the plane are the points |x , y , z〉 in R3 which satisfy

|x , y , z〉 = |1, 0, 2〉 + s|0, 2, 1〉 + t|3, 5, 4〉 with s, t ∈ R.
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Example E12. Where does the line

x − 1

1
=

y − 2

2
=

z − 3

3

intersect the plane 3x + 2y + z = 20?

The line in parametric form is

x = 1 + t,
y = 2 + 2t,
z = 3 + 3t,

with t ∈ R,

and plugging into the equation of the plane gives

20 = 3(t + 1) + 2(2t + 2) + (3t + 3) = 10t + 10 so that t = 1.

Thus the point |x , y , z〉 with x = 1 + 1 = 2, y = 2 + 2 = 4 and
z = 3 + 3 is on both the line and the plane.
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Example E13. Find a vector form for the line of intersection of the two
planes x + 3y + 2z = 6 and 3x + 2y + z = 11.

The points on the intersection of the two planes are the points |x , y , z〉
that satisfy the system of equations

3x + 2y − z = 11,
x + 3y + 2z = 6.

One of the main points of this course is to learn how to use matrices as
an efficient and organized mechanics for solving systems of equations of
this type. For now, let’s proceed ad hoc. The second equation gives

x = 6− 3y − 2z , and plugging back into 3x + 2y − z = 11

gives

11 = 3(6− 3y − 2z) + 2y − z = 18− 9y − 6z + 2y − z

= 18− 7y − 7z .
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So 7y = 7− 7z and y = 1− z . So x = 6− 3y − z = 6− 3(1− z)− 2z
and

x = 3 + z ,
y = 1− z ,
z = 0 + z ,

where z can be any number.

So the line is the set of points |x , y , z〉 such that





x
y
z



 =





3
1
0



+ z





1
−1
1



 , with z ∈ R.

So the line is

p + Rv, where p = |3, 1, 0〉 and v = |1,−1, 1〉.
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Lecture 3: Cross products (are only available in R3)

Let i, j, k ∈ R3 be given by

i = |1, 0, 0〉, j = |0, 1, 0〉, k = |0, 0, 1〉.

Proposition (Standard basis of R3)

Let v ∈ R3.

(a) If v = |a1, a2, a3〉 then v = a1i+ a2j+ a3k.

(b) If a1, a2, a3 ∈ R and a1i+ a2j+ a3k = 0
then a1 = 0 and a2 = 0 and a3 = 0.

Every vector in R3 is a (unique) linear combination of i, j and k

(‘linear’ means using scalar multiplication and addition).

For example, |5,−1,−4〉 = 5i+ (−1)j+ (−4)k.
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The determinant is a shorthand for specific expressions. It will soon
become evident that these, perhaps initially complicated looking,
expressions have rather amazing properties.

The determinant of a 1× 1 matrix is det(a11) = a11.
The determinant of a 2× 2 matrix is

det

(

a11 a12
a21 a22

)

= a11a22 − a12a21.

The determinant of a 3× 3 matrix is

det





a11 a12 a13
a21 a22 a23
a31 a32 a33



 =
a11a22a33 − a12a21a33 − a13a22a31

−a11a23a32 + a12a23a31 + a13a21a32.

Note that

det





a11 a12 a13
a21 a22 a23
a31 a32 a33



 =
a11 det

(

a22 a23
a32 a33

)

− a12 det

(

a21 a23
a31 a33

)

+a13 det

(

a21 a21
a31 a32

)

.

25



Definition (Cross product)

Let u = |u1, u2, u3〉 ∈ R3 and let v = |v1, v2, v3〉 ∈ R3. The cross
product of u and v is given by

u× v = (u2v3 − u3v2)i+ (u3v1 − u1v3)j+ (u1v2 − u2v1)k.

In terms of determinants u× v is

u× v = det

(

u2 u3
v2 v3

)

i− det

(

u1 u3
v1 v3

)

j+ det

(

u1 u2
v1 v2

)

k

“=” det





i j k

u1 u2 u3
v1 v2 v3



 ,

where the last 3× 3 determinant on the right hand side doesn’t really
make sense (because i, j, k are not numbers); but this “determinant” is
a very useful mnemonic.
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If u = |u1, u2, u3〉, v = |v1, v2, v3〉,w = |w1,w2,w3〉 then

〈u, v × w〉 = 〈u1, u2, u3|(v2w3 − w3v2,−(v1w3 − v3w1), v1w2 − v2w1〉
= u1(v2w3 − v3w2)− u2(v1w3 − v3w1) + u3(v1w2 − v2w1)

= det





u1 u2 u3
v1 v2 v3
w1 w2 w3



 .

Since

〈v, v × w〉 = det





v1 v2 v3
v1 v2 v3
w1 w2 w3



 = 0

and

〈w, v ×w〉 = det





w1 w2 w3

v1 v2 v3
w1 w2 w3



 = 0

then
v × w is perpendicular to both v and w.
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Example E5. Find a vector perpendicular to both |1, 1, 1〉 and
|1,−1,−2〉.
Solution: By definition of the cross product

|1,1, 1〉 × |1,−1,−2〉
= |1 · (−2)− 1 · (−1),−(1 · (−2)− 1 · 1), 1 · (−1)− 1 · 1〉
= |−1, 3,−2〉.

The vector |−1, 3,−2〉 is perpendicular to both |1, 1, 1〉 and |1,−1,−2〉
since

〈−1, 3,−2 | 1, 1, 1〉 = −1 + 3− 2 = 0

and
〈−1, 3,−2 | 1,−1,−2〉 = −1− 3 + 4 = 0.
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Theorem (Volumes of parallelipipeds)

(3) Let u = |u1, u2, u3〉 ∈ R3 and v = |v1, v2, v3〉 ∈ R3 and
w = |w1,w2,w3〉 ∈ R3. The volume of the parallelipiped with
vertices 0,u, v,w,u + v,u+ w, v + w,u+ v + w is

∣

∣

∣

∣

∣

∣

det





u1 u2 u3
v1 v2 v3
w1 w2 w3





∣

∣

∣

∣

∣

∣

.

(2) Let u = |u1, u2〉 ∈ R2 and v = |v1, v2〉 ∈ R2. The area of the
paralellogram with vertices 0,u, v,u + v is

∣

∣

∣

∣

det

(

u1 u2
v1 v2

)∣

∣

∣

∣

.

(1) Let u = |u1〉 ∈ R1. The length of the segment with endpoints 0 to
u is

| det(u1)|.
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Example E7. Find the volume of the parallelipiped with adjacent edges−→
PQ,

−→
PR,

−→
PS , where

P = |2, 0,−1〉, Q = |4, 1, 0〉, R = |3,−1, 1〉 and S = |2,−2, 2〉.

Since the edges of the parallelipiped are

−→
PQ = P − Q = |2, 1, 1〉, −→

PR = P − R = |1,−1, 2〉,
−→
PS = P − S = |0,−2, 3〉,

then

(Volume of parallelipiped) = |〈−→PQ ,
−→
PR ×−→

PS〉|

=

∣

∣

∣

∣

∣

∣

det





2 1 1
1 −1 2
0 −2 3





∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

2 · det
(

−1 2
−2 3

)

− det

(

1 1
−2 3

)∣

∣

∣

∣

= |2(−3 + 4)− (3 + 2)| = |−3| = 3.
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Example E6. Find the area of the triangle in R3 with vertices |2,−5, 4〉,
|3,−4, 5〉 and |3,−6, 2〉.

Letting u = |3,−4, 5〉 − |2,−5, 4〉 = |1, 1, 1〉 and

v = |3,−6, 2〉 − |2,−5, 4〉 = |1,−1,−2〉, then

u× v = |1, 1, 1〉 × |1,−1,−2〉
= |1 · (−2)− 1 · (−1),−(1 · (−2)− 1 · 1), 1 · (−1)− 1 · 1〉
= |−1, 3,−2〉.

Then

(Area of triangle) = 1
2(area of rectangle with edges u and v)

= 1
2

1

‖u× v‖

(

volume of parallelipiped
with edges u, v and u× v)

)

= 1
2

1

‖u× v‖〈u× v,u × v〉

= 1
2‖u× v‖ = 1

2‖ |−1, 3,−2〉 ‖

= 1
2

√

(−1)2 + 32 + (−2)2 =

√
14

2
.
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Example E10. Find the Cartesian equation of the plane with vector form

|x , y , z〉 = s |1,−1, 0〉 + t |2, 0, 1〉 + | − 1, 1, 1〉, with s, t ∈ R.

A normal vector to this plane is

n = u× v, where u = |1,−1, 0〉 and v = |2, 0, 1〉.

Then n = u× v = |−1−0,−(1−0), 0−(−2)〉 = |−1,−1, 2〉.
Then |−1, 1, 1〉 is a point in the plane, and

〈−1, 1, 1 | u× v〉 = 〈−1, 1, 1 | −1,−1, 2〉 = 1− 1 + 2 = 2.

Since the plane is

|−1, 1, 1〉 + {|x , y , z〉 ∈ R3 | 〈x , y , z | −1,−1, 2〉 = 0}

then the Cartesian equation of the plane is

−x − y + 2z = 2.
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Lecture 4: Matrices

A matrix is a table of numbers.

A =





78 62 91 85
32 41 24 39
6 99 29 81





Some applications of matrices are

1. Solving systems of linear equations

2. lengths, distances, angles, projections

3. Equations of lines and planes, volumes of parallelipipeds

4. graphs and networks

5. Data processing and analysis of data

6. Dynamics

7. Symmetry

8. Quantum mechanics

9. ... and many many more ...
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Addition




78 62 91 85
32 41 24 39
6 99 29 81



+





1 2 3 4
5 6 7 8
−1 −2 −3 −4



 =





79 64 94 89
37 48 31 47
5 97 26 77





Scalar multiplication

1

3





78 62 91 85
32 41 24 39
6 99 29 81



 =





26 62
3 27 85

3
102

3
41
3 8 13

2 33 29
3 27





Definition (Matrix units)

Let t, s ∈ Z>0 and let i ∈ {1, . . . , t} and j ∈ {1, . . . , s}. The matrix
unit Eij is the matrix

Eij ∈ Mt×s(Q) which has
1 in the (i , j)-entry
and 0 elsewhere,
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The favourite basis of Mt×s(Q)
If t = 2 and s = 3 then

E11 =

(

1 0 0
0 0 0

)

, E12 =

(

0 1 0
0 0 0

)

, E13 =

(

0 0 1
0 0 0

)

E21 =

(

0 0 0
1 0 0

)

, E22 =

(

0 0 0
0 1 0

)

, E23 =

(

0 0 0
0 0 1

)

.

Every matrix is a (unique) linear combination of Eij

(‘linear’ means using scalar multiplication and addition).

(

78 62 91
32 41 24

)

=
78E11 + 62E12 + 91E13

+32E21 + 41E22 + 24E23
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Multiplication
In English. The (i , j) entry of AB is the ith row of A times the jth
column of B .
In Math.

EijEkℓ = δjkEiℓ, where δjk =

{

1, if j = k ,

0 otherwise.

Examples:

(

2 5 11 13
)









4
0
3
−2









= 2 · 4 + 5 · 0 + 11 · 3 + 13 · (−2)
= 8 + 33− 26 = 15.





78 62 91 85
32 41 24 39
6 99 29 81













2
100
85
100
1

100
12
100









=





78·2+62·85+91·1+85·12
100

32·2+41·85+24·1+39·12
100

6·2+99·85+29·1+81·12
100



 =





65.37
40.41
94.28




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Theorem (Properties of matrix operations)

Let t, s ∈ Z>0 and let Mt×s(Q) denote the set of t × s matrices with
entries in Q.

1. If A,B ∈ Mt×s(Q) then A+ B = B + A.

2. If A,B ,C ∈ Mt×s(Q) then A+ (B + C ) = (A+ B) + C .

3. If A ∈ Mt×s(Q), B ∈ Ms×r (Q) and C ∈ Mr×q(Q) then

A(BC ) = (AB)C .

4. If A,B ∈ Mt×s(Q) and C ,D ∈ Ms×r (Q) then

A(C + D) = AC + AD and (A+ B)C = AC + BC .

5. If A ∈ Mt×s(Q), B ∈ Ms×r (Q) and c ∈ Q then A(cB) = c(AB).

6. If A ∈ Mt×s(Q) and 1 is the identity in Ms×s(Q) then A · 1 = A.

7. If A ∈ Mt×s(Q) and 1 is the identity in Mt×t(Q) then 1 · A = A.

8. If A ∈ Mt×s(Q) then A+ 0 = A and 0 + A = A.
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Warning. The list of properties of matrix operations says that for the
most part the matrix number system works much like the ordinary
integer number system. But be careful.

If A =

(

1 1
1 1

)

and B =

(

1 0
1 1

)

then

AB =

(

1 1
0 1

)(

1 0
1 1

)

=

(

2 1
1 1

)

and

BA =

(

1 0
1 1

)(

1 1
0 1

)

=

(

1 1
1 2

)

and so AB is not the same as BA. For most matrices A and B , the
product AB is not the same as BA. When it does happen, that should
be viewed as very special and very lucky. Don’t push your luck.

38



Favorite square matrices

Definition (Invertible matrices)

Let n ∈ Z>0. Let Eij be the n× n matrix with 1 in the (i , j) entry and 0
elswhere. The identity matrix is

1 = E11 + · · · + Enn in Mn×n(Q).

The set of invertible n × n matrices is

GLn(Q) =

{

A ∈ Mn×n(Q)
∣

∣

∣

there exists A−1 ∈ Mn×n(Q)
such that AA−1 = 1 and A−1A = 1.

}

If n = 2 then
(

c 1
1 0

)(

0 1
1 −c

)

=

(

1 0
0 1

)

= 1

and
(

0 1
1 −c

)(

c 1
1 0

)

=

(

1 0
0 1

)

= 1.
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Example A1. (Root matrices and their inverses) If c ∈ Q and

x12(c) =





1 c 0
0 1 0
0 0 1



 , x13(c) =





1 0 c
0 1 0
0 0 1



 , x23(c) =





1 0 0
0 1 c
0 0 1





then

x12(c)
−1 =





1 −c 0
0 1 0
0 0 1



 , x13(c)
−1 =





1 0 −c
0 1 0
0 0 1





and

x23(c)
−1 =





1 0 0
0 1 −c
0 0 1



 .

Check these claims by multiplying the matrices.

40



Example A2. (Diagonal generators and their inverses) If d ∈ Q and
d 6= 0 and

h1(d) =





d 0 0
0 1 0
0 0 1



 , h2(d) =





1 0 0
0 d 0
0 0 1



 , h3(d) =





1 0 0
0 1 0
0 0 d





then

h1(d)
−1 =





1
d

0 0
0 1 0
0 0 1



 , h2(d)
−1 =





1 0 0
0 1

d
0

0 0 1





and

h3(d)
−1 =





1 0 0
0 1 0
0 0 1

d



 .

Check these claims by multiplying the matrices.

41



Example A3. (Row reducers and their inverses.) If c ∈ Q then

s1(c) =





c 1 0
1 0 0
0 0 1



 and s2(c) =





1 0 0
0 c 1
0 1 0





then

s1(c)
−1 =





0 1 0
1 −c 0
0 0 1



 and s2(c)
−1 =





1 0 0
0 0 1
0 1 −c





Check these claims by multiplying the matrices.
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Let n ∈ Z>0. Let Eij be the n× n matrix with 1 in the (i , j) entry and 0
elswhere.

Definition (root matrices, diagonal generators and row reducers)

Let i , j ∈ {1, . . . , n} with i 6= j . Let c ∈ Q. The root matrix xij(c) is

xij(c) ∈ Mn×n(Q) given by xij(c) = 1 + cEij .

Let i ∈ {1, . . . , n}. Let d ∈ Q with d 6= 0. The diagonal generator
hi(d) is

hi (d) = 1 + (d − 1)Eii .

Let i ∈ {1, . . . , n − 1} and let c ∈ Q. The row reducer si (c) is

si(c) = 1− Eii − Ei+1,i+1 + Ei ,i+1 + Ei+1,i + cEii .

Theorem (Generators for GLn)

Let A ∈ GLn(Q). Then A can be written as a product of row reducers,
diagonal generators and root matrices.
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Tutorial: Row operations

Let n ∈ Z>0. Let Eij be the n× n matrix with 1 in the (i , j) entry and 0
elsewhere.

Definition (root matrices, diagonal generators and row reducers)

Let i , j ∈ {1, . . . , n} with i 6= j . Let c ∈ Q. The root matrix xij(c) is

xij(c) ∈ Mn×n(Q) given by xij(c) = 1 + cEij .

Let i ∈ {1, . . . , n}. Let d ∈ Q with d 6= 0. The diagonal generator
hi(d) is

hi (d) = 1 + (d − 1)Eii .

Let i ∈ {1, . . . , n − 1} and let c ∈ Q. The row reducer si (c) is

si(c) = 1− Eii − Ei+1,i+1 + Ei ,i+1 + Ei+1,i + cEii .
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Row operations
Let

A =





3 −9 7
13 −21 35
300 −100 200



 and x13(54) =





1 0 54
0 1 0
0 0 1



 .

Left multiplying by x13(54) adds 54 · (row 3) to row 1:

x13(54)A =





1 0 54
0 1 0
0 0 1









3 −9 7
13 −21 35
300 −100 200





=





16203 −5409 10807
13 −21 35
300 −100 200



 .
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Row operations
Let

A =





3 −9 7
13 −21 35
300 −100 200



 and h3(6) =





1 0 0
0 1 0
0 0 6



 .

Left multiplying by h3(6) multiplies row 3 by 6:

h3(6)A =





1 0 0
0 1 0
0 0 6









3 −9 7
13 −21 35
300 −100 200





=





3 −9 7
13 −21 35
1800 −600 1200



 .
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Row operations
Let

A =





3 −9 7
13 −21 35
300 −100 200



 and s2(−5) =





1 0 0
0 −5 1
0 1 0



 .

Left multiplying by s2(−5) moves row 2 to be row 3 and makes row 2
equal to (−5) · (row 2) + (row 3):

s2(−5) · A =





1 0 0
0 −5 1
0 1 0









3 −9 7
13 −21 35
300 −100 200





=





3 −9 7
235 5 25
13 −21 35



 .
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Lecture 5: Finding inverses

Definition (Invertible matrices)

Let n ∈ Z>0. The set of invertible n × n matrices is

GLn(Q) =

{

A ∈ Mn×n(Q)
∣

∣

∣

there exists A−1 ∈ Mn×n(Q)
such that AA−1 = 1 and A−1A = 1.

}

Definition (root matrices, diagonal generators and row reducers)

Let n ∈ Z>0. Let Eij be the n× n matrix with 1 in the (i , j) entry and 0
elsewhere. Let i , j ∈ {1, . . . , n} with i 6= j . Let c ∈ Q. The root
matrices xkℓ(c), the diagonal generators and the row reducers are given
by

xkℓ(c) = 1 + cEkℓ, hk(d) = 1 + (d − 1)Ekk and

si(c) = 1− Eii − Ei+1,i+1 + Ei ,i+1 + Ei+1,i + cEii .

for c , d ∈ Q with d 6= 0, k , ℓ ∈ {1, . . . , n} with k 6= ℓ and
i ∈ {1, . . . , n − 1}.
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Example M6 Find the inverse of A =





1 2 1
−1 −1 1
0 1 3



.

Start with AA−1 = 1 which is




1 2 1
−1 −1 1
0 1 3



A−1 =





1 0 0
0 1 0
0 0 1



 .

Left multiply both sides by s1(−1)−1, which is the matrix





0 1 0
1 1 0
0 0 1



 , to get





−1 −1 1
0 1 2
0 1 3



A−1 =





0 1 0
1 1 0
0 0 1



 .

Left multiply both sides by s2(1)
−1, which is the matrix





1 0 0
0 0 1
0 1 −1



 , to get





−1 −1 1
0 1 3
0 0 −1



A−1 =





0 1 0
0 0 1
1 1 −1



 .
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Left multiply both sides by h3(−1)−1h1(−1)−1, which is the matrix





−1 0 0
0 1 0
0 0 −1



 , to get





1 1 −1
0 1 3
0 0 1



A−1 =





0 −1 0
0 0 1
−1 −1 1



 .

Left multiply both sides by x23(3)
−1, which is the matrix





1 0 0
0 1 −3
0 0 1



 , to get





1 1 −1
0 1 0
0 0 1



A−1 =





0 −1 0
3 3 −2
−1 −1 1



 .

Left multiply both sides by x13(−1)−1, which is the matrix





1 0 1
0 1 0
0 0 1



 , to get





1 1 0
0 1 0
0 0 1



A−1 =





−1 −2 1
3 3 −2
−1 −1 1



 .
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Left multiply both sides by x12(1)
−1, which is the matrix





1 −1 0
0 1 0
0 0 1



 , to get





1 0 0
0 1 0
0 0 1



A−1 =





−4 −5 3
3 3 −2
−1 −1 1



 .

Check:




−4 −5 3
3 3 −2
−1 −1 1









1 2 1
−1 −1 1
0 1 3



 =





1 0 0
0 1 0
0 0 1



 .

In summary,

A−1 =
x12(1)

−1x13(−1)−1x23(3)
−1

·h3(−1)−1h1(−1)−1 · s2(1)−1s1(−1)−1

and

A = s1(−1)s2(1) · h1(−1)h3(−1) · x23(3)x13(−1)x12(1).

51



Example M6 Find the inverse of A =





1 2 1
−1 −1 1
0 1 3



.

Start with AA−1 = 1 which is




1 2 1
−1 −1 1
0 1 3



A−1 =





1 0 0
0 1 0
0 0 1





Left multiply both sides by





1 0 0
1 1 0
0 0 1



 to get





1 2 1
0 1 2
0 1 3



A−1 =





1 0 0
1 1 0
0 0 1




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Left multiply both sides by





1 0 0
0 1 0
0 −1 1



 to get





1 2 1
0 1 2
0 0 1



A−1 =





1 0 0
1 1 0
−1 −1 1





Left multiply both sides by





1 0 −1
0 1 −2
0 0 1



 to get





1 2 0
0 1 0
0 0 1



A−1 =





2 1 −1
3 3 −2
−1 −1 1





Left multiply both sides by





1 −2 0
0 1 0
0 0 1



 to get





1 0 0
0 1 0
0 0 1



A−1 =





−4 −5 −3
3 3 −2
−1 −1 1




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Example M8 Find the inverse of

(

1 2
3 4

)

.

Start with AA−1 = 1 which is

(

1 2
3 4

)

A−1 =

(

1 0
0 1

)

.

Left multiply both sides by

(

0 1
1 −1

3

)

to get

(

3 4
0 2

3

)

A−1 =

(

0 1
1 −1

3

)

.

Left multiply both sides by

(

1
3 0
0 3

2

)

to get

(

1 4
3

0 1

)

A−1 =

(

0 1
3

3
2 −2

)

.

Left multiply both sides by

(

1 −4
3

0 1

)

to get

(

1 0
0 1

)

A−1 =

(

−2 1
3
2 −1

2

)

.
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Theorem (Inverses of products)

Let A,B ∈ GLn(Q). Then AB ∈ GLn(Q) and

(AB)−1 = B−1A−1.

This is because, by associativity,

(B−1A−1)(AB) = B−1(A−1A)B = B−1 · 1 · B = B−1B = 1,

and

(AB)(B−1A−1) = A−1(B−1B)A = A−1 · 1 · A = A−1A = 1.

The theorem tells us that if we want to find A−1 we can factor A into a
product of row reducers, diagonal generators and root matrices and
then multiply the inverses of the factors (in reverse order) to get the
inverse of A.

Theorem (Generators for GLn)

Let A ∈ GLn(Q). Then A can be written as a product of row reducers,
diagonal generators and root matrices.
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Lecture 6: Factoring and the rank theorem

Root matrices.

x12(c) =





1 c 0
0 1 0
0 0 1



 , x13(c) =





1 0 c
0 1 0
0 0 1



 , x23(c) =





1 0 0
0 1 c
0 0 1





Diagonal generators.

h1(d) =





d 0 0
0 1 0
0 0 1



 , h2(d) =





1 0 0
0 d 0
0 0 1



 , h3(d) =





1 0 0
0 1 0
0 0 d





Row reducers.

s1(c) =





c 1 0
1 0 0
0 0 1



 and s2(c) =





1 0 0
0 c 1
0 1 0




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Inverses of Root matrices. x12(c)
−1 =





1 −c 0
0 1 0
0 0 1



 ,

x13(c)
−1 =





1 0 −c
0 1 0
0 0 1



 , x23(c)
−1 =





1 0 0
0 1 −c
0 0 1





Inverses of Diagonal generators. h1(d)
−1 =





d−1 0 0
0 1 0
0 0 1



 ,

h2(d)
−1 =





1 0 0
0 d−1 0
0 0 1



 , h3(d)
−1 =





1 0 0
0 1 0
0 0 d−1





Inverses of Row reducers.

s1(c)
−1 =





0 1 0
1 −c 0
0 0 1



 and s2(c)
−1 =





1 0 0
0 0 1
0 1 −c




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Example A8. By multiplying out the matrices on the left hand side
check that

s4(1)s3(2)s2(3)s1(4)
·s4(5)s3(6)s2(7)

· · · s4(8)s3(9)
·s4(10)

=













4 7 9 10 1
3 6 8 1 0
2 5 1 0 0
1 1 0 0 0
1 0 0 0 0













.

Example A9. By multiplying out the matrices on the left hand side
check that

h1(15)h2(−3)h3(76)h4(−19)h5(2) =













15 0 0 0 0
0 −3 0 0 0
0 0 76 0 0
0 0 0 −19 0
0 0 0 0 2













.
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Example A5. By multiplying out the matrices on the left hand side
check that

x45(1)x35(2)x25(3)
·x15(4)x34(5)x24(6)
·x14(7)x23(8)x13(9)
·x12(10)

=













1 10 9 7 4
0 1 8 6 3
0 0 1 5 2
0 0 0 1 1
0 0 0 0 1













.

Example A6. By multiplying out the matrices on the left hand side
check that

x12(10)
−1x13(9)

−1x23(8)
−1

·x14(7)−1x24(6)
−1x34(5)

−1

·x15(4)−1x25(3)
−1x35(2)

−1

·x45(1)−1

=













1 −10 71 −302 186
0 1 −8 34 −21
0 0 1 −5 3
0 0 0 1 −1
0 0 0 0 1












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Then check that












1 −10 71 −302 186
0 1 −8 34 −21
0 0 1 −5 3
0 0 0 1 −1
0 0 0 0 1

























1 10 9 7 4
0 1 8 6 3
0 0 1 5 2
0 0 0 1 1
0 0 0 0 1













=













1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1













.

Definition (Invertible matrices)

Let n ∈ Z>0. The set of invertible n × n matrices is

GLn(Q) =

{

A ∈ Mn×n(Q)
∣

∣

∣

there exists A−1 ∈ Mn×n(Q)
such that AA−1 = 1 and A−1A = 1.

}
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Example A1. By multiplying out the matrices on the left hand side
check that

s1(
1
3)h1(3)h2(

2
3 )x12(

4
3 ) =

(

1 2
3 4

)

.

Example A2. By multiplying out the matrices on the left hand side
check that

x12(
4
3)

−1h2(
2
3 )

−1h1(3)
−1s1(

1
3)

−1 =

(

−2 1
3
2 −1

2

)

.

Then check that
(

−2 1
3
2 −1

2

)(

1 2
3 4

)

=

(

1 0
0 1

)

.
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Example A3. By multiplying out the matrices on the left hand side.
check that

s1(−1)s2(1)h1(−1)h3(−1)x23(3)x13(−1)x12(1) =





1 2 1
−1 −1 1
0 1 3





Example A4. By multiplying out the matrices on the left hand side
check that

x12(1)
−1x13(−1)−1x23(3)

−1

·h3(−1)−1h1(−1)−1s2(1)
−1s1(−1)−1 =





−4 −5 3
3 3 −2
−1 −1 1



 .

Then check that




1 2 1
−1 −1 1
0 1 3









−4 −5 3
3 3 −2
−1 −1 1



 =





1 0 0
0 1 0
0 0 1




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An upcoming lecture will specify a specific factoring algorithm that can
factor any matrix. The output of the factoring algorithm will give us the
following theorems.

Theorem (Factoring for invertible matrices)

Let n ∈ Z>0. Let A ∈ GLn(Q). The factoring algorithm gives

A = (product of si(c)s) · (product of hi (d)s) · (product of xij(c)s)

This last theorem tells us that we can factor any invertible matrix as a
product of si (c)s, hi(d)s and xij(c)s. The next theorem deals with
matrices that don’t have to be invertible.
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Theorem (Factoring for all matrices)

Let s, t ∈ Z>0. Let Eij be the t × s matrix with 1 in the (i , j) entry and
0 elswhere. For r ∈ {1, . . . ,min(s, t)} let

1r = E11 + · · ·+ Err .

Let A ∈ Mt×s(Q). The factoring algorithm gives

A = (product of si(c)s) · (product of hi (d)s) · (product of xij(c)s)
· 1r · (product of si (c)s) · (product of xij(c)s).

The number r that comes out of the factoring algorithm is the rank of
A. Later the rank of A will be realised as the dimension of the image of
A,

r = dim(im(A)) = rank(A) is the rank of A.
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Example M10. Let A =





1 −1 2 1
0 1 1 −2
1 −3 0 5



 ∈ M3×4(Q). Then

A = s2(0)





1 −1 2 1
1 −3 0 5
0 1 1 −2



 = s2(0)s1(1)





1 −3 0 5
0 2 2 −4
0 1 1 −2





= s2(0)s1(1)s2(2)





1 −3 0 5
0 1 1 −2
0 0 0 0





= s2(0)s1(1)s2(2)x12(−3)





1 0 0 5
0 1 1 −2
0 0 0 0



 .

Since this last right hand factor has a row of 0s then A is not invertible.

A = s2(0)s1(1)s2(2)x12(−3) · 12 · x23(1)x14(5)x24(−2).

So rank(A) = 2.
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Tutorial: Inverses of an arbitrary 2× 2 matrix

Example A1 Let a, b, c , d ∈ Q and find the inverse of A =

(

a b
c d

)

.

Start with AA−1 = 1, which is

(

a b
c d

)

A−1 =

(

1 0
0 1

)

.

Case 1: c 6= 0. Left multiply by s1(
a
c
)−1, which is the matrix

(

0 1
1 − a

c

)

, to get

(

c d
0 b − a

c
d

)

A−1 =

(

0 1
1 − a

c

)

.

Case 1a: c 6= 0 and ad − bc 6= 0. Left multiply by h1(c)
−1h2(

bc−ad
c

)−1,
which is the matrix

(

1
c

0
0 c

bc−ad

)

, to get

(

1 d
c

0 1

)

A−1 =

(

0 1
c

c
bc−ad

− a
bc−ad

)

.
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Left multiply by x12(
d
c
)−1, which is the matrix

(

1 −d
c

0 1

)

, to get

(

1 0
0 1

)

A−1 =

(

− d
bc−ad

1
c
+ ad

c(bc−ad)
c

bc−ad
− a

bc−ad

)

.

So

A−1 =

(

− d
bc−ad

bc−ad+ad
c(bc−ad)

c
bc−ad

− a
bc−ad

)

=
1

ad − bc

(

d −b
−c a

)

.

Case 1b: c 6= 0 and ad − bc = 0. Then

(

c d
0 0

)

A−1 =

(

0 1
1 − a

c

)

and there does not exist any matrix A−1 that makes this equation true.
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Case 2: c = 0. Then
(

a b
0 d

)

A−1 =

(

1 0
0 1

)

.

Case 2a: c = 0 and d 6= 0 and a 6= 0.
Left multiply by h2(d)

−1h1(a)
−1, which is the matrix

(

1
a

0
0 1

d

)

, to get

(

1 b
a

0 1

)

A−1 =

(

1
a

0
0 1

d

)

.

Left mulltiply by x12(
b
a
)−1, which is the matrix

(

1
a

0
0 1

d

)

, to get

(

1 0
0 1

)

A−1 =

(

1
a

− b
ad

0 1
d

)

=

(

d
ad

−b
ad

0 a
ad

)

.

Recalling that c = 0 then

A−1 =
1

ad − bc

(

d −b
−c a

)

.
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Theorem (Inverse of a 2× 2 matrix)

Let A=

[

a b
c d

]

∈ M2×2(Q). Then

1. If ad − bc 6= 0 then A−1 =
1

ad − bc

[

d −b
−c a

]

.

2. If ad − bc = 0 then A−1 does not exist.

Example M5. Let A =

[

2 −1
1 1

]

. Then

A−1 =
1

(2 · 1− 1 · (−1))

(

1 1
−1 2

)

=
1

3

(

1 1
−1 2

)

=

(

1
3

1
3

−1
3

2
3

)

.

Check:
(

2 −1
1 1

)(

1
3

1
3

−1
3

2
3

)

=

(

3
3 0
0 3

3

)

=

(

1 0
0 1

)

.

Suggestion: Figure out the formulas for the inverse of an arbitrary 3× 3
matrix.
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Lecture 7: The factoring algotihm

What are the si(c) matrices?
In math: Let n ∈ Z>0 and let Eij be the n× n matrix with 1 in the (i , j)
entry and 0 elsewhere. For i ∈ {1, . . . , n − 1} and p, q ∈ Z with q 6= 0
define

si
(

p
q

)

= 1− Eii − Ei+1,i+1 + Ei ,i+1 − Ei+1,i +
p
q
Ei ,i .

Note:

si
(

p
q

)−1
= 1− Eii − Ei+1,i+1 + Ei ,i+1 − Ei+1,i − p

q
Ei+1,i+1.

In English: si
(

p
q

)

is the n × n matrix with

(a) 1s on the diagonal except that the (i , i) enrty is c and the
(i + 1, i + 1) entry is 0, and

(b) all other entries are 0 except that the (i , i + 1) entry is 1 and the
(i + 1, i) entry is 0.
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What are the si(c) matrices?
By Cartoon: If n = 8 and p

q
= 7

12 then

s6
(

7
12

)

=

























1
1

1
1

1
7
12 1
1 0

1

























Note

s6
(

7
12

)−1
=

























1
1

1
1

1
0 1

1 − 7
12

1
























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We will factor off si (
p
q
) matrices,

step by step, to make more and more lower triangular entries 0.

Make lower triangular entries 0 in this order:













∗ ∗ ∗ ∗ ∗
4 ∗ ∗ ∗ ∗
3 7 ∗ ∗ ∗
2 6 9 ∗ ∗
1 5 8 10 ∗













.

To make the (nonzero) (i , j) entry of the matrix A into 0:

In Math: Let q be the (i , j)-entry of A and let p be the (i − 1, j) entry
of A. Assume q 6= 0. Then

A = si−1

(

p
q

)

B , where B = si−1

(

p
q

)−1
A,

and B has 0 in the (i , j)-entry.
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In English: Let q be the (i , j) entry of A. If q 6= 0 then make the (i , j)
into 0 as follows. Let p be the (i − 1, j) entry of A Then write

A = si−1

(

p
q

)

B , where

(a) The ith row of A moves up one row
to become the (i − 1)st row of B ,

(b) The ith row of B is ((the (i − 1)st row of A)-p
q
(ith row of A)), and

(c) all other rows of B are the same as the corresponding rows fo A.

In hybrid Math-English:

A = si−1

(

p
q

)

B , where

(a) rowi−1(B) = rowi (A),

(b) rowi(B) = rowi−1(A)− p
q
rowi (A),

(c) if j 6∈ {i − 1, i} then rowj(B) = row(A),
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In Cartoon: Suppose

A = i−1

i





















STUFF

0 0 p r t v x
0 0 q s u w y
0 0 0 z e f g





















, with q 6= 0.

Then
A = si−1

(

p
q

)

B ,

where

B = i−1

i





















STUFF

0 0 q s u w y
0 0 0 r − p

q
s t − p

q
u v − p

q
w x − p

q
y

0 0 0 z e f g





















.
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In English: Let q be the (i , j) entry of A. If q 6= 0 then make the (i , j)
into 0 as follows. Let p be the (i − 1, j) entry of A Then write

A = si−1

(

p
q

)

B , where

(a) The ith row of A moves up one row
to become the (i − 1)st row of B ,

(b) The ith row of B is ((the (i − 1)st row of A)-p
q
(ith row of A)), and

(c) all other rows of B are the same as the corresponding rows fo A.

In hybrid Math-English:

A = si−1

(

p
q

)

B , where

(a) rowi−1(B) = rowi (A),

(b) rowi(B) = rowi−1(A)− p
q
rowi (A),

(c) if j 6∈ {i − 1, i} then rowj(B) = row(A),
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Full row reduction.

Let s, t ∈ Z>0 and let A ∈ Mt×s(Q).

Let j1 be minimal such that

column j1 of A has a nonzero entry.

Let i1 be maximal such that A(i1, j1) 6= 0. Let

A(1) = s1

(

A(1,j1)
A(i1,j1)

)−1
s2

(

A(2,j1)
A(i1,j1)

)−1
· · · si1−1

(

A(i1−1,j1)
A(i1,j1)

)−1
A.

Let j2 be minimal such that

column j2 of A(1) has a nonzero entry below row 1.

Let i2 > 1 be maximal such that A(1)(i2, j2) 6= 0. Let

A(2) = s2

(

A(1)(2,j2)

A(1)(i2,j2)

)−1
s3

(

A(1)(3,j2)

A(1)(i2,j2)

)−1
· · · si2−1

(

A(1)(i2−1,j2)

A(1)(i2,j2)

)−1
A(1).
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Let j3 be minimal such that

column j3 of A(2) has a nonzero entry below row 2.

Let i3 > 2 be maximal such that A(2)(i3, j3) 6= 0. Let

A(3) = s3

(

A(2)(3,j3)

A(2)(i3,j3)

)−1
s4

(

A(2)(4,j3)

A(2)(i3,j3)

)−1
· · · si3−1

(

A(2)(i2−1,j2)

A(2)(i3,j3)

)−1
A(2).

Continue this process until it happens that there does not exist jr+1

such that column jr+1 of A(r) has a nonzero entry below row r .
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Then A(r) has the property that

the first nonzero entry in row j + 1

is to the right of the first nonzero entry in row j

and

A =(si1−1

(

A(i1−1,j11)
A(i1,j1)

)

· · · s2
(

A(2,j1)
A(i1,j1)

)

s1

(

A(1,j1)
A(i1,j1)

)

)

· (si2−1

(

A(1)(i2−1,j2)

A(1)(i2,j2)

)

· · · s3
(

A(1)(3,j2)

A(1)(i2,j2)

)

s2

(

A(1)(2,j2)

A(1)(i2,j2)

)

)

· · ·
· (sir−1

(

A(r−1)(jr−1,jr )

A(r−1)(ir ,jr )

)

· · · sr+1

(

A(r−1)(r+1,jr )

A(r−1)(ir ,jr )

)

sr

(

A(r−1)(r ,jr )

A(r−1)(ir ,jr )

)

)

· A(r).
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Then

A(r) =
(

h1(A
(r)(1, j1)) · · · hr (A(r)(r , jr ))

)

·
(

xr−1,jr

( A(r)(r − 1, jr )

A(r)(r − 1, jr−1)

)

· · · x1,jr
(A(r)(1, jr )

A(r)(1, j1)

))

· · ·

·
(

x2,j3

(A(r)(2, j3)

A(r)(2, j2)

)

x1,j3

(A(r)(1, j3)

A(r)(1, j1)

))

· x1,j2
(A(r)(1, j2)

A(r)(1, j1)

)

· R ,

where R is given by

R(k , j) =











A(r)(k,j)

A(r)(k,jk )
,

if k ∈ {1, . . . , r} and j ∈ {jk , jk + 1, . . . , s}
and j 6∈ {jk+1, . . . , jr},

0, otherwise.
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Let cr+1 < · · · < cs−1 < cs be such that
{j1, . . . , jr , cr+1, . . . , cs} = {1, . . . , s}. Then

R = 1r · Q, where Q ∈ GLs(Q) is given by

Q =
(

xr ,s

(A(r)(r , cs)

A(r)(r , jr )

)

· · · x1,s
(A(r)(1, cs )

A(r)(1, j1)

))

·
(

xr ,s−1

(A(r)(r , cs−1)

A(r)(r , jr )

)

· · · x1,s
(A(r)(1, cs−1)

A(r)1, j1

))

· · ·

·
(

xr ,r+1

(A(r)(r , cr+1)

A(r)(r , jr )

)

· · · x1,r+1

(A(r)(1, cr+1)

A(r)(1, j1)

))

· (sr · · · sjr−1) · · · (s2 · · · sj2−1) · (s1 · · · sj1−1).
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Summary. In summary, A = P1rQ where P ∈ GLt(Q) and
Q ∈ GLs(Q) are given by

P =(si1−1

(

A(i1−1,j11)
A(i1,j1)

)

· · · s2
(

A(2,j1)
A(i1,j1)

)

s1

(

A(1,j1)
A(i1,j1)

)

)

· (si2−1

(

A(1)(i2−1,j2)

A(1)(i2,j2)

)

· · · s3

(

A(1)(3,j2)

A(1)(i2,j2)

)

s2

(

A(1)(2,j2)

A(1)(i2,j2)

)

)

· · ·
· (sir−1

(

A(r−1)(jr−1,jr )

A(r−1)(ir ,jr )

)

· · · sr+1

(

A(r−1)(r+1,jr )

A(r−1)(ir ,jr )

)

sr

(

A(r−1)(r ,jr )

A(r−1)(ir ,jr )

)

)
(

h1(A
(r)(1, j1)) · · · hr (A(r)(r , jr ))

)

·
(

xr−1,jr

( A(r)(r − 1, jr )

A(r)(r − 1, jr−1)

)

· · · x1,jr
(A(r)(1, jr )

A(r)(1, j1)

))

· · ·

·
(

x2,j3

(A(r)(2, j3)

A(r)(2, j2)

)

x1,j3

(A(r)(1, j3)

A(r)(1, j1)

))

· x1,j2
(A(r)(1, j2)

A(r)(1, j1)

)
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and

Q =
(

xr ,s

(A(r)(r , cs )

A(r)(r , jr )

)

· · · x1,s
(A(r)(1, cs )

A(r)(1, j1)

))

·
(

xr ,s−1

(A(r)(r , cs−1)

A(r)(r , jr )

)

· · · x1,s
(A(r)(1, cs−1)

A(r)1, j1

))

· · ·

·
(

xr ,r+1

(A(r)(r , cr+1)

A(r)(r , jr )

)

· · · x1,r+1

(A(r)(1, cr+1)

A(r)(1, j1)

))

· (sr (0) · · · sjr−1(0)) · · · (s2(0) · · · sj2−1(0)) · (s1(0) · · · sj1−1(0)).

Theorem (The rank theorem)

Let A ∈ Mt×s(Q). Then there exist P ∈ GLt(Q) and Q ∈ GLs(Q) and
r ∈ {1, . . . ,min(s, t)} such that

A = P1rQ, where 1r = E11 + E22 + · · ·+ Err .
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Lecture 8: Solutions of linear systems

If

A =

(

3 1
−1 4

)

and x =

(

x1
x2

)

and b =

(

7
2

)

then

Ax = b is the same as

(

3 1
−1 4

)(

x1
x2

)

=

(

7
2

)

is the same as
(

3x1 + x2
−x1 + 4x2

)

=

(

7
2

)

which is the same as
3x1 + x2 = 7
−x1 + 4x2 = 2
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In general Ax = b looks like







A11 A12 · · · A1n
...

...
...

Am1 Am2 · · · Amn

















x1
x2
...
xn











=











b1
b2
...
bn











.

Definition (Solutions of a linear system)

Let A ∈ Mm×n(Q) and b ∈ Mn×1(Q). The set of solutions of Ax = b is

Sol(Ax = b) =

















x1
...
xn






∈ Mn×1(Q)

∣

∣

∣
Ax = b











.
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Example A. If A =

(

1 0
0 1

)

and b =

(

7
2

)

then Sol(Ax = b) =

{(

7
2

)}

and
x1 + 0x2 = 7,
0x1 + x2 = 2.

has exactly one solution
x1 = 7,
x2 = 2.

If A =

(

1 0
1 0

)

and b =

(

7
2

)

then Sol(Ax = b) = ∅ and

x1 + 0x2 = 7,
x1 + 0x2 = 2.

has no solutions.

If A =

(

1 0
0 0

)

and b =

(

7
0

)

then Sol(Ax = b) =

{(

7
c

)

∣

∣

∣ c ∈ Q

}

,

x1 + 0x2 = 7,
0x1 + 0x2 = 0.

has infinitely many
solutions

x1 = 7,
x2 = c , for any c ∈ Q.
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Example LS2,3&4. If A =

(

2 −1
1 1

)

, x =

(

x
y

)

and b =

(

3
0

)

then

Ax = b is
(

2 −1
1 1

)(

x
y

)

=

(

3
0

)

which is
2x − y = 3,
x + y = 0.

Start with
(

2 −1
1 1

)(

x
y

)

=

(

3
0

)

.

Left multiply both sides by

(

0 1
1 −2

)

to get

(

1 1
0 −3

)(

x
y

)

=

(

0
3

)

.
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Left multiply both sides by

(

0 1
1 −1

3

)

to get

(

1 1
0 1

)(

x
y

)

=

(

0
−1

)

.

Left multiply both sides by

(

1 −1
0 1

)

to get

(

1 0
0 1

)(

x
y

)

=

(

1
−1

)

which is
x = 1,
y = −1.

So Sol(Ax = b) =

{(

1
−1

)}

(exactly one solution).
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Example LS5&6. Solve the following system of linear equations.

4x − 2y + 5z = 31,

2x − 3y − 2z = 13,

x − 3y + 2z = 11.

In matrix form, this is Ax = b, where

A =





4 −2 5
2 −3 −2
1 −3 2



 , x =





x
y
z



 , b =





31
13
11



 .

Start with




4 −2 5
2 −3 −2
1 −3 2









x
y
z



 =





31
13
11



 .

88



Left multiply both sides by





1 0 0
0 0 1
0 1 −2



 to get





4 −2 5
1 −3 2
0 3 −6









x
y
z



 =





31
11
−9



 .

Left multiply both sides by





0 1 0
1 −4 1
0 0 1



 to get





1 −3 2
0 10 −3
0 3 −6









x
y
z



 =





11
−13
−9



 .

Left multiply both sides by





1 0 0
0 0 1
0 1 −10

3



 to get





1 −3 2
0 3 −6
0 0 17









x
y
z



 =





11
−9
17



 .

89



Left multiply both sides by





1 0 0
0 1

3 0
0 0 1

17



 to get





1 −3 2
0 1 −2
0 0 1









x
y
z



 =





11
−3
1



 .

Left multiply both sides by





1 0 0
0 1 2
0 0 1



 to get





1 −3 2
0 1 0
0 0 1









x
y
z



 =





11
−1
1



 .

Left multiply both sides by





1 0 −2
0 1 0
0 0 1



 to get





1 −3 0
0 1 0
0 0 1









x
y
z



 =





9
−1
1



 .
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Left multiply both sides by





1 3 0
0 1 0
0 0 1



 to get





1 0 0
0 1 0
0 0 1









x
y
z



 =





6
−1
1



 ,

So

x = 6,
y = −1,
z = 1,

or, equivalently, Sol(Ax = b) =











6
−1
1











(exactly one solution).
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Solving problems with an unknown parameter.
Example L11. Find the values of a, b ∈ Q for which the system

x − 2y + z = 4,
2x − 3y + z = 7,

3x − 6y + az = b,
has

(a) no solution,
(b) a unique solution,
(c) LOTS of solutions.

In matrix form this system is





3 −6 a
2 −3 1
1 −2 1









x
y
z



 =





b
7
4



 .

Multiply both sides by





1 0 0
0 0 1
0 1 −2



 to get





3 −6 a
1 −2 1
0 1 −1









x
y
z



 =





b
4
−1



 .
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Multiply both sides by





0 1 0
1 −3 0
0 0 1



 to get





1 −2 1
0 0 a− 3
0 1 −1









x
y
z



 =





4
b − 12
−1



 .

Multiply both sides by





1 0 0
0 0 1
0 1 0



 to get





1 −2 1
0 1 −1
0 0 a − 3









x
y
z



 =





4
−1

b − 12



 .

Multiply both sides by





1 2 0
0 1 0
0 0 1



 to get





1 0 −1
0 1 −1
0 0 a − 3









x
y
z



 =





2
−1

b − 12



 .
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Case 1: a − 3 6= 0. Multiply both sides by





1 0 0
0 1 0
0 0 1

a−3



 to get





1 0 −1
0 1 −1
0 0 1









x
y
z



 =





2
−1
b−12
a−3



 .

Multiply both sides by





1 0 0
0 1 1
0 0 1



 to get





1 0 −1
0 1 0
0 0 1









x
y
z



 =





2

−1 + b−12
a−3

b−12
a−3



 .

Multiply both sides by





1 0 1
0 1 0
0 0 1



 to get





1 0 0
0 1 0
0 0 1









x
y
z



 =





2 + b−12
a−3

−1 + b−12
a−3

b−12
a−3



 .
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So
x = 2 + b−12

a−3 ,

y = −1 + b−12
a−3 ,

z = b−12
a−3 ,

or, equivalently,

Sol(Ax = b) =











2 + b−12
a−3

−1 + b−12
a−3

b−12
a−3











(exactly one solution).

Case 2: a − 3 = 0. Then





1 0 −1
0 1 −1
0 0 0









x
y
z



 =





2
−1

b − 12



 .

Case 2a: b − 12 6= 0. If b − 12 6= 0 then this system has no solution.
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Case 2b: b − 12 = 0. If b − 12 = 0 then this system is

x − z = 2,
y − z = −1,

which is
x = 2 + z ,
y = −1 + z ,
z = 0 + z ,

where z can be any number. So

Sol(Ax = b) =





2
1
0



+ span{





1
1
1



 ,

and there are LOTS of solutions.
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Theorem

If A ∈ GLn(Q) then every linear system of the form Ax = b has a
unique solution, given by

x = A−1b.

So, if A ∈ GLnQ) then

Sol(Ax = b) = {A−1b}, which contains exactly one element.

This is because,

left multiplying both sides of Ax = b by A−1,

gives
A−1Ax = A−1b, which says x = A−1b.
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Lecture 9: Kernels and Images

The set of s × 1 matrices with entries in Q is

Qs = Ms×1(Q).

Definition (Kernel and image of a matrix)

Let A ∈ Mt×s(Q). The kernel of A is

ker(A) = {x ∈ Qs | Ax = 0}

and the image of A is

im(A) = {Ax | s ∈ Qs}.

Definition (Solutions of a linear system)

Let A ∈ Mt×s(Q) and let b ∈ Qs . The set of solutions of the linear
system Ax = b is

Sol(Ax = b) = {x ∈ Qs | Ax = b}.
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Example LS7. If A =





1 0 1
0 2 2
0 0 0



, x =





x1
x2
x3



 and b =





−2
4
−3



 then

Ax = b is the system

x1 + 0x2 + x3 = −2,
0x1 + 2x2 + 2x3 = 4,

0x1 + 0x2 + 0x3 = −3,
which has no solutions

(no choice of x1, x2x3 ∈ Q will satisfy the third equation). So

Sol(Ax = b) = ∅.

Then Ax = 0 is the system

x1 + 0x2 + x3 = 0,
0x1 + 2x2 + 2x3 = 0,
0x1 + 0x2 + 0x3 = 0,

which is
x1 = −x3,
x2 = x3,
x3 = x3,

where x3 can be any number.
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So

ker(A) =







x3





−1
−1
1





∣

∣

∣ x3 ∈ Q







= Q-span











−1
−1
1











.

Then

im(A) =











1 0 1
0 2 2
0 0 0









x1
x2
x3





∣

∣

∣ x1, x2, x3 ∈ Q







=







x1





1
0
0



+ x2





0
2
0



+ x3





1
2
0





∣

∣

∣ x1, x2, x3 ∈ Q







= Q-span







columns of





1 0 1
0 2 2
0 0 0










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Example LS8. If A =





1 0 0
0 1 0
0 0 1



 and b =





−2
4
15



 then

x1 + 0x2 + 0x3 = 2,
0x1 + 1x2 + 0x3 = −4,
0x1 + 0x2 + x3 = 15,

which has exactly
one solution

x1 = 2,
x2 = −4,
x3 = 15.

Sol(Ax = b) =











2
−4
15











.

Then Ax = 0 is the system

x1 + 0x2 + 0x3 = 0,
0x1 + 1x2 + 0x3 = 0,
0x1 + 0x2 + x3 = 0,

which has exactly
one solution

x1 = 0,
x2 = 0,
x3 = 0.
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So

ker(A) =











0
0
0











.

Then

im(A) =











1 0 0
0 1 0
0 0 1









x1
x2
x3





∣

∣

∣ x1, x2, x3 ∈ Q







=







x1





1
0
0



+ x2





0
1
0



+ x3





0
0
1





∣

∣

∣ x1, x2, x3 ∈ Q







=











x1
x2
x3





∣

∣

∣
x1, x2, x3 ∈ Q







= Q3.
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Example LS9. If

A =









1 2 0 0 5
0 0 1 0 6
0 0 0 1 7
0 0 0 0 0









and b =





1
2
3



 then

x1 + 2x2 + 0x3 + 0x4 + 5x5 = 1,
0x1 + 0x2 + 1x3 + 0x4 + 6x5 = 2,
0x1 + 0x2 + 0x3 + x4 + 7x5 = 3,
0x1 + 0x2 + 0x3 + 0x4 + 0x5 = 0,

which has an infinite
number of solutions.

More specifically,

Sol(Ax = b) =























x =













x1
x2
x3
x4
x5













∣

∣

∣

x1 = 1− 2x2 − 5x5,
x2 ∈ Q,

x3 = 2− 6x5,
x4 = 3− 7x5,
x5 ∈ Q






















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Equivalently,

Sol(Ax = b) =























x =













1
0
2
3
0













+









−2x2
x2
0
0









+













−5x5
0

−6x5
−7x5
x5













∣

∣

∣
x2, x5 ∈ Q























=













1
0
2
3
0













+























x2













−2
1
0
0
0













+ x5













−5
0
−6
−7
1













∣

∣

∣ x2, x5 ∈ Q























=













1
0
2
3
0













+Q-span



































−2
1
0
0
0













,













−5
0
−6
−7
1



































= p+ ker(A).
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Theorem (Computing solutions of linear systems)

Let A ∈ Mt×s(Q) and let b ∈ Qt . Then there exist P ∈ GLt(Q) and
Q ∈ GLs(Q) and r ∈ {1, . . . ,min(s, t)} such that

A = P1rQ, where 1r = E11 + E22 + · · ·+ Err

and

Sol(Ax = b) =























































Q−1

























(P−1b)1
...

(P−1b)r

0
...

0

























+ ker(A),

if entries

r+1, . . . , t

of P−1b

are all 0,

∅, otherwise.
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Lecture 10: Kernel and image of a matrix

Definition (Kernel and image of a matrix)

Let A ∈ Mt×s(Q).

The kernel of A is ker(A) = {x ∈ Qs | Ax = 0}.
The image of A is im(A) = {y ∈ Qt | there exists x such that y = Ax}.

im(A) = {Ax | x ∈ Rs} =















| |
a1 · · · as
| |











x1
...
xs







∣

∣

∣ x1, . . . , xs ∈ R











=







x1





|
a1
|



+ · · ·+ xs





|
as
|





∣

∣

∣ x1, . . . , xs ∈ R







= R-span{columns of A}.

So im(A) is the set of linear combinations of the columns of A.
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The following Proposition specifies how the kernel and image change if
A is multiplied (on the left or the right) by an invertible matrix.

Proposition (How kernel and image change)

Let A ∈ Mt×s(Q) and P ∈ GLt(Q) and Q ∈ GLs(Q). Then

ker(PA) = ker(A), ker(AQ) = Q−1 · ker(A),
im(PA) = P · im(A), im(AQ) = im(A).

ker(PA) = {x ∈ Qs | PAx = 0} = {x ∈ Qs | P−1PAx = P−10}
= {x ∈ Qs | Ax = 0} = ker(A),

ker(AQ) = {x ∈ Qs | AQx = 0} = {Q−1Qx ∈ Qs | AQx = 0}
= Q−1 · {Qx ∈ Qs | AQx = 0}
= Q−1{y ∈ Qs | Ay = 0} = Q−1 · ker(A),

im(PA) = {PAx | x ∈ Qs} = P{Ax | x ∈ Qs} = P · im(A),

im(AQ) = {AQx | x ∈ Qs} = {Ay | Q−1y ∈ Qs}
= {Ay | y ∈ Qs} = im(A). �
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A subspace of Qs is a subset W ⊆ Qs such that

(a) 0 ∈ W ,

(b) If w1,w2 ∈ W then w1 + w2 ∈ W ,

(c) If w ∈ W and c ∈ Q then cw ∈ W .

Proposition

Let A ∈ Mt×s(Q). Then ker(A) is a subspace of Qs .

Proof. (a) Since A0 = 0 then 0 ∈ ker(A).

(b) Assume w1,w2 ∈ ker(A). Then Aw1 = 0 and Aw2 = 0. So

A(w1 + w2) = Aw1 + Aw2 = 0 + 0 = 0. So w1 + w2 ∈ ker(A).

(c) Assume w ∈ ker(A) and c ∈ Q. Then Aw = 0 and

A(cw) = cAw = c0 = 0. So cw ∈ ker(A).

So ker(A) is a subspace of Qs .
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A subspace of Qt is a subset Y ⊆ Qt such that

(a) 0 ∈ Y ,

(b) If y1, y2 ∈ Y then y1 + y2 ∈ Y ,

(c) If y ∈ Y and c ∈ Q then cy ∈ Y .

Proposition

Let A ∈ Mt×s(Q). Then im(A) is a subspace of Qt .

Proof. (a) Since 0 = A0 then 0 ∈ im(A).

(b)Assume y1, y2 ∈ im(A). Then there exist x1, x2 ∈ Qs such that
y1 = Ax1 and y2 = Ax2. Then

y1 + y2 = Ax1 + Ax2 = A(x1 + x2). So y1 + y2 ∈ im(A).

(c) Assume y ∈ im(A) and c ∈ Q. Then there exists x ∈ Qs such that
y = Ax . Then

cy = cAx = A(cx). So cy ∈ im(A).

So im(A) is a subspace of Qt .
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Let W be a subspace of Qs . A set B = {b1, . . . , bk} is a basis of W if
every element of W is

a unique linear combination of b1, . . . , bk .

Let Y be a subspace of Qt . A set D = {d1, . . . , bℓ} is a basis of Y if
every element of Y is

a unique linear combination of d1, . . . , dℓ.

A set B = {b1, . . . , bk} is a basis of ker(A) if every element of ker(A) is

a unique linear combination of b1, . . . , bk .

A set D = {d1, . . . , dℓ} is a basis of im(A) if every element of im(A) is

a unique linear combination of d1, . . . , dℓ.
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Let t, s ∈ Z>0 and let Eij be the t × s matrix with 1 in the (i , j) entry
and 0 elsewhere. Let r ∈ {1, . . . ,min(s, t)} and let

1r = E11 + · · ·+ Err .

Let e1, . . . , es be the standard basis of Qs . Then

{er+1, . . . , es} is a basis of ker(1r ).

If Q ∈ GLs(Q) is invertible then

{Q−1er+1, . . . ,Q
−1es} is a basis of Q−1 ker(1r ).

For example, if s = 5 and t = 6 and r = 2 then

12 =

















1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

















and ker(12) = span



































0
0
1
0
0













,













0
0
0
1
0













,













0
0
0
0
1



































.
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Let t, s ∈ Z>0 and let Eij be the t × s matrix with 1 in the (i , j) entry
and 0 elsewhere. Let r ∈ {1, . . . ,min(s, t)} and let

1r = E11 + · · ·+ Err .

Let e1, . . . , et be the standard basis of Qt . Then

{e1, . . . , er} is a basis of im(1r ).

If P ∈ GLt(Q) is invertible then

{Pe1, . . . ,Per} is a basis of P im(1r ).

For example, if s = 5 and t = 6 and r = 2 then

12 =

















1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

















and im(12) = span















































1
0
0
0
0
0

















,

















0
1
0
0
0
0















































.
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Theorem (Computing kernels and images)

Let P ∈ GLt(Q), Q ∈ GLs(Q). Let r ∈ {1, . . . ,min(s, t)} and let

1r = E11 + E22 + · · · + Err in Mt×s(Q).

Let
A = P1rQ.

Then
ker(A) has basis {last s−r columns of Q−1},

im(A) has basis {first r columns of P}.

Proof. By the How Kernel and Image Change Proposition

ker(A) = ker(P1rQ) = ker(1rQ) = Q−1 ker(1r ) and

im(A) = im(P1rQ) = im(P1r ) = P im(1r )
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Since {Q−1er+1, . . . ,Q
−1es} is a basis of Q−1 ker(1r ) then

ker(A) has basis {last s−r columns of Q−1},

Since {Pe1, . . . ,Per} is a basis of P im(1r ) then

im(A) has basis {first r columns of P}. �

Let A ∈ Mt×s(Q). By definition,

dim(ker(A)) is the number of elements in a basis of ker(A), and

dim(im(A)) is the number of elements in a basis of im(A).

From the Computing Kernels and Images Theorem,

dim(ker(A)) = s − r and dim(im(A)) = r = rank(A).

Corollary (rank-nullity theorem)

Let A ∈ Mt×s(Q). Since (s − r) + r = s then

dim(im(A)) + dim(ker(A)) = (number of columns of A).
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The following proposition shows that every invertible matrix is square
and has kernel equal to {0}.

Proposition (Invertible matrices are square)

Let A ∈ Mt×s(Q) and let r = rank(A). Assume there exists
B ∈ Ms×t(Q) such that AB = 1 and BA = 1. Then

ker(A) = 0, im(A) = Qt and r = s = t.

Proof. (a) Assume Ax = 0. Then

x = BAx = B0 = 0. So ker(A) = {0}.
(b) If y ∈ Qt then y = ABy = A(By) and y ∈ im(A). So

Im(A) = Qt .

(c) Let P ∈ GLt(Q) and Q ∈ GLs(Q) be such that A = P1rQ.
Since ker(A) = 0 and ker(A) = span{Q−1er+1, . . . ,Q

−1s} then r = s.
Since r = s and Qt = Im(A) has basis {Pe1, . . . ,Pes} then

Qt = P−1Qt has basis {e1, . . . , es}. So r = s = t. �
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Example V27&28. Let

S = {|1, 3,−1, 1〉, |2, 6, 0, 4〉, |3, 9,−2, 4〉 }.
Then

S =























1
3
−1
1









,









2
6
0
4









,









3
9
−2
4























and

R-span(S) = im(A), where A =









1 2 3
3 6 0
−1 0 −2
1 4 4









.

Now

A =









1 2 0 0
3 6 0 0
−1 0 1 0
1 4 0 1

















1 0 0
0 1 0
0 0 0
0 0 0













1 0 2

0 1 1
2

0 0 1



 = P12Q,
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where

P =









1 2 0 0
3 6 0 0
−1 0 1 0
1 4 0 1









, 12 =









1 0 0
0 1 0
0 0 0
0 0 0









, Q =





1 0 2
0 1 1

2
0 0 1



 .

Then

im(A) = im(P12Q) = P im(12) = span















P









1
0
0
0









,P









0
1
0
0























.

Thus

im(A) has basis























1
3
−1
1









,









2
6
0
4























.
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Since

ker(A) = ker(P12Q) = ker(12Q) = Q−1 ker(12)

and Q−1 =





1 0 −2
0 1 −1

2
0 0 1



 then ker(A) = R-span











−2
1
2
1











.

Thus ker(A) has basis {|−2, 12 , 1〉}.

118



Lecture 11: Eigenvalues and eigenvectors

Definition (Eigenvectors and eigenvalues.)

Let A ∈ Mn(Q).

• An eigenvalue of A is an element λ ∈ Q such that ker(A− λ) 6= 0.

Let A ∈ Mn(Q) and λ ∈ Q.

• An eigenvector of A of eigenvalue λ is a nonzero element of
ker(A− λ).

If v is an eigenvector of A of eigenvalue λ then

(A− λ)v = 0 and Av = λv .
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Definition (Linearly independent eigenvectors)

Let A ∈ Mn(Q) and let p1, . . . , pk be eigenvectors of A. The set
{p1, . . . , pk} is linearly independent if p1, . . . , pk satisfy the condition

if c1, . . . , ck ∈ Q and c1p1 + · · ·+ ckpk = 0

then c1 = 0 and c2 = 0 and . . . and ck = 0.

Theorem (Diagonalization.)

Let A ∈ Mn×n(F). The matrix A has n linearly independent
eigenvectors p1, . . . ,pn ∈ Fn with eigenvalues λ1, . . . , λn if and only if
A = PDP−1 where,

P =





| |
p1 · · · pn
| |



 and D = diag(λ1, . . . , λn) =







λ1

. . .

λn







so that p1, . . . ,pn are the columns of P and D is the diagonal matrix
with diagonal entries λ1, . . . , λn.
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Example EV2,6&9. Find the eigenvalues of A =

(

1 4
1 1

)

.

First,

A− t =

(

1− t 4
1 1− t

)

=

(

1− t 1
1 0

)(

1 1− t
0 4− (1− t)2

)

=

(

1− t 1
1 0

)(

1 1− t
0 −(t + 1)(t − 3)

)

Case 1: t + 1 = 0. Then

A+ 1 =

(

2 1
1 0

)(

1 2
0 0

)

and ker(A+ 1) = span

{(

−2
1

)}

Case 1: t − 3 = 0. Then

A− 3 =

(

−2 1
1 0

)(

1 −2
0 0

)

and ker(A− 3) = span

{(

2
1

)}

.
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If P =

(

−2 2
1 1

)

and D =

(

−1 0
0 3

)

then P−1 =
1

4

(

−1 2
1 2

)

and PDP−1 =

(

−2 2
1 1

)(

−1 0
0 3

)

· 1
4

(

−1 2
1 2

)

= 1
4

(

−2 2
1 1

)(

1 −2
3 6

)

= 1
4

(

4 16
4 4

)

=

(

1 4
1 1

)

= A.

The characteristic polynomial of A is

det(A− t) = det(D − t) = (−1− t)(3− t).
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Example EV3,4&10. Find the eigenvalues of A =





2 −3 6
0 5 −6
0 1 0



.

Find ker(A− t) by row reduction:

A− t =





2− t −3 6
0 5− t −6
0 1 0− t





=





1 0 0
0 5− t 1
0 1 0









2− t −3 6
0 1 −t
0 0 −6− (5− t)(−t)





=





1 0 0
0 5− t 1
0 1 0









1 3 0
0 1 0
0 0 1









2− t 0 3(2− t)
0 1 −t
0 0 −(t2 − 5t + 6)





=





1 3 0
0 5− t 1
0 1 0









2− t 0 3(2− t)
0 1 −t
0 0 −(t − 2)(t − 3)



 .
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Case 1: t − 2 = 0. Then

A− 2 =





1 3 0
0 5− 2 1
0 1 0









0 0 0
0 1 −2
0 0 0





and

ker(A− 2) = ker





0 0 0
0 1 −2
0 0 0



 = span











1
0
0



 ,





0
2
1











.

Case 2: t − 3 = 0. Then

A− 3 =





1 3 0
0 5− 3 1
0 1 0









2− 3 0 3(2 − 3)
0 1 −3
0 0 0





=





1 3 0
0 2 1
0 1 0









−1 0 −3
0 1 −3
0 0 0




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and

ker(A− 3) = ker





−1 0 −3
0 1 −3
0 0 0



 = span











−3
3
1











.

Then A = PDP−1 where

P =





1 0 −3
0 2 3
0 1 1



 , D =





2 0 0
0 2 0
0 0 3



 ,

and P−1 = −





−1 0 0
−3 1 −1
6 −3 2





t

=





1 3 −6
0 −1 3
0 1 −2



 .

The characteristic polynomial of A is

det(A− t) = det(D − t) = (2− t)2(3− t).
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Example EV5,8&12. As an element of M2×2(R), the matrix

A =

(

0 1
−1 0

)

has no eigenvalues and no eigenvectors.

The linear transformation

T : R2 → R2

v 7→ Av
is a rotation of 3π

2 about (0, 0).

As an element of M2×2(C), the matrix

A =

(

0 1
−1 0

)

has two eigenvalues, i and −i .

ker(A − i) = span

{(

i
1

)}

and ker(A+ i) = span

{(

−i
1

)}

.

(

i
1

)

is an eigenvector of eigenvalue i and
(

−i
1

)

is an eigenvector of eigenvalue −i .
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If

P =

(

−i i
1 1

)

and D =

(

i 0
0 −i

)

then P−1 =
1

−2i

(

1 −i
−1 −i

)

and

PDP−1 =

(

−i i
1 1

)(

i 0
0 −i

)

· 1

−2i

(

1 −i
−1 −i

)

= 1
2 i

(

−i i
1 1

)(

i 1
i −1

)

=

(

0 1
−1 0

)

= A.

The characteristic polynomial of A is

det(A− t) = det(D − t) = (i − t)(−i − t) = t2 + 1.
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Example EV11. If PDP−1 = A then the columns of P are linearly
independent eigenvectors of A. Here is an example where A does not
have n linearly independent eigenvectors.

If A =

(

1 2
0 1

)

then A− t =

(

1− t 2
0 1− t

)

which has a single row of 0s when t = 1.
(The characteristic polynomial of A is det(A− t) = (1− t)2.)

ker(A− 1) = span

{(

1
0

)}

.

Since A does not have two linearly independent eigenvectors then

A is not diagonalizable.
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Lecture 12: Symmetric, Hermitian, unitary and orthogonal

matrices

Definition (Transpose of a matrix)

Let A ∈ Mt×s(Q). The transpose of A is AT ∈ Ms×t(Q) given by

(AT )ij = Aji , for i ∈ {1, . . . , s} and j ∈ {1, . . . , t}.

Example M4. If A =

(

1 2 3
4 5 6

)

then AT =





1 4
2 5
3 6



.

Definition (Symmetric, Hermitian, Unitary, Orthogonal matrices.)

A symmetric matrix is A ∈ Mn×n(C) such that A = AT .

An orthogonal matrix is A ∈ Mn×n(C) such that AAT = 1.

A Hermitian matrix is A ∈ Mn×n(C) such that A = A
T
.

A unitary matrix is A ∈ Mn×n(C) such that AA
T
= 1.
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Example IP22. Let A

(

1 i
−i 1

)

and B =

(

−i 0
0 −i

)

. Since

A∗ = ĀT =

(

1 i
−i 1

)

= A and B∗ = B̄T =

(

−i 0
0 −i

)

6= B

then A is Hermitian and B is not Hermitian.

Example IP21. The matrix U = 1√
2

(

−i i
1 1

)

is unitary since

UU∗ =
1√
2

(

−i i
1 1

)

1√
2

(

i 1
−i 1

)

=
1

2

(

2 0
0 2

)

=

(

1 0
0 1

)

.

Example IP15. Q =

(

cos θ − sin θ
sin θ cos θ

)

is orthogonal since

QQT =

(

cos θ − sin θ
sin θ cos θ

)(

cos θ sin θ
− sin θ cos θ

)

=

(

cos2 θ + sin2 θ 0
0 cos2 θ + sin2 θ

)

=

(

1 0
0 1

)

.
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Definition (The general linear group)

The general linear group GLn(R) is the set

GLn(R) =

{

A ∈ Mn×n(R)
∣

∣

∣

there exists A−1 ∈ Mn×n(R)
such that AA−1 = 1 and A−1A = 1

}

Definition (The orthogonal and unitary groups.)

The orthogonal group On(R) is the set

On(R) = {A ∈ Mn×n(R) | AAT = 1}.

The unitary group Un(C) is the set

Un(C) = {A ∈ Mn×n(C) | AAT
= 1}.

Example IP17. Assume Q ∈ On(R). Then 1 = QQT and

1 = det(1) = det(QQT ) = det(Q) det(QT ) = det(Q) det(Q) = det(Q)2.

So det(Q) ∈ {1,−1}.
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Definition (Standard inner products on Rn and Cn)

(a) The standard inner product on Rn is 〈, 〉 : Rn × Rn → Rn given by

〈x, y〉 = x1y1 + · · ·+ xnyn,

if x = |x1, . . . , xn〉 and y = |y1, . . . , yn〉.
(b) The standard inner product on Cn is 〈, 〉 : Cn × Cn → Cn given by

〈x, y〉 = x1y1 + · · ·+ xnyn,

if x = |x1, . . . , xn〉 and y = |y1, . . . , yn〉.

Example IP16. Let u, v ∈ Rn and let Q ∈ On(R). Then

〈u|v〉 = uT v and

〈Qu|Qv〉 = (Qu)TQv = uTQTQv = uT · 1 · v = uT v .

So 〈Qu|Qv〉 = 〈u|v〉.
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Definition (Orthonormal basis of Rn and of Cn)

A basis of Rn is a subset {b1, . . . , bn} of Rn such that

every vector in Rn is a unique R-linear combination of b1, . . . , bn.

A basis of Cn is a subset {b1, . . . , bn} of Cn such that

every vector in Cn is a unique C-linear combination of b1, . . . , bn.

An orthonormal basis of Rn is a basis of {b1, . . . , bn} of Rn such that

if i , j ∈ {1, . . . , n} then 〈bi , bj〉 = δij ,

where 〈, 〉 is the standard inner product on Rn.

An orthonormal basis of Cn is a basis of {b1, . . . , bn} of Cn such that

if i , j ∈ {1, . . . , n} then 〈bi , bj〉 = δij ,

where 〈, 〉 is the standard inner product on Cn.
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Theorem

Let A ∈ Mn×n(R). Then A ∈ GLn(R) if and only if the columns of A
form a basis of Rn.

Theorem (Diagonalization)

Let A ∈ Mn×n(F). The matrix A has n linearly independent
eigenvectors p1, . . . ,pn ∈ Fn with eigenvalues λ1, . . . , λn if and only if
A = PDP−1 where,

P =





| |
p1 · · · pn
| |



 and D = diag(λ1, . . . , λn) =







λ1

. . .

λn







so that p1, . . . ,pn are the columns of P and D is the diagonal matrix
with diagonal entries λ1, . . . , λn.
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Theorem

Let A ∈ Mn×n(C). Then A ∈ Un(C) if and only if the columns of A
form an orthonormal basis of Cn with respect to the standard inner
product on Cn.

Theorem (Hermitian diagonalization)

Let A ∈ Mn×n(C) be a Hermitian matrix. If p1, . . . ,pn ∈ Cn are
orthonormal eigenvectors for A with eigenvalues λ1, . . . , λn and

P =





| |
p1 · · · pn
| |



 and D = diag(λ1, . . . , λn) =







λ1

. . .

λn







then P is unitary and A = PDP
T
.
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Theorem

Let A ∈ Mn×n(R). Then A ∈ On(R) if and only if the columns of A
form an orthonormal basis of Rn with respect to the standard inner
product on Rn.

Theorem (Real symmetric diagonalization)

Let A ∈ Mn×n(R) be a symmetric matrix. If p1, . . . ,pn ∈ Rn are
orthonormal eigenvectors for A with eigenvalues λ1, . . . , λn and

P =





| |
p1 · · · pn
| |



 and D = diag(λ1, . . . , λn) =







λ1

. . .

λn







then P is orthogonal and A = PDP
T
.
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Example IP18. The characteristic polynomial of the symmetric matrix

A =

(

1 −1
−1 1

)

is
det(A− t) = (1− t)2 − 1

= 1− 2t + t2 − 1 = t2 − 2t
= (t − 0)(t − 2).

Then
1√
2

(

1
1

)

and 1√
2

(

1
−1

)

are eigenvectors of length 1 with eigenvalues 0 and 2, respectively. Then

Q = 1√
2

(

1 1
1 −1

)

is orthogonal

and

A = Q

(

0 0
0 2

)

QT .
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Example IP23. The characteristic polynomial of the Hermitian matrix

A =

(

1 i
−i 1

)

is
det(A− t) = (1− t)2 − (−i) · i

= 1− 2t + t2 − 1 = t2 − 2t
= (t − 0)(t − 2).

Then
1√
2

(

1
i

)

and 1√
2

(

1
−i

)

are eigenvectors of A of length 1 with eigenvalues 0 and 2, respectively.
Then

U = 1√
2

(

1 1
i −i

)

is unitary

and

A = U

(

0 0
0 2

)

ŪT .
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Lecture 13: Singular value decomposition

Let t, s ∈ Z>0 and let Eij be the t × s matrix with 1 in the (i , j) entry
and 0 elsewhere.
Let A ∈ Mt×s(R). Find orthonormal eigenvectors v1, . . . , vs of AtA with
eigenvalues λ1, . . . , λs and let

V =





| |
v1 · · · vs
| |



 and S =
√

λ1E11 + · · · +
√

λsEss .

If λi 6= 0 let ui =
1√
λi
Avi .

Extend u1, . . . , uk to an orthonormal basis of Rt and let

U =





| |
u1 · · · ut
| |



 .

Then U ∈ Ot(R) and V ∈ Os(R) and S ∈ Mt×s(R) is ‘diagonal’ and

A = USV T .
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Example IP20. If

A =

(

1 0 1
0 1 0

)

then ATA =





1 0 1
0 1 0
1 0 1





The columns v1, v2, v3 of

V =







1√
2

0 −1√
2

0 1 0
1√
2

0 1√
2






are orthonormal eigenvectors of ATA

with eigenvalues λ = 2, λ2 = 1, λ3 = 0. Let

u1 =
1√
2
Av1 =

(

1
0

)

and u2 =
1√
1
Av2 =

(

0
1

)

.

Then {u1, u2} is already an orthonormal basis of R2, Let

U =

(

1 0
0 1

)

and S =

(√
2 0 0

0
√
1 0

)

Then U ∈ O2(R), V ∈ O3(R) and S ∈ M2×3(R) and A = USV T .
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Example IP19. If

A =

(

0 −1
0 0

)

then ATA =

(

0 0
0 1

)

The columns v1, v2 of

V =

(

0 1
1 0

)

are orthonormal eigenvectors of ATA

with eigenvalues λ1 = 1, λ2 = 0. Let

u1 =
1√
1
Av1 =

(

−1
0

)

and let u2 =

(

0
1

)

.

so that {u1, u2} is an orthonormal basis of R2, Let

U =

(

−1 0
0 1

)

and S =

(√
1 0

0
√
0

)

=

(

1 0
0 0

)

Then U ∈ O2(R), V ∈ O2(R) and S ∈ M2×2(R) and A = USV T .
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Lecture 14: Traces and Determinants

Let n ∈ Z>0. Let Eij be the n× n matrix with 1 in the (i , j) entry and 0
elsewhere. For i ∈ {1, . . . , n − 1} and c ∈ Q define

si(c) = 1− Eii − Ei+1,i+1 + Ei ,i+1 + Ei+1,i + cEii .

For i ∈ {1, . . . , n} and d ∈ Q with d 6= 0 define

hi (d) = 1 + (d − 1)Eii ,

For i , j ∈ {1, . . . , n} with i 6= j and c ∈ Q define

xij(c) = 1 + cEij ,

For r ∈ {1, . . . , n} define

1r = E11 + · · ·+ Err .
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Definition (Determinant)

The deteminant is the function det : Mn×n(Q) → Q determined by

if A,B ∈ Mn×n(Q) then det(AB) = det(A) det(B),

and if i , j ∈ {1, . . . , n} with i 6= j and k ∈ {1, . . . , n − 1} and c , d ∈ Q

with d 6= 0 then

det(xij(c)) = 1, det(hi (d)) = d , det(sk(c)) = −1.

Theorem (Factoring)

Let n ∈ Z>0. Let

1r = E11 + · · ·+ Err in Mn×n(Q).

Let A ∈ Mn×n(Q). The factoring algorithm gives

A = (product of si(c)s) · (product of hi (d)s) · (product of xij(c)s)
· 1r · (product of si (c)s) · (product of xij(c)s).
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Example M12. Let A =





2 6 9
0 3 8
0 0 −1



. Then

A = h1(2)h2(3)h3(−1)





1 3 9
2

0 1 8
3

0 0 1





= h1(2)h2(3)h3(−1)x12(3)x13(
9
2)x23(

8
3 ),

So

det(A) = det
(

h1(2)h2(3)h3(−1)x12(3))x13(
9
2)x23(

8
3

)

= det(h1(2)) det(h2(3)) det(h3(−1))

· det(x12(3))) det(x13(92 )) det(x23(83 ))
= 2 · 3 · (−1) · 1 · 1 · 1 = −6.
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Example M13. Let A =





1 2 1
−1 1 1
0 1 3



. Then

A =





−1 1 0
1 0 0
0 0 1









−1 1 1
0 3 2
0 1 3





=





−1 1 0
1 0 0
0 0 1









1 0 0
0 3 1
0 1 0









−1 1 1
0 1 3
0 0 −7





= s1(−1)s2(3)





−1 1 1
0 1 3
0 0 −7



 .

So det(A) = (−1) · (−1) · (−1) · 1 · (−7) = 7.
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Definition (Trace)

Let A ∈ Mn×n(Q). The trace of A is

Tr(A) = A11 + · · ·+ Ann where A =







A11 · · · A1n
...

...
An1 · · · Ann







Example M3.

Tr





1 2 3
4 5 6
7 8 9



 = 1 + 5 + 9 = 15.

Proposition (Properties of trace)

Let A,B ∈ Mn×n(Q) and let c ∈ Q. Then

Tr(A+ B) = Tr(A) + Tr(B), Tr(cA) = c Tr(A)

and
Tr(AB) = Tr(BA).
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Theorem (Determinant and trace are conjugacy invariants)

Let n ∈ Z>0. Let A ∈ Mn×n(Q) and let P ∈ GLn(Q) so that P is an
invertible n × n matrix. Then

det(PAP−1) = det(A) and Tr(PAP−1) = Tr(A).

Example M14. Let A ∈ Mn×n(Q). Since 1 = AA−1 then
det(1) = det(A) det(A−1). So

1 = det(A) det(A−1) and
1

det(A)
= det(A−1).

Let P ∈ GLn(Q). Then

det(PAP−1) = det(P) det(A) det(P−1) = det(P) det(A)
1

det(P)

= det(P)
1

det(P)
det(A) = det(A).
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Tutorial: Determinants by cofactor expansion

Definition (the (i , j)-cofactor)

Let A ∈ Mn×n(Q) and let i , j ∈ {1, . . . , n}.

Let A(i ,j) be the matrix A with
the ith row removed
and the jth column removed.

The (i , j)-cofactor of A is

Cij = (−1)i+j det(A(i ,j)).
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Theorem (cofactor expansion)

Let A ∈ Mn×n(Q) and let i , j ∈ {1, . . . , n}. Then

det(A) = Ai1Ci1 + Ai2Ci2 + · · ·+ AinCin
cofactor expansion
across the ith row

and

det(A) = A1jC1j + A2jC2j + · · ·+ AnjCnj .
cofactor expansion
down the jth column
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Example M15 and 16. If A =





1 2 1
−1 1 1
0 1 3



 then the (2,3)-cofactor is

C23 = (−1)2+3 det

(

1 2
0 1

)

= (−1)5(1 · 1− 0 · 2) = −1.

Using cofactor expansion along the third row,

det(A) = (−1)3+1 · 0 · det
(

2 1
1 1

)

+ (−1)3+2 · 1 · det
(

1 1
−1 1

)

+ (−1)3+3 · 3 · det
(

1 2
−1 1

)

= 0− (1 · 1− (−1) · 1) + 3(1 · 1− (−1) · 2)
= 0− 2 + 9 = 7.
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Example M17. Let A =









1 −2 0 1
3 2 2 0
1 0 1 0
0 −4 2 4









.

Using cofactor expansion down the fourth column,

det(A) = (−1)1+4 · 1 · det





3 2 2
1 0 1
0 −4 2



+ 0 + 0

+ (−1)4+4 · 4 · det





1 −2 0
3 2 2
1 0 1





= −
(

(−1)1+1 · 3 · det
(

0 1
−4 2

)

+ (−1)2+1 · 1 · det
(

2 2
−4 2

)

+ 0
)

+ 4
(

(−1)1+1 · 1 · det
(

2 2
0 1

)

+ (−1)1+2 · (−2) · det
(

3 2
1 1

)

+ 0
)

= −3(0 + 4) + (4 + 8) + 4
(

(2− 0) + 2(2 − 3)
)

= −12 + 12 + 8 + 8 = 16.
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Lecture 15: Applications to graphs and networks

Square matrices with 0, 1 entries are equivalent to graphs.

Example M1&2. The graph

v1

v2
v3

v4

v5

has adjacency matrix A =













0 1 0 0 1
1 0 1 1 1
0 1 0 1 0
0 1 1 0 1
1 1 0 1 0













There is a 1 in the (i , j) entry if there is an edge connecting vertex i
and vertex j .
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Then

A3 = A(A2) =













0 1 0 0 1
1 0 1 1 1
0 1 0 1 0
0 1 1 0 1
1 1 0 1 0

























2 1 1 2 1
1 4 1 2 2
1 1 2 1 2
2 2 1 3 1
1 2 2 1 3













=













2 6 3 3 5
6 6 6 7 7
3 6 2 5 3
3 7 5 4 7
5 7 3 7 4













.

The (i , j) entry of A3 gives the number of paths of length three from
vertex i to vertex j .
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Example LS10. Calculating flows in networks

At each node • require (sum of flows in) = (sum of flows out).

Determine a, b, c and d in the network
�

�

�

�

�� �

��

	
�	
�

���������
�

�
�����
����	
����


Then
Node 1: 10 = a + b,
Node 2: a = 3 + c ,
Node 3: c + d = 6,
Node 4: b = 1 + d .

So

a + b + 0c + 0d = 10,
a+ 0b − c + 0d = 2,
0a + 0b + c + d = 6,
0a + b + 0c − d = 1

which is









1 1 0 0
1 0 −1 0
0 0 1 1
0 1 0 −1

















a
b
c
d









=









10
3
6
1









.
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Start with








1 1 0 0
1 0 −1 0
0 0 1 1
0 1 0 −1

















a
b
c
d









=









10
3
6
1









.

Left multiply both sides by









0 1 0 0
1 −1 0 0
0 0 1 0
0 0 0 0









to get









1 0 −1 0
0 1 1 0
0 0 1 1
0 1 0 −1

















a
b
c
d









=









3
7
6
1









.

Left multiply both sides by









1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0









to get









1 0 −1 0
0 1 1 0
0 1 0 −1
0 0 1 1

















a
b
c
d









=









3
7
1
6









.
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Left multiply both sides by









1 0 0 0
0 0 1 0
0 1 −1 0
0 0 0 1









to get









1 0 −1 0
0 1 0 −1
0 0 1 1
0 0 1 1

















a
b
c
d









=









3
1
6
6









.

Left multiply both sides by









1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 −1









to get









1 0 −1 0
0 1 0 −1
0 0 1 1
0 0 0 0

















a
b
c
d









=









3
1
6
0









.

Left multiply both sides by









1 0 1 0
0 1 0 0
0 0 1 0
0 0 0 1









to get









1 0 0 0
0 1 0 −1
0 0 1 1
0 0 0 0

















a
b
c
d









=









9
1
6
0









.
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This is the system

a = 9,
b − d = 1,
c + d = 6,

0 = 0,

which is

a = 9 + 0d ,
b = 1 + 1d ,
c = 6 + (−1)d ,
d = 0 + 1d .

where d can be any number. So

Sol(Ax = b) =























9
1
6
0









+ d









0
1
−1
1









∣

∣

∣ d ∈ Q















=









9
1
6
0









+Q-span























0
1
−1
1























.
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Lecture 16: Application of diagonalization to dynamics

Theorem (Diagonalization.)

Let A ∈ Mn(F). The matrix A has n linearly independent eigenvectors
p1, . . . ,pn ∈ Fn with eigenvalues λ1, . . . , λn if and only if

A = PDP−1

where,

P =





| |
p1 · · · pn
| |



 and D = diag(λ1, . . . , λn) =







λ1

. . .

λn







so that p1, . . . ,pn are the columns of P and D is the diagonal matrix
with diagonal entries λ1, . . . , λn.
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Example EV13.

If D =





−4 0 0
0 3 0
0 0 2



 then D10 =





(−4)10 0 0
0 310 0
0 0 210



 .

Example EV14. If A = PDP−1 then

A3 = A · A · A = (PDP−1)(PDP−1)(PDP−1) = PDP−1PDP−1PDP−1

= PD · D · DP−1 = PD3P−1,

and, similarly, if k ∈ Z then

Ak = PDkP−1.
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Let

A =

(

1 4
1 1

)

, D =

(

−1 0
0 3

)

, P =

(

−2 2
1 1

)

.

Then

P−1 = 1
4

(

−1 2
1 2

)

and A = PDP−1.

So

Ak = PDkP−1 =

(

−2 2
1 1

)(

(−1)k 0
0 3k

)

1
4

(

−1 2
1 2

)

=

(

(−1)k · 2 3k · 2
(−1)k 3k

)

1
4

(

−1 2
1 2

)

= 1
4

(

2((−1)k + 3k) 4((−1)k+1 + 3k)
(−1)k+1 + 3k 2((−1)k + 3k)

)
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Example EV15. Let

xn =





rn
pn
wn



 and T =





1
2

1
4 0

1
2

1
2

1
2

0 1
4

1
2





and define an evolution process by

xn+1 = Txn.

This is the Markov chain defined by T . Since T = PDP−1, where

P =





1 −1 1
2 0 −2
1 1 1



 , D =





1 0 0
0 1

2 0
0 0 0



 , P−1 =





1
4

1
4

1
4

−1
2 0 1

2
1
4 −1

4
1
4




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then the stationary state of the process on R3 defined by T is

lim
n→∞

T nx0 = lim
n→∞

PDnP−1x0 = lim
n→∞

P





1n 0 0

0 (12
)n

0
0 0 0



P−1

= P





1 0 0
0 0 0
0 0 0



P−1x0 =





1 −1 1
2 0 −2
1 1 1









1
4

1
4

1
4

0 0 0
0 0 0



 x0

=





1
4(r0 + p0 + w0)
1
2(r0 + p0 + w0)
1
4(r0 + p0 + w0)



 =





1
4
1
2
1
4



 .
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Lecture 17: Vector spaces and linear transformations

A field is a number system F that is similar to Q, R and C

(the precise definition is given on slide 139-140).

The number systems Q, R and C are all fields. There are some ‘more
exotic’ fields like finite fields. For example, if p is a prime number then
the p-clock number system Fp is a finite field.

The world of F-vector spaces works for any field F. But, the properties
depend on F. For example, with dimension of a vector space

The R-dimension of R3 is 3.

The C-dimension of C3 is 3.

The R-dimension of C3 is 6.

The Q-dimension of R3 is ∞.

We often write ‘Let F be a field’. You are encouraged to think of F as
R or Q (or whatever your favourite field is).

Later we may explore some cool applications of vector spaces that use
finite fields (codes, fast Fourier transform, etc.).
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Definition (F-vector space)

Let F be a field. A F-vector space, or F-module, is a set V with
functions

V × V → V
(v1, v2) 7→ v1 + v2

and
F× V → V
(c , v) 7→ cv

(addition and scalar multiplication) such that

(a) If v1, v2, v3 ∈ V then (v1 + v2) + v3 = v1 + (v2 + v3),

(b) There exists 0 ∈ V such that if v ∈ V then 0 + v = v .

(c) If v ∈ V then there exists −v ∈ V such that v + (−v) = 0.

(d) If v1, v2 ∈ V then v1 + v2 = v2 + v1,

(e) If c ∈ F and v1, v2 ∈ V then c(v1 + v2) = cv1 + cv2,

(f) If c1, c2 ∈ F and v ∈ V then (c1 + c2)v = c1v + c2v ,

(g) If c1, c2 ∈ F and v ∈ V then c1(c2v) = (c1c2)v ,

(h) If v ∈ V then 1v = v .
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Linear transformations are for comparing vector spaces.

Definition

Let F be a field and let V and W be F-vector spaces. An F-linear
transformation from V to W is a function f : V → W such that

(a) If v1, v2 ∈ V then f (v1 + v2) = f (v1) + f (v2),

(b) If c ∈ F and v ∈ V then f (cv) = cf (v).

One vector space can be a subspace of another.

Definition (Subspace)

Let V be an F-vector space. A subspace of W is a subset W ⊆ V such
that

(a) 0 ∈ W ,

(b) If w1,w2 ∈ W then w1 + w2 ∈ W ,

(c) If w ∈ W and c ∈ F then cw ∈ W .
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Definition (Basis and dimension)

Let F be a field and let V be an F-vector space.
Let {v1, v2, . . . , vk} be a subset of V .
An F-linear combination of v1, . . . , vk is an element of the set

F-span{v1, . . . , vk} = {c1v1 + · · · + ckvk | c1, c2, . . . , ck ∈ F}.

The set {v1, . . . , vk} is linearly independent over F if it satisfies:

if c1, . . . , ck ∈ F and c1v1 + · · · + ckvk = 0

then c1 = 0, c2 = 0, . . ., ck = 0.

An F-basis of V is a subset B ⊆ V such that

(a) F-span(B) = V ,

(b) B is linearly independent.

The F-dimension of V is the number of elements of a F-basis B of V .
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Favourite vector spaces and favourite bases

1. Rn = {|a1, a2, . . . , an〉 | a1, a2, . . . , an ∈ R} = Mn×1(R) has basis

{e1, e2, . . . , en}, where ei = |0, . . . , 0, 1, 0, . . . , 0〉,

has 1 in the ith entry and 0 elsewhere.

2. Mm×n(R) has basis

{Eij | i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}},

where Eij is the matrix with 1 in the (i , j) entry and 0 elsewhere.

3. R[x ]6n = {a0 + a1x + · · ·+ anx
n | a0, a1, . . . , an ∈ R}

has basis {1, x , x2, . . . , xn}.

4. The vector space of polynomials with coefficients in R is

R[x ] = R-span{1, x , x2, x3, . . .} which has basis {1, x , x2, x3, . . .}.
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Example V22. Let v1, v2, v3, v4 ∈ R3 be given by

v1 = |1, 2, 3〉, v2 = |3, 6, 9〉, v3 = | −1, 0,−2〉, v4 = |1, 4, 4〉.
(a) Is {v1, v2, v3, v4} linearly independent?

(b) Express v2 and v4 as linear combinations of v1 and v3.

(c) Is {v1, v3} linearly independent?

(a) Since v2 = 3v1 then 0 = 3v1 − v2 = 3v1 − v2 + 0v3 +−v4.
So c1 = 3, c2 = −1, c3 = 0, c4 = 0 is a case that gives
c1v1 + c2v2 + c3v3 + c4v4 = 0.
So {v1, v2, v3, v4} is not linearly independent.

(b) Since v2 = 3v1 + 0v3 then v2 ∈ R-span{v1, v3}.
Since v1 + v3 = (0, 2, 1) and v1 + |0, 2, 1〉 = |1, 4, 4〉.
So v4 = 2v1 + v3. So v4 ∈ R-span{v1, v3}.
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(c) To show: If c1, c2 ∈ R and c1|1, 2, 3〉 + c2| −1, 0, 2〉 = |0, 0, 0〉
then c1 = 0 and c2 = 0.

Assume c1, c2 ∈ R and c1|1, 2, 3〉 + c2| −1, 0, 2〉 = |0, 0, 0〉.
Then

c1 − c2 = 0,
2c1 + 0c2 = 0,
3c1 + 2c2 = 0.

The first equation gives c1 = c2 and the second equation gives 2c1 = 0
so that c2 = c1 = 0. This system has

only one solution: c1 = 0, c2 = 0.

So {v1, v3} is linearly independent.
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Example V7. Is the line

L = {|x , y〉 ∈ R2 | y = 2x + 1} a subspace of R2?

Since 0 = |0, 0〉 and 0 6= 2 · 0 + 1 then 0 6∈ L.
So L is not a subspace of R2.

Example A8. Is the line

L = {|x , y〉 ∈ R2 | y = 2x} a subspace of R2?

Since |0, 0〉 = |0, 2 · 0〉 then |0, 0〉 ∈ L.
Assume |a, 2a〉, |b, 2b〉 ∈ L. Then

|a, 2a〉+ |b, 2b〉 = |(a + b), 2(a + b)〉 ∈ L.

Assume |a, 2a〉 ∈ L and c ∈ R. Then

c · |a, 2a〉 = |(ca), 2(ca)〉 ∈ L.

So L is a subspace of R2.
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Definition (Field)

A field is a set F with functions

F× F −→ F

(a, b) 7−→ a + b
and

F× F −→ F

(a, b) 7−→ ab

such that

(Fa) If a, b, c ∈ F then (a + b) + c = a + (b + c),

(Fb) If a, b ∈ F then a + b = b + a,

(Fc) There exists 0 ∈ F such that

if a ∈ F then 0 + a = a and a + 0 = a,

(Fd) If a ∈ F then there exists −a ∈ F such that a + (−a) = 0 and
(−a) + a = 0,

(Fe) If a, b, c ∈ F then (ab)c = a(bc),
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Definition (Field continued)

(Ff) If a, b, c ∈ F then

(a + b)c = ac + bc and c(a + b) = ca + cb,

(Fg) There exists 1 ∈ F such that

if a ∈ F then 1 · a = a and a · 1 = a,

(Fh) If a ∈ F and a 6= 0 then there exists a−1 ∈ F such that aa−1 = 1
and a−1a = 1,

(Fi) If a, b ∈ F then ab = ba.
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Lecture 18: Linear transformations

Linear transformations are for comparing vector spaces.

Definition

Let F be a field and let V and W be F-vector spaces. An F-linear
transformation from V to W is a function f : V → W such that

(a) If v1, v2 ∈ V then f (v1 + v2) = f (v1) + f (v2),

(b) If c ∈ F and v ∈ V then f (cv) = cf (v).

V

f
v f (v) W
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Example A1. Let A =

(

1 2 3 4
5 6 7 8

)

.

Let T : R4 → R2 be the function given by T (x) = Ax so that

T









x1
x2
x3
x4









=

(

1 2 3 4
5 6 7 8

)









x1
x2
x3
x4









=

(

x1 + 2x2 + 3x3 + 4x4
5x5 + 6x6 + 7x7 + 8x8

)

.

Show that T is a linear transformation.
Let u, v ∈ R4. Then, by the distributive property of matrix
multiplication,

T (u + v) = A(u + v) = Au + Av = T (u) + T (v).

Let u ∈ R4 and c ∈ R. Then, by the associative property of scalar
multiplication for matrices,

T (cu) = Acu = cAu = cT (u).

So T is a linear transformation.
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Example A2. Let t, s ∈ Z>0 and A ∈ Mt×s(R). Let T : Rs → Rt be the
function given by

T (x) = Ax .
T

x Ax

Show that T is a linear transformation.
Let u, v ∈ Rs . Then, by the distributive property of matrix
multiplication for matrices,

T (u + v) = A(u + v) = Au + Av = T (u) + T (v).

Let u ∈ Rs and c ∈ R. Then, by the associative property of scalar
multiplication for matrices,

T (cu) = Acu = cAu = cT (u).

So T is a linear transformation.
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Example A3. Let n ∈ Z>0 and let T : Mn(Q) → Q by the function
given by

T (A) = Tr(A).
T

A Tr(A)

Show that T is a Q-linear transformation.
Let A,B ∈ Mn×n(Q). Then

T (A + B) = Tr(A+ B) = (A+ B)11 + · · ·+ (A+ B)nn

= A11 + B11 + · · ·+ Ann + Bnn

= A11 + · · ·+ Ann ++B11 + · · ·Bnn

= Tr(A) + Tr(B) = T (A) + T (B).

Let A ∈ Mn×n(Q) and c ∈ Q. Then

T (cA) = Tr(cA) = (cA)11 + · · ·+ (cA)nn

= cA11 + · · ·+ cAnn

= c(A11 + · · ·+ Ann) = c Tr(A) = cT (A).

So T is a linear transformation.
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Example A4. Let T : M2×2(Q) → Q be the function given by

T

(

a b
c d

)

= det

(

a b
c d

)

= ad − bc .

Show that T is a linear transformation.

Let A =

(

1 0
0 1

)

and let c = 2. Then

T (cA) = det(2A) = det

(

2 0
0 2

)

= 2 · 2− 0 · 0 = 4

and

cT (A) = 2 det

(

1 0
0 1

)

= 2 · (1 · 1− 0 · 0) = 2.

So this gives an example where T (cA) 6= cT (A).
So T cannot possibly be a linear transformation.
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Lecture 19: span, linear independence and bases

Definition (Basis and dimension)

Let F be a field and let V be an F-vector space.
Let {v1, v2, . . . , vk} be a subset of V .
An F-linear combination of v1, . . . , vk is an element of the set

F-span{v1, . . . , vk} = {c1v1 + · · · + ckvk | c1, c2, . . . , ck ∈ F}.

The set {v1, . . . , vk} is linearly independent over F if it satisfies:

if c1, . . . , ck ∈ F and c1v1 + · · · + ckvk = 0

then c1 = 0, c2 = 0, . . ., ck = 0.

An F-basis of V is a subset B ⊆ V such that

(a) F-span(B) = V ,

(b) B is linearly independent.

The F-dimension of V is the number of elements of a F-basis B of V .
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Example A9. Let V be a Q-vector space and let v1, v2, v3, v4, v5 ∈ V .
Let S = {v1, v2, v3, v4, v5}. Show that Q-span(S) is a subspace of V .

(a) Since 0 = 0v1 + 0v2 + 0v3 + 0v4 + 0v5 then 0 ∈ Q-span(S).

(b) Assume a = a1v1 + a2v2 + a3v3 + a4v4 + a5v5 ∈ Q-span(S) and
b = b1v1 + b2v2 + b3v3 + b4v4 + b5v5 ∈ Q-span(S). Then

a + b = a1v1 + a2v2 + a3v3 + a4v4 + a5v5

+ b1v1 + b2v2 + b3v3 + b4v4 + b5v5

= (a1 + b1)v1 + (a2 + b2)v2 + (a3 + b3)v3

+ (a4 + b4)v4 + (a5 + b5)v5.

So a + b ∈ Q-span(S).

(c) Assume a = a1v1 + a2v2 + a3v3 + a4v4 + a5v5 ∈ Q-span(S) and
c ∈ Q. Then

ca = c(a1v1 + a2v2 + a3v3 + a4v4 + a5v5)

= ca1v1 + ca2v2 + ca3v3 + ca4v4 + ca5v5 ∈ Q-span(S).

So Q-span(S) is a subspace of V .
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Example V13. In R[x ]62, is 1− 2x − x2 ∈ R-span{1 + x + x2, 3 + x2}?

By definition R-span{1 + x + x2, 3 + x2}
= {c1(1 + x + x2) + c2(3 + x2) | c1c2 ∈ R}.

So we need to show that there exist c1, c2 ∈ R such that

c1(1 + x + x2) + c2(3 + x2) = 1− 2x − x2.

So we need to show that the system
c1 + 3c2 = 1,
c1 + 0c2 = −2,
c1 + c2 = −1,

has a solution.

The second equation gives c1 = −2 and then c2 = −1− c1 = 1+2 = 3.
Since the equation c1 + 3c2 = 1 also works when c1 = −2 and c2 = 3
then c1 = −2, c2 = 1 is a solution to this system.

Alternatively, the solution can be found by row reduction as follows. In
matrix form the equations are





1 3
1 0
1 1





(

c1
c2

)

=





1
−2
−1



 .
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Left multiply both sides by





1 0 0
0 0 1
0 1 −1



 to get





1 3
1 1
0 −1





(

c1
c2

)

=





1
−1
−1



 .

Left multiply both sides by





0 1 0
1 −1 0
0 0 1



 to get





1 1
0 2
0 −1





(

c1
c2

)

=





−1
2
−1



 .

Left multiply both sides by





1 0 0
0 0 1
0 1 −2



 to get





1 1
0 −1
0 0





(

c1
c2

)

=





−1
−1
0



 .
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Left multiply both sides by





1 0 0
0 −1 0
0 0 1



 to get





1 1
0 1
0 0





(

c1
c2

)

=





−1
1
0



 .

Left multiply both sides by





1 −1 0
0 1 0
0 0 1



 to get





1 0
0 1
0 0





(

c1
c2

)

=





−2
1
0



 .

So c1 = −2 and c2 = 1 is a solution.

So −2(1 + x + x2) + (3 + x2) = 1− 2x − x2.

So 1− 2x − x2 ∈ R-span{1 + x + x2, 3 + x2}.
So 1− 2x − x2 is a linear combination of 1 + x + x2 and 3 + x2 and

1− 2x − x2 ∈ R-span{1 + x + x2, 3 + x2}.
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Example V16new. Let S be the subset of R[x ]62 given by

S = {1 + 2x , 1 + 5x + 3x2, x + x2}. Show that span(S) = R[x ]62.

Proof. By definition

R-span(S) = {c1(1+2x)+c2(1+5x+3x2)+c3(x+x2) | c1, c2, c3 ∈ R}.

To show: (a) R-span(S) ⊆ R3

(b) R3 ⊆ R-span(S).

(a) Since S ⊆ R3 and R3 is closed under addition and scalar
multiplication then R-span(S) ⊆ R[x ]62.

(b) To show: R[x ]62 ⊆ span(S).

To show: R-span{1, x , x2} ⊆ span(S).

Since R-span(S) is closed under addition and scalar multiplication,

To show: {1, x , x2} ⊆ R-span(S).
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To show: There exist c1, c2, c3, d1, d2, d3, r1, r2, r3 ∈ R such that

c1(1 + 2x) + c2(1 + 5x + 3x2) + c3(x + x2) = 1 + 0x + x2,

d1(1 + 2x) + d2(1 + 5x + 3x2) + d3(x + x2) = 0 + x + 0x2,

r1(1 + 2x) + r2(1 + 5x + 3x2) + r3(x + x2) = 0 + 0x + x2.

To show: There exist c1, c2, c3, d1, d2, d3, r1, r2, r3 ∈ R such that





1 1 0
2 5 1
0 3 1









c1 d1 r1
c2 d2 r2
c3 d3 r3



 =





1 0 0
0 1 0
0 0 1



 .

Multiply both sides by





1 0 0
−2 1 0
0 0 1



 to get





1 1 0
0 3 1
0 3 1









c1 d1 r1
c2 d2 r2
c3 d3 r3



 =





1 −2 0
0 1 0
0 0 1



 .
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Multiply both sides by





1 0 0
0 1 0
0 −1 1



 to get





1 1 0
0 3 1
0 0 0









c1 d1 r1
c2 d2 r2
c3 d3 r3



 =





1 −2 0
0 1 0
0 −1 1



 .

Since the bottom row on the left hand side is all 0 and the bottom row
on the right hand sides is not all 0 then there do not exist
c1, c2, c3, d1, d2, d3, r1, r2, r3 ∈ R such that





1 1 0
2 5 1
0 3 1









c1 d1 r1
c2 d2 r2
c3 d3 r3



 =





1 0 0
0 1 0
0 0 1



 .

So {1, x , x2} 6⊆ R-span(S).

So span(S) 6= R[x ]62.
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Example V23. Is S = {(1,−1), (2, 4)} a basis of R2?
Let

A =

(

1 2
−1 4

)

. Then A−1 = 1
6

(

4 −2
1 1

)

=

(

2
3 −1

3
1
6

1
6

)

.

So
(

1 2
−1 4

)(

c1
c2

)

=

(

0
0

)

gives

(

c1
c2

)

=

(

0
0

)

.

So S is linearly independent.

If |a, b〉 ∈ R2 then |a, b〉 = c1|1,−1〉 + c2|2, 4〉, where
(

c1
c2

)

=

(

2
3 −1

3
1
6

1
6

)(

a
b

)

=

(

2
3a − 1

3b
1
6a +

1
6b

)

.

So R2 ⊆ R-span(S). Since S ⊆ R2 and R2 is closed under addition and
scalar multiplication then R-span(S) ⊆ R2. So R-span(S) = R2.

So S is a basis of R2.
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Example V21. Let S be the subset of M2(R) given by

S =

{(

1 3
1 1

)

,

(

−2 1
1 −1

)

,

(

1 10
4 2

)}

. Is S linearly independent?

To show: If c1, c2, c3 ∈ R and

c1

(

1 3
1 1

)

+ c2

(

−2 1
1 −1

)

+ c3

(

1 10
4 2

)

=

(

0 0
0 0

)

then c1 = 0, c2 = 0, c3 = 0.

Suppose an oracle tells you to try (or you guess) c1 = −3, c2 = 1,
c3 = −1 and then you verify that

−3

(

1 3
1 1

)

+

(

−2 1
1 −1

)

−
(

1 10
4 2

)

= −3

(

1 3
1 1

)

+

(

−3 −9
−3 −3

)

=

(

0 0
0 0

)

.

This means that you don’t have to have c1, c2 and c3 all 0 to get a zero
linear combination.
So S is not linearly independent.
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If you have no oracle, or are not a good guesser, then proceed as follows.

Assume c1, c2, c3 ∈ R and

c1

(

1 3
1 1

)

+ c2

(

−2 1
1 −1

)

+ c3

(

1 10
4 2

)

=

(

0 0
0 0

)

.

Then

c1 − 2c2 + c3 = 0,
3c1 + c2 + 10c3 = 0,

c1 + c2 + 4c3 = 0,
c1 − c2 + 2c3 = 0,

or, equivalently,









1 −2 1
3 1 10
1 1 4
1 −1 2













c1
c2
c3



 =





0
0
0



 .

Left multiply both sides by









1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 −1









to get









1 −2 1
3 1 10
1 −1 2
0 2 2













c1
c2
c3



 =





0
0
0



 .
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Left multiply both sides by









1 0 0 0
0 0 1 0
0 1 −3 0
0 0 0 1









to get









1 −2 1
1 −1 2
0 4 4
0 2 2













c1
c2
c3



 =





0
0
0



 .

Left multiply both sides by









0 1 0 0
1 −1 0 0
0 0 1 0
0 0 0 1









to get









1 −1 2
0 −1 −1
0 4 4
0 2 2













c1
c2
c3



 =





0
0
0



 .

Left multiply both sides by









1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 −2









to get









1 −1 2
0 −1 −1
0 2 2
0 0 0













c1
c2
c3



 =





0
0
0



 .
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Left multiply both sides by









1 0 0 0
0 0 1 0

0 1 1
2 0

0 0 0 1









to get









1 −1 2
0 2 2
0 0 0
0 0 0













c1
c2
c3



 =





0
0
0



 .

Left multiply both sides by









1 0 0 0

0 1
2 0 0

0 0 1 0
0 0 0 1









to get









1 −1 2
0 1 1
0 0 0
0 0 0













c1
c2
c3



 =





0
0
0



 .

Left multiply both sides by









1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1









to get









1 0 3
0 1 1
0 0 0
0 0 0













c1
c2
c3



 =





0
0
0



 .
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This gives the system

c1 + 3c3 = 0,
c2 + c3 = 0,

which is
c1 = −3c3
c2 = −c3,
c3 = c3,

which has solutions






c3





−3
−1
1





∣

∣

∣ c3 ∈ R







= R-span











−3
−1
1











.

So c1 = 0, c2 = 0, c3 = 0 is not the only solution.
This means that you don’t have to have c1, c2 and c3 all 0 to get a zero
linear combination.
So S is not linearly independent.
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Lecture 20: Kernel and image of a linear transformation

Definition (Kernel and image of a linear transformation)

The kernel of an F-linear transformation f : V → W is the set

ker(f ) = {v ∈ V | f (v) = 0}.

The image of an F-linear transformation f : V → W is the set

im(f ) = {f (v) | v ∈ V }.

Definition (Kernel and image of a matrix)

Let A ∈ Mt×s(Q). The kernel of A is

ker(A) = {x ∈ Qs | Ax = 0}

and the image of A is

im(A) = {Ax | s ∈ Qs}.
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Example A5. Let T : V → W be an R-linear transformation.
Show that ker(T ) = {v ∈ V | T (v) = 0} is a subspace of V .

Let v1, v2 ∈ ker(T ). Then

T (v1 + v2) = T (v1) + T (v2) = 0 + 0 = 0. So v1 + v2 ∈ ker(T ).

Subtracting T (0) from each side of the equation
T (0) = T (0 + 0) = T (0) + T (0) gives

0 = T (0), and so 0 ∈ ker(T ).

Let v ∈ ker(T ) and let c ∈ R. Then

T (cv) = cT (v) = c · 0 = 0 and so cv ∈ ker(T ).

So ker(T ) is a subspace of V .
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Example A6. Let T : V → W be an R-linear transformation.
Show that im(T ) = {T (v) | v ∈ V } is a subspace of W .
Subtracting T (0) from each side of the equation
T (0) = T (0 + 0) = T (0) + T (0) gives

0 = T (0), and so 0 ∈ im(T ).

Let w1,w2 ∈ W . Then there exist v1, v2 ∈ V such that

T (v1) = w1 and T (v2) = w2.

Then w1 + w2 = T (v1) + T (v2) = T (v1 + v2),

and so w1 + w2 ∈ im(T ).

Let w ∈ W and let c ∈ R. Then there exists v ∈ V such that

T (v) = w .

Then cw = cT (v) = T (cv)

and so cw ∈ im(T ).

So im(T ) is a subspace of W .
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Definition (Injective, surjective, bijective, invertible)

Let S and T be sets and let f : S → T be a function from S to T .

(a) The function f : S → T is injective if f satistifes

if s1, s2 ∈ S and f (s1) = f (s2) then s1 = s2.

(b) The function f : S → T is surjective if f satisfies

if t ∈ T then there exists s ∈ S such that f (s) = t.

(c) The function f : S → T is bijective if f is

both injective and surjective.

(d) The function f : S → T is invertible if there exists a function
g : T → S such that

g ◦ f = IdS and f ◦ g = IdT .
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Definition

Let V be a vector space. The dimension of V is

dim(V ) = (number of elements in a basis B of V ).

Theorem (The rank-nullity theorem)

Let f : V → W be an F-linear transformation. Then

(a) ker(f ) is a subspace of V .

(b) im(f ) is a subspace of W .

(c) dim(ker(f )) + dim(im(f )) = dim(V ).

Theorem

Let f : V → W be an F-linear transformation. Then

(a) f is injective if and only if ker(f ) = {0}.
(b) f is surjective if and only if im(f ) = W.

(c) f is invertible if and only if f is both injective and surjective.
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Example LT15. Let T : R3 → R2 be the linear transformation given by

T (x , y , z) = (2x − y , y + z).

Find bases for ker(T ) and Im(T ) and verify the rank-nullity theorem.

ker(T ) = {|x , y , z〉 ∈ R3 | T (x , y , z) = |0, 0〉}
= {|x , y , z〉 ∈ R3 | |2x − y , y + z〉 = |0, 0〉}

=

{

|x , y , z〉 ∈ R3
∣

∣

∣

2x − y = 0,
y + z = 0

}

=







|x , y , z〉 ∈ R3
∣

∣

∣

x = 1
2y ,

y = y ,
z = −y







= {y · |12 , 1, 1〉 ∈ R3 | y ∈ R} = R-span{|12 , 1,−1〉}

and {|12 , 1,−1〉} is a basis of ker(T ). So dim(ker(T )) = 1.
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Since
T (12 , 0, 0) = |1, 0〉 and T (0, 0, 1) = |0, 1〉

then
|1, 0〉 and |0, 1〉 are elements of im(T ).

Since im(T ) is a subspace of R2 then R-span{|1, 0〉, |0, 1〉} is a subset
of im(T ). So

im(T ) = R2 and {|1, 0〉, |0, 1〉} is a basis of im(T ).

So dim(im(T )) = 2 and

dim(ker(T )) + dim(im(T )) = 2 + 1 = 3 and 3 = dim(R3)

is the dimension of the source of the linear transformation T : R3 → R2.
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Example LT16&17. Let T : R[x ]62 → R[x ]61 be the linear
transformation given by

T (a0 + a1x + a2x
2) = (a0 − a1 + a2)(1 + 2x).

(a) Find bases for ker(T ) and Im(T ).

(b) Is T injective?

(c) Is T surjective?

ker(T ) = {a0 + a1x + a2x
2 ∈ R[x ]62 | T (a0 + a1x + a2x

2) = 0 + 0x}
= {a0 + a1x + a2x

2 ∈ R[x ]62 | (a0 − a1 + a2)(1 + 2x) = 0 + 0x}

=

{

a0 + a1x + a2x
2 ∈ R[x ]62

∣

∣

∣

a0 − a1 + a2 = 0,
2(a0 − a1 + a2) = 0

}

= {a0 + a1x + a2x
2 ∈ R[x ]62 | a0 = a1 − a2}

= {(a1 − a2) + a1x + a2x
2 | a1, a2 ∈ R}

= {a1(1 + x) + a2(−1 + x2) | a1, a2 ∈ R}
= R-span{1 + x ,−1 + x2}
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and {1 + x ,−1 + x2} is a basis of ker(T ).

im(T ) = {T (a0 + a1x + a2x
2) | a0, a1, a2 ∈ R}

= {(a0 − a1 + a2)(1 + 2x) | a0, a1, a2 ∈ R}
= {a(1 + 2x) | a ∈ R} = R-span{1 + 2x}

and {1 + 2x} is a basis of im(T ). So dim(im(T )) = 1.

Since ker(T ) 6= {0} then T is not injective.

Since R[x ]61 = {c0 + c1x | c1, c2 ∈ R} then

im(T ) 6= R[x ]61 and T is not surjective.
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Lecture 21: With respect to a basis

Even in an arbitrary vector space, vectors and linear transformations can
be converted to matrices, provided that the corresponding column
vectors and matrices are constructed with respect to a basis.

Definition (Basis)

Let V be an F-vector space. A basis of V is a set S = {b1,b2, . . . ,bn}
such that every vector in V is a unique linear combination of b1, . . . ,bn.

Definition (Coordinates)

Let B = {b1, . . . ,bn} be an ordered basis for an F-vector space V and
let v ∈ V . The coordinate vector of v with respect to B is [v ]B ∈ Fn

given by

[v ]B =







c1
...
cn






if v = c1b2 + · · · + cnbn.
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Example V33. The coordinate vector of v = (1, 5) with respect to the
basis S = {(1, 0), (0, 1)} of R2 is

[v ]S =

(

1
5

)

since (1, 5) = 1 · (1, 0) + 5 · (0.1).

The coordinate vector of v = (1, 5) with respect to the basis
B = {(2, 1), (−1, 1)} of R2 is

[v ]B =

(

2
3

)

since (1, 5) = 2 · (2, 1) + 3 · (−1.1).

Example V34. The coordinate vector of p = 2 + 7x − 9x2 with respect
to the basis B = {2, 12x ,−3x2} of Q[x ]62 is

[p]B =





1
14
3



 since 2 + 7x − 9x2 = 1 · 2 + 14 · (12x) + 3 · (−3x2).
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Definition

Let f : V → W be an F-linear transformation. Let B = {b1, . . . ,bs} be
a basis of V and let C = {c1, c2, . . . , ct} be a basis of W . Suppose that

f (b1) = A11c1 + A21c2 + · · · + An1cn,

f (b2) = A12c1 + A22c2 + · · · + An2cn,

...

f (bn) = A1nc1 + A2nc2 + · · ·+ Anncn,

The matrix of f with respect to bases B and C is the matrix

[f ]CB =











A11 A12 · · · A1n

A21 A22 · · · A2n
...

...
...

An1 An2 · · · Ann










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Definition (Change of basis matrix)

Let V be and F-vector space. Let B = {b1, . . . ,bn} be a basis of V
and let C = {c1, . . . , cn} be another basis of V . Let

b1 = A11c1 + A21c2 + · · ·+ An1cn,

b2 = A12c1 + A22c2 + · · ·+ An2cn,

...

bn = A1nc1 + A2nc2 + · · ·+ Anncn,

The change of basis matrix from B to C is

[I ]CB =











A11 A12 · · · A1n

A21 A22 · · · A2n
...

...
...

An1 An2 · · · Ann











The change of basis matrix is the matrix of the identity transformation
I with respect to the basis B and C .
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Let T : U → V and f : V → W be linear transformations. Let

B be a basis of U, C a basis of V D a basis of W .

Then
[f ◦ T ]DB = [f ]DC [T ]CB .

Let T : V → W be a linear transformation.

S be a basis of V .
B be another basis of V ,

C be a basis of W ,
D be another basis of W .

Then

[I ]DC [T ]CB [I ]BS = [T ]DS and [I ]SB [I ]BS = [I ]SS = 1.

This last equation tells us that [I ]SB is invertible. Since invertible
matrices must be square then B and S have the same number of
elements.

Theorem

Let V be an F-vector space. Any two bases of V have the same
number of elements.
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Example LT2&14. The derivative with respect to x is the linear
transformation T : R[x ]63 → R[x ]62 given by

T (a0 + a1x + a2x
2 + a3x

3) = a1 + 2a2x + 3a3x
2.

Since

T (1) = T (1 + 0x + 0x2 + 0x3) = 0 + 0x + 0x2,

T (x) = T (0 + 1x + 0x2 + 0x3) = 1 + 0x + 0x2,

T (x2) = T (0 + 0x + 1x2 + 0x3) = 0 + 2x + 0x2,

T (x3) = T (0 + 0x + 0x2 + 1x3) = 0 + 0x + 3x2,

then the matrix of T with respect to the basis S = {1, x , x2, x3} of
R[x ]63 and the basis B = {1, x , x2} of R[x ]62 is

[T ]BS =





0 1 0 0
0 0 2 0
0 0 0 3



 .
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Then

ker(T ) = {p ∈ R[x ]63 | T (p) = 0}

=

{

a0 + a1x + a2x
2 + a3x

3
∣

∣

∣

a1 + 2a2x + 3a3x
2

= 0 + 0x + 0x2 + 0x3

}

= {a0 + a1x + a2x
2 + a3x

3 | a1 = 0 and a2 = 0 and a3 = 0}
= {a0 + 0x + 0x2 + 0x3 | a0 ∈ R}
= {a0 | a0 ∈ R} = R-span{1}

and

im(T ) = {T (p) | p ∈ R[x ]63}
= {T (a0 + a1x + a2x

2 + a3x
3) | a0, a1, a2, a3 ∈ R}

= {a1 + 2a2x + 3a3x
2 | a1, a2, a3 ∈ R} = R[x ]62,
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Example LT4. Let T : R3 → R2 be the function given by

T (x1, x2, x3) = |x2 − 2x3, 3x1 + x3〉 =
(

0 1 −2
3 0 1

)





x1
x2
x3



 .

With respect to the basis S = {|1, 0, 0〉, |0, 1, 0〉, |0, 0, 1〉} of R3 and the
basis B = {|1, 0〉, |0, 1〉} of R2 the matrix of T is

[T ]BS =

(

0 1 −2
3 0 1

)

.
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Example LT11. Let T : M2×2(R) → M2×2(R) be the linear
transformation given by

T (Q) = Qt .

Find the matrix of T with respect to the basis B = {E11,E12,E21,E22},
where Eij is the matrix with 1 in the (i , j) entry and 0 elsewhere.
Since

T (E11) = E11 = 1 · E11 + 0 · E12 + 0 · E21 + 0 · E22,

T (E12) = E21 = 0 · E11 + 0 · E12 + 1 · E21 + 0 · E22,

T (E21) = E12 = 0 · E11 + 1 · E12 + 0 · E21 + 0 · E22,

T (E22) = E12 = 0 · E11 + 0 · E12 + 0 · E21 + 1 · E22,

then the matrix of T with respect to the basis B = {E11,E12,E21,E22}
is

[T ]BB =









1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1









.
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Example LT12. Let T : R[x ]62 → R[x ]61 be the linear transformation
given by

T (a0 + a1x + a2x
2) = (a0 + a2) + a0x .

(a) Find the matrix of T with respect to the basis B = {1, x , x2} of
R[x ]62 and the basis C = {1, x} of R[x ]61.

(b) Find the matrix of T with respect to the basis B = {1, x , x2} of
R[x ]62 and the basis D = {2, 3x} of R[x ]61.

Let b1 = 1, b2 = x , b3 = x2 and c1 = 2, c2 = 3x and d1 = 1, d2 = x .
Since

T (1) = 1 + x = 1 · 1 + 1 · x = 1
2 · 2 + 1

3 · (3x),
T (x) = 0 = 0 · 1 + 0 · x = 0 · 2 + 0 · (3x),
T (x2) = 1 = 1 · 1 + 0 · x = 1

2 · 2 + 0 · (3x),
then

T (b1) = 1 · d1 + 1 · d2,
T (b2) = 0 · d1 + 0 · d2,
T (b3) = 1 · d1 + 0 · d2,

and
T (b1) =

1
2c1 +

1
3c2,

T (b2) = 0 · c1 + 0 · c2,
T (b3) =

1
2 · c1 + 0 · c2,
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and

[T ]DB =

(

1 0 1
1 0 0

)

and [T ]CB =

(

1
2 0 1

2
1
3 0 0

)

.

Example LT13. Suppose that T : R3 → R2 is a linear transformation
and that the matrix of T with respect to
the basis A = {|1, 0, 0〉, |0, 1, 0〉, |0, 0, 1〉} of R3 and
the basis S = {|1, 0〉, |0, 1〉} of R2 is

[T ]SA =

(

5 1 0
1 5 −2

)

.

Find the matrix of T with respect to
the basis B = {|1, 1, 0〉, |1,−1, 0〉, |1,−1,−2〉} of R3 and
the basis C = {|1, 1〉, |1,−1〉} of R2.
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The answer is

[T ]CB =

(

6 0 2
0 4 2

)

since

T (1, 1, 0) =

(

5 1 0
1 5 −2

)





1
1
0



 =

(

6
6

)

= 6 ·
(

1
1

)

+ 0 ·
(

1
−1

)

,

T (1,−1, 0) =

(

5 1 0
1 5 −2

)





1
−1
0



 =

(

4
−4

)

= 0 ·
(

1
1

)

+ 4 ·
(

1
−1

)

,

T (1,−1,−2) =

(

5 1 0
1 5 −2

)





1
−1
−2



 =

(

4
0

)

= 2 ·
(

1
1

)

+ 2 ·
(

1
−1

)

,
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Lecture 22: Picturing linear transformations T : R2 → R2

Example LT5. Let T : R2 → R2 be the transformation which is
reflection across the y -axis.

T









x-axis

y-axis









=

x-axis

y-axis

Then

T

(

1
0

)

=

(

−1
0

)

= (−1) ·
(

1
0

)

+ 0 ·
(

0
1

)

and

T

(

0
1

)

=

(

0
1

)

= 0 ·
(

1
0

)

+ 1 ·
(

0
1

)

then the matrix of T with respect to the basis S = {|1, 0〉, |0, 1〉} is

[T ]SS =

(

−1 0
0 1

)

.
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Example LT19. Find the matrix of the linear transformation

T : R2 → R2 which is projection onto the x axis.

Is T injective? Is T surjective. Is T invertible?

T









x-axis

y-axis









=

x-axis

y-axis

Since

T

(

1
0

)

=

(

1
0

)

= 1 ·
(

1
0

)

+ 0 ·
(

0
1

)

and

T

(

0
1

)

=

(

0
0

)

= 0 ·
(

1
0

)

+ 0 ·
(

0
1

)

then the matrix of T with respect to the basis S = {|1, 0〉, |0, 1〉} is

[T ]SS =

(

1 0
0 0

)

.

The linear transformation T is not injective, not surjective, not
invertible. 214



Example LT9. Let c ∈ R>0 and let T : R2 → R2 be the linear
transformation which is the shear by a factor of c along the x-axis.

T









x-axis

y-axis









=
x-axis

y-axis

c

Since

T

(

1
0

)

=

(

1
0

)

= 1 ·
(

1
0

)

+ 0 ·
(

0
1

)

and

T

(

0
1

)

=

(

c
1

)

= c ·
(

1
0

)

+ 1 ·
(

0
1

)

then the matrix of T with respect to the basis S = {|1, 0〉, |0, 1〉} is

[T ]SS =

(

1 c
0 1

)

.

The linear transformation T is invertible and

ker(T ) = {0} and im(T ) = R2.

215



Example LT10. Find the image of (x , y) ∈ R2 after a shear along the
x-axis with c = 1 followed by a reflection across the y -axis.

T

(

x
y

)

=

(

−1 0
0 1

)(

1 1
0 1

)(

x
y

)

=

(

−1 −1
0 1

)(

x
y

)

=

(

−x − y
y

)

.

So

im(T ) =

{

x

(

−1
0

)

+ y

(

−1
1

)

∣

∣

∣ x , y ∈ R

}

= R-span

{(

−1
0

)

,

(

−1
1

)}

= R2.

T









x-axis

y-axis









=

x-axis

y-axis
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Example LT8. Let c ∈ R>0 and let T : R2 → R2 be the linear
transformation which is stretching of the x-axis by a factor of c .

T









x-axis

y-axis









=
x-axis

y-axis

c

Since

T

(

1
0

)

=

(

c
0

)

= c ·
(

1
0

)

+ 0 ·
(

0
1

)

and

T

(

0
1

)

=

(

0
1

)

= 0 ·
(

1
0

)

+ 1 ·
(

0
1

)

then the matrix of T with respect to the basis B = {(1, 0), (0, 1)} is

[T ]BB =

(

c 0
0 1

)

.
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Example LT7&18. Let T : R2 → R2 be the linear transformation which
is rotation by θ (about the origin counterclockwise).

T









x-axis

y-axis









=

x-axis

y-axis

θ

Since

T

(

1
0

)

=

(

cos θ
sin θ

)

= cos θ ·
(

1
0

)

+ sin θ ·
(

0
1

)

and

T

(

0
1

)

=

(

− sin θ
cos θ

)

= − sin θ ·
(

1
0

)

+ cos θ ·
(

0
1

)

then the matrix of T with respect to the basis S = {(1, 0), (0, 1)} is

[T ]SS =

(

cos θ − sin θ
sin θ cos θ

)

and [T−1]SS =

(

cos θ sin θ
− sin θ cos θ

)

is the matrix of the rotation by −θ with respect to the basis S .
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Example EV1. Let T : R2 → R2 be the reflection in the line y = 5x .

T

















x-axis

y-axis

y = 5x

















=

x-axis

y-axis

y = 5x

Identify two lines through the origin that are invariant under T and find
the image of the direction vectors for each of these lines.
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Let

B = {(1, 5), (5,−1)},
x-axis

y-axis

(1, 5)

(5,−1)

(5,−1)

y = 5x

One line is the line y = 5x and the other line is the line orthogonal to
y = 5x . The line y = 5x has slope 5 and the line orthogonal to y = 5x
has slope −1

5 and equation y = −1
5x . The corresponding direction

vectors of these lines are (1, 5) and (1,−1
5 ) and

T (1, 5) = (1, 5) and T (1,−1
5 ) = −(1,−1

5 ) = (−1, 15).

If v1 = (1, 5) and v2 = (1,−1
5 ) then

Tv1 = 1 · v1 and Tv2 = (−1) · v2.

220



Example LT6&23. Let T : R2 → R2 be the linear transformation which
is reflection in the line y = 5x .

T
















x-axis

y-axis

y = 5x

















=

x-axis

y-axis

y = 5x

Let

B = {(1, 5), (5,−1)},
x-axis

y-axis

(1, 5)

(5,−1)

y = 5x

so that the first vector in B is a vector in the direction of the line
y = 5x and the second vector in B is a vector perpendicular to y = 5x .
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Since

[T ]BB =

(

1 0
0 −1

)

, [I ]SB =

(

1 5
5 −1

)

and

[I ]BS = ([I ]SB )
−1 = − 1

26

(

−1 −5
−5 1

)

then the matrix of T with respect to the basis S = {(1, 0), (0, 1)} is

[T ]SS = [I [SB [T ]BB [I ]BS = − 1
26

(

1 5
5 −1

)(

1 0
0 −1

)(

−1 −5
−5 1

)

= − 1
26

(

1 5
5 −1

)(

−1 −5
5 −1

)

= − 1
26

(

24 −10
−10 −24

)

=

(

−12
13

5
13

5
13

12
13

)

In other words,

T

(

1
0

)

=

(

−12
13
5
13

)

= −12

13
·
(

1
0

)

+
5

13
·
(

0
1

)

,

and

T

(

0
1

)

=

(

5
13
12
13

)

=
5

13
·
(

1
0

)

+
12

13
·
(

0
1

)

.
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Example LT20,21&24. Let T : R2 → R2 be the linear transformation
given by

T (x , y) = (3x − y ,−x + 3y).

and let B and S be the bases of R2 given by

B = {(1, 1), (−1, 1)} and S = {(1, 0), (0, 1)}.

Let u and v be the vectors in R2 determined by

[u]B =

(

1
1

)

and [v ]S =

(

0
2

)

.

The change of basis matrices between B and S are

[I ]BS =

(

1 1
−1 1

)

and [I ]SB = ([I ]BS )
−1 = 1

2

(

1 −1
1 1

)

.

Then

[u]S =

(

0
2

)

and [v ]B =

(

1
1

)

.
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The matrices of T with respect to S and B are

[T ]SS =

(

3 −1
−1 3

)

and [T ]BB =

(

2 0
0 4

)

so that T stretches by a factor of 2 in the direction |1, 1〉 and T
stretches by a factor of 4 in the direction |1,−1〉.
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Lecture 23: Inner product spaces

Definition (Inner product)

Let F = R or F = C. Let

: C → C be given by a + bi = a− bi ,

: R → R be given by a = a.

Let V be an F-vector space. An inner product on V is a function

〈, 〉 : V × V → F

(u, v) 7→ 〈u, v〉 such that

(1) If u, v ∈ V then 〈u, v〉 = 〈v , u〉,
(2) If u, v ∈ V and α ∈ F then 〈αu, v〉 = α〈u, v〉,
(3) if u, v ,w ∈ V then 〈u + v ,w〉 = 〈u,w〉+ 〈v ,w〉,
(4) (Positive semi-definite) If u ∈ V then 〈u, u〉 ∈ R>0.

(5) (Positive definite) If u ∈ V and 〈u, u〉 = 0 then u = 0.
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Definition (Length, distance, angles.)

Let V be an F-vector space with an inner product.
Length is the function ‖ ‖ : V → R>0 given by

‖u‖2 = 〈u, u〉.

Distance is the function d : V × V → R>0 given by

d(u, v) = ‖v − u‖.

Angle is the function θ : V × V → R[0,π] given by

cos(θ(u, v)) =
Re(〈u, v〉)
‖u‖ · ‖v‖ .

Vecotrs u, v are orthogonal if 〈u, v〉 = 0.
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Definition (Standard inner products.)

(1)
〈, 〉 : Rn × Rn → R

(u, v) 7→ 〈u|v〉 given by

〈u1, u2, . . . , un|v1, v2, . . . , vn〉 = u1v1 + · · ·+ unvn,

(2)
〈, 〉 : Cn × Cn → C

(u, v) 7→ 〈u|v〉 given by

〈u1, u2, . . . , un|v1, v2, . . . , vn〉 = u1v1 + · · ·+ unvn,

(3) F[x ]6n × F[x ]6n → F given by

〈a0+a1x + · · ·+ anx
n | c1 + c1x + · · ·+ cnx

n〉

=

∫ 1

0
(a0 + a1x + · · · anxn)(c̄0 + c̄1x + · · ·+ c̄nx

n) dx .
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Example IP5. Let u = |1 + i , 1 = i〉 and v = |i , 1〉 in C2 with the
standard inner product. Then

〈u|v〉 = 〈1 + i , 1− i |i , 1〉 = (1 + i )̄i + (1− i)1̄

= (1− i)(−i) + 1− i = −i + 1 + 1− i = 2− 2i ,

〈v |u〉 = 〈i , 1|1 + i , 1− i〉 = i(1 + i) + 1 · (1− i)

= i(1− i) + 1 + i = i + 1 + 1 + i = 2 + 2i ,

〈u|u〉 = 〈1 + i , 1− i |1 + i , 1− i〉 = (1 + i)(1 + i) + (1− i)(1− i)

= (1 + i)(1− i) + (1− i)(1 + i) = 1 + 1 + 1 + 1 = 4,

〈u|u〉 = 〈i , 1 | i , 1〉 = i · ī + 1 · 1̄ = i(−i) + 1 = 1 + 1 = 2,

d(u, v) =
√

〈1,−i |1,−i〉 =
√

1 · 1̄ + (−i)(−i) =
√
1 + 1 =

√
2,

cos(θ(u, v)) =
Re(〈u|v〉)
‖u‖ · ‖v‖ =

Re(2− 2i)

2
√
2

=
2

2
√
2
=

1√
2
,

So θ(u, v) = π
4 .

228



Example IP7. Let u = 1 and v = x in R[x ]62 with the standard inner
product. Then

〈u|u〉 = 〈1|1〉 =
∫ 1

0
dx = x

]1

0
= 1,

〈v |v〉 = 〈x |x〉 =
∫ 1

0
x2 dx = 1

3x
3
]1

0
= 1

3 − 0 = 1
3 ,

〈u|v〉 = 〈1|x〉 =
∫ 1

0
x dx = 1

2x
2
]1

0
= 1

2 − 0 = 1
2 ,

d(u, v) =
√

〈x − 1|x − 1〉 =
√

∫ 1

0
(x − 1)2 dx

=

√

1
3(x − 1)3

]1

0
=
√

0− 1
3 (−1)3 =

√

1
3 = 1√

3
,

cos(θ(u, v)) =
Re(〈u|v〉)
‖u‖ · ‖v‖ =

1
2

1 · 1√
3

=

√
3

2
.

So θ(u, v) = π
6 .
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Example IP2. The map 〈, 〉 : R3 × R3 → R given by

〈(u1, u2, u3), (v1, v2, v3)〉 = u1v1 − u2v2 + u3v3

=
(

v1 v2 v3
)





1 0 0
0 −1 0
0 0 1









u1
u2
u3





has
〈(0, 1, 0), (0, 1, 0)〉 = 0− 1 + 0 = −1 6∈ R>0.

So 〈, 〉 is not positive definite.
Example IP6. The map 〈, 〉 : C2 × C2 → R given by

〈(u1, u2), (v1, v2)〉 = iu1v1 − iu2v2 =
(

v1 v2
)

(

i 0
0 −i

)(

u1
u2

)

has
〈(1, 0), (1, 0)〉 = i · 1 · 1̄− i · 0 · 0̄ = i 6∈ R>0.

So 〈, 〉 is not positive definite.
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Example IP3. The map 〈, 〉 : R2 × R2 → R given by

〈(u1, u2), (v1, v2)〉 = 2u1v1 − 2u1v2 − 2u2v1 + u2v2

=
(

v1 v2
)

(

2 −2
−2 3

)(

u1
u2

)

has

〈(u1, u2), (u1, u2)〉 = 2u21 − 2u2u2 − 2u2u1 + 3u22

= 2u21 − 4u1u2 + 3u22

= 2(u21 − 2u1u2 + u22) + u22

= (u1 − u2)
2 + u22 ∈ R>0.

Assume 〈(u1, u2), (u1, u2)〉 = 0.
Then 2(u1 − u2)

2 + u02 = 0 then u22 = 0 and (u1 − u2)
2 = 0.

So u2 = 0 and u1 = u2 = 0. So (u1, u2) = 0.

So 〈, 〉 is positive definite.
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Example IP1. The map 〈, 〉 : R2 × R2 → R given by

〈(u1, u2), (v1, v2)〉 = u1v1 + 2u2v2 =
(

v1 v2
)

(

1 0
0 2

)(

u1
u2

)

has 〈(u1, u2), (u1, u2)〉 = u21 + 2u22 ∈ R>0.

Assume 〈(u1, u2), (u1, u2)〉 = 0.
Then u21 + 2u02 = 0 so that u21 = 0 and 2u22 = 0.
So (u1, u2) = 0.

So 〈, 〉 is positive definite.
Example IP8. Let V be an F-vector space with an inner product. Let
u, v ∈ V and suppose that u and v are orthogonal. Then

‖u + v‖2 = 〈u + v , u + v〉 = 〈u, u + v〉+ 〈v , u + v〉
= 〈u, u〉+ 〈u, v〉+ 〈v , u〉+ 〈v , v〉
= ‖u‖2 + 0 + 0 + ‖v‖2

= ‖u‖2 + ‖v‖2.

This is the Pythagorean theorem.
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Example IPA1. Let A ∈ Mn×n(C) satisifying A = Āt and let
〈, 〉 : Cn × Cn → C be given by

〈(u1, . . . , un), (v1, . . . , vn)〉 = (u1, . . . , un)A







v1
...
vn






= utAv̄ ,

If u, v ∈ Cn then

〈v , u〉 = (v tAū) = (ūtAtv)
t
= (utĀt v̄)t

= (utAv̄)t = 〈u, v〉,
and if α ∈ C and u, v ∈ Cn then

〈αu, v〉 = (αu)tAv̄ = αutAv = α〈u, v〉
and, if u, v ,w ∈ Cn then

〈u + v ,w〉 = (u + v)tAw̄ = (ut + v t)Aw̄

= utAw̄ + v tAw̄ = 〈u,w〉+ 〈v ,w〉.
So 〈, 〉 satisfies all the properties of an inner product, except perhaps
the positive definiteness.
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Lecture 24: Gram matrices, orthogonality and projections

Definition (Gram matrix.)

Let V be an F-vector space with inner product 〈, 〉V × V → F.
Let B = {b1, . . . , bn} be a basis of V .
The Gram matrix of 〈, 〉 with respect to B is the matrix

A =











〈b1, b1〉 〈b1, b2〉 · · · 〈b1, bn〉
〈b2, b1〉 〈b2, b2〉 · · · 〈b2, bn〉

...
...

〈bn, b1〉 〈bn, b2〉 · · · 〈bn, bn〉











In other words, the (i , j) entry of the Gram matrix A of 〈, 〉 with respect
to the basis B is

Aij = 〈bi , bj 〉.
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Example IPA2. Let V be a F-vector space with an inner product
〈, 〉 : V × V → F. Let B = {b1, . . . , bn} be a basis of V and
let

A be the Gram matrix of 〈, 〉 with respect to the basis B .

Let u = u1b1 + · · · + unbn ∈ V and let v = v1b1 + · · ·+ vnbn ∈ V so
that

[u]B =







u1
...
un






and [v ]B =







v1
...
vn






.

Then

〈u, v〉 = 〈u1b1 + · · ·+ unbn, v1b1 + · · · + vnbn〉

=
n
∑

i ,j=1

uivj〈bi , bj〉 =
n
∑

i ,j=1

uiAijvj

= [u]tBA[v̄ ]B .
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Example IP4. The R-vector space R[x ]62 has basis B = {1, x , x2}.
Since the standard inner product 〈 | 〉 : R[x ]62 × R[x ]62 → R has

〈p|q〉 =
∫ 1

0
pq dx

then
〈1|1〉 = 1, 〈1|x〉 = 1

2 , 〈1|x2〉 = 1
3 ,

〈x |1〉 = 1
2 , 〈x |x〉 = 1

3 , 〈x |x2〉 = 1
4 ,

〈x2|1〉 = 1
3 , 〈x2|x〉 = 1

4 , 〈x2|x2〉 = 1
5 ,

then the Gram matrix of 〈 | 〉 with respect fo B is

A =





1 1
2

1
3

1
2

1
3

1
4

1
3

1
4

1
5





If u = 7 + 3x + 2x2 and v = 5 + x2 then

[u]B =





7
3
2



 and [v ]B =





5
0
1



 .
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Then

〈u|v〉 =
∫ 1

0
(7 + 3x + 2x2)(5 + x2) dx

=

∫ 1

0
(35 + 7x2 + 15x + 3x3 + 10x2 + 2x4) dx

= 35 + 7
3 + 15

2 + 3
4 +

10
3 + 2

5

and

[u]tBA[v ]B =
(

7 3 2
)





1 1
2

1
3

1
2

1
3

1
4

1
3

1
4

1
5









5
0
1





=
(

7 3 2
)





5 + 1
3

5
2 +

1
4

5
3 +

1
5





= 35 + 7
3 + 15

2 + 3
4 + 10

3 + 2
5 .

So 〈u|v〉 = [u]tBA[v ]B .
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Lecture 25: Projections and orthogonalisation

Definition (Orthogonal and orthonormal sequences.)

Let V be an F-vector space with an inner product 〈, 〉 : V × V → F.

Let u, v ∈ V . The vectors u and v are

orthogonal if 〈u, v〉 = 0.

An orthogonal sequence is a sequence (b1, . . . , bk) of vectors in V such
that

if i , j ∈ {1, . . . , k} and i 6= j then 〈bi , bj 〉 = 0.

An orthonormal sequence is an orthogonal sequence (b1, . . . , bk) such
that

if i ∈ {1, . . . , k} then 〈bi , bi 〉 = 1.

An ordered orthonormal basis of V is an orthonormal sequence
(b1, . . . , bk) in V such that B is a basis of V .
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Proposition

Assume B = (b1, . . . , bn) is an ordered orthonormal basis of V and
x ∈ V . Then

x = 〈x , b1〉b1 + · · ·+ 〈x , bn〉bn.

Definition (Orthogonal projections.)

Let W be a subspace of V . Let {b1, . . . , bk} be an orthonormal basis of
W . Let x ∈ V . The orthogonal projection of x onto W is

projW (x) = 〈x , b1〉b1 + · · ·+ 〈x , bk〉bk .
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Example IP9,10&11 Let 〈, 〉 : R3 × R3 → R be given by

〈(u1, u2, u3), (v1, v2, v3)〉 = u1v1 + 2u2v2 + u3v3.

Let
S = {(1, 1, 1), (1 − 1, 1), (1, 0 − 1)}.

Then

〈(1, 1, 1), (1,−1, 1)〉 = 1− 2 + 1 = 0,

〈(1, 1, 1), (1, 0,−1)〉 = 1 + 0− 1 = 0,

〈(1,−1, 1), (1, 0,−1)〉 = 1 + 0− 1 = 0,

So S is an orthogonal sequence in R3 with respect to 〈, 〉.
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Let

b1 =
1

‖u‖u, where u = (1, 1, 1),

b2 =
1

‖v‖v , where v = (1,−1, 1),

b3 =
1

‖w‖w , where w = (1, 0, 01).

Then

b1 =
1
2 (1, 1, 1) since 〈(1, 1, 1), (1, 1, 1)〉 = 4,

b2 =
1
2(1,−1, 1) since 〈(1,−1, 1), (1,−1, 1)〉 = 4,

b2 =
1√
2
(1, 0,−1) since 〈(1, 0,−1), (1, 0,−1)〉 = 2,

and {b1, b2, b3} is an orthonormal sequence in R3 with respect to 〈, 〉.
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Let x = |1, 1,−1〉 and c2, c2, c3 ∈ R such that

x = c1b1 + c2b2 + c3b3.

Then

c1 = c1〈b1, b1〉+ 0 + 0 = 〈c1b1 + c2b2 + c3b3, b1〉 = 〈x , b1〉
= 〈(1, 1,−1), 1

2 (1, 1, 1)〉 = 1
2(1 + 2− 1),

c2 = c2〈b2, b2〉 = 〈c1b1 + c2b2 + c3b3, b2〉 = 〈x , b2〉
= 〈(1, 1,−1), 1

2 (1,−1, 1)〉 = 1
2(1− 2− 1),

c3 = 〈x , b3〉 = 〈(1, 1,−1), 1√
2
(1, 0,−1)〉 = 1√

2
(1 + 0 + 1) = 2√

2
=

√
2.

So x is written as a linear combination of the basis elements in the form

x = (1, 1,−1) = 〈x , b1〉b1 + 〈x , b2〉b2 + 〈x , b3〉b3
= 1 · b1 + (−1) · b2 +

√
2b3

= (1, 1, 1) − (1,−1, 1) +
√
2(1, 0,−1).
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Example IPA3. Let V = Rn and let u ∈ V with u 6= 0. Let

W = R-span{u} = {au | a ∈ R}.

Then W is a 1-dimensional subspace of V . Let

b1 =
1

‖u‖u.

Then {b1} is an orthonormal basis of W .
Let x ∈ V . Then

projW (x) = 〈x , b1〉b1 = 〈x , 1

‖u‖u〉
1

‖u‖u

=
〈x , u〉
‖u‖2 u = proju(x).

proju(x)
u

x

θ
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Example IP12. Let V = R3 and let

W = {|x , y , z〉 ∈ R3 | x + y + z = 0}.
The set

{b1, b2} =
{

1√
2
|1,−1, 0〉, 1√

6
|1, 1,−2〉

}

is an orthonormal basis of W with respect to the standard inner product
on R3.
Let x = |1, 2, 3〉. Then

projW (x) = 〈x |b1〉b1 + 〈x |b2〉b2
= 〈1, 2, 3| 1√

2
, −1√

2
, 0〉 · 1√

2
|1,−1, 0〉

+ 〈1, 2, 3| 1√
6
, 1√

6
, −2√

6
〉 · 1√

6
|1, 1,−2〉

=
(

1√
2
− 2√

2

)

1√
2
|1,−1, 0〉 + 1

6(1 + 2− 6)|1, 1,−2)〉
= |−1

2 , 12 , 0〉+ |−1
2 , −1

2 , 1) = |−1, 0, 1〉.
The shortest distance from x to W is

‖x − projW (x)‖ = ‖ |1, 2, 3〉 − |−1, 0, 1〉 ‖
= ‖ |2, 2, 2〉 ‖ =

√
4 + 4 + 4 = 2

√
3.
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Example IP13. (The Gram-Schmidt process of orthogonalization)
Let V = R3 with the standard inner product. Let S = {v1, v2, v3} with

v1 = |1, 1, 1〉, v2 = |0, 1, 1〉, v1 = |0, 0, 1〉.

Convert S into an orthonormal basis B .

Step 1. Make v1 into a unit vector. Let

b1 =
1

‖v1‖
v1 =

1√
3
|1, 1, 1〉 = | 1√

3
, 1√

3
, 1√

3
〉

and let S = {b1, v2, v3}.
Step 2. Make v2 orthogonal to b1. Let

u2 = v2 − 〈v , b1〉b1
= |0, 1, 1〉 − 2√

3
| 1√

3
, 1√

3
, 1√

3
〉

= |−2√
3
, 1√

3
, 1√

3
〉

and let S2 = {b1, u2, v3}.
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Step 3. Make u2 into a unit vector. Let

b2 =
1

‖u2‖
u2 =

1√
6/3

|−2
3 , 13 ,

1
3 〉 = |−2√

6
, 1√

6
, 1√

6
〉

and let S3 = {b1, b2, v3}.
Step 4. Make v3 orthogonal to b1 and b2. Let

u3 = v3 − 〈v3, b1〉b1 − 〈v3, b2〉b2
= |0, 0, 1〉 − 1√

3
| 1√

3
, 1√

3
, 1√

3
〉 − 1√

6
|−2√

6
, 1√

6
, 1√

6
〉

= |−1
3 + 2

6 ,
−1
3 − 1

6 , 1− 1
3 − 1

6〉 = |0, −1
2 , 12 〉.

Step 5. Make u3 into a unit vector. Let

b3 =
1

‖u3‖
u3 =

1√
2/4

|0, −1
2 , 12〉 = |0, −1√

2
, 1√

2
〉.

Then
B = {b1, b2, b3} is an orthonormal set.
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Lecture 26: Learning to do proofs – Orthogonality and

linear independence

Definition (Orthogonal and orthonormal sequences.)

Let V be an F-vector space with an inner product 〈, 〉 : V × V → F.

Let u, v ∈ V . The vectors u and v are

orthogonal if 〈u, v〉 = 0.

An orthogonal sequence is a sequence (b1, . . . , bk) of vectors in V such
that

if i , j ∈ {1, . . . , k} and i 6= j then 〈bi , bj 〉 = 0.

An orthonormal sequence is an orthogonal sequence (b1, . . . , bk) such
that

if i ∈ {1, . . . , k} then 〈bi , bi 〉 = 1.

An ordered orthonormal basis of V is an orthonormal sequence
(b1, . . . , bk) in V such that B is a basis of V .
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Theorem (Pythagorean Theorem)

Let V be a C-vector space with an inner product 〈, 〉 : V × V → C. Let
u, v ∈ V . If 〈u, v〉 = 0 then

‖u + v‖2 = ‖u‖2 + ‖v‖2.

Proof. Assume 〈u, v〉 = 0.
To show ‖u + v‖2 = ‖u‖2 + ‖v‖2.

‖u + v‖2 = 〈u + v , u + v〉
= 〈u, u〉+ 〈u, v〉+ 〈v , u〉+ 〈v , v〉
= 〈u, u〉+ 〈u, v〉+ 〈u, v〉+ 〈v , v〉
= ‖u‖2 + 0 + 0 + ‖v‖2

= ‖u‖2 + ‖v‖2.
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Proposition (Orthogonal sets are linearly independent)

Let V be a vector space with inner product 〈, 〉 : V × V → C.
Let B = {b1, . . . , bk} be an orthogonal set in V .
Then B is linearly independent.

Proof. Assume B is an orthogonal set in V .
To show: B is linearly independent.
To show: If c1, . . . , ck ∈ C and c1b1 + · · · + ckbk = 0

then c1 = 0, c2 = 0, . . . , ck = 0.

Assume c1, . . . , ck ∈ C and c1b1 + · · ·+ ckbk = 0.

To show: c1 = 0, c2 = 0, . . . , ck = 0.

To show: If i ∈ {1, . . . , k} then ci = 0.
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Assume i ∈ {1, . . . , k}. To show: ci = 0.

0 = 〈c1b1 + · · ·+ ckbk , bi 〉
= c1〈b1, bi 〉+ · · ·+ ci−1〈bi−1, bi〉+ ci 〈bi , bi 〉

+ ci+1〈bi+1, bi 〉+ · · ·+ ck〈bk , bi 〉
= c1 · 0 + · · · + ci−1 · 0 + ci 〈bi , bi 〉

+ ci+1 · 0 + · · · + ck · 0
= ci 〈bi , bi 〉.

Since 〈, 〉 is an inner product and bi 6= 0 then 〈bi , bi 〉 6= 0. So

ci =
1

〈bi , bi 〉
· 0 = 0.

So B is linearly independent.

250



Lecture 27: Learning to do proofs – Linear transformations

Linear transformations are for comparing vector spaces.

Definition (Linear transformation)

Let F be a field and let V and W be F-vector spaces. An F-linear
transformation from V to W is a function f : V → W such that

(a) If v1, v2 ∈ V then f (v1 + v2) = f (v1) + f (v2),

(b) If c ∈ F and v ∈ V then f (cv) = cf (v).

V

f
v f (v) W

251



Example A2. Let t, s ∈ Z>0 and A ∈ Mt×s(R). Let TA : R
s → Rt be

the function given by

TA(x) = Ax .
TA

x Ax

Show that TA is a linear transformation.
Let u, v ∈ Rs . Then, by the distributive property of matrix
multiplication for matrices,

TA(u + v) = A(u + v) = Au + Av = TA(u) + TA(v).

Let u ∈ Rs and c ∈ R. Then, by the associative property of scalar
multiplication for matrices,

TA(cu) = Acu = cAu = cTA(u).

So TA is a linear transformation.
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Let T : V → W be a linear transformation. Assume that T has an
inverse function T−1 : W → V . Show that T−1 is a linear
transformation.
Assume w1,w2 ∈ W . Then

T−1(w1 + w2) = T−1(T (T−1(w1)) + T (T−1(w2)))

= T−1(T (T−1(w1) + T−1(w2))

= T−1(w1) + T−1(w2),

where the first equality is because T ◦ T−1 = Id), the second equality is
because T is a linear transformation) and the third equality is because
T−1 ◦ T = Id. Assume w ∈ W and c ∈ R. Then

T−1(cw) = T−1(c · T (T−1(w))) = T−1T (c · T−1(w)) = c · T−1(w).

So T−1 is a linear transformation.
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Lecture 28: Learning to do proofs – Subspaces

Definition (Kernel and image of a linear transformation)

The kernel of an F-linear transformation f : V → W is the set

ker(f ) = {v ∈ V | f (v) = 0}.

The image of an F-linear transformation f : V → W is the set

im(f ) = {f (v) | v ∈ V }.

Definition (Kernel and image of a matrix)

Let A ∈ Mt×s(Q). The kernel of A is

ker(A) = {x ∈ Qs | Ax = 0}

and the image of A is

im(A) = {Ax | s ∈ Qs}.
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A subspace of Qs is a subset W ⊆ Qs such that

(a) 0 ∈ W ,

(b) If w1,w2 ∈ W then w1 + w2 ∈ W ,

(c) If w ∈ W and c ∈ Q then cw ∈ W .

Proposition

Let A ∈ Mt×s(Q). Then ker(A) is a subspace of Qs .

Proof. (a) Since A0 = 0 then 0 ∈ ker(A).

(b) Assume w1,w2 ∈ ker(A). Then Aw1 = 0 and Aw2 = 0. So

A(w1 + w2) = Aw1 + Aw2 = 0 + 0 = 0. So w1 + w2 ∈ ker(A).

(c) Assume w ∈ ker(A) and c ∈ Q. Then Aw = 0 and

A(cw) = cAw = c0 = 0. So cw ∈ ker(A).

So ker(A) is a subspace of Qs .
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A subspace of Qt is a subset Y ⊆ Qt such that

(a) 0 ∈ Y ,

(b) If y1, y2 ∈ Y then y1 + y2 ∈ Y ,

(c) If y ∈ Y and c ∈ Q then cy ∈ Y .

Proposition

Let A ∈ Mt×s(Q). Then im(A) is a subspace of Qt .

Proof. (a) Since 0 = A0 then 0 ∈ im(A).

(b)Assume y1, y2 ∈ im(A). Then there exist x1, x2 ∈ Qs such that
y1 = Ax1 and y2 = Ax2. Then

y1 + y2 = Ax1 + Ax2 = A(x1 + x2). So y1 + y2 ∈ im(A).

(c) Assume y ∈ im(A) and c ∈ Q. Then there exists x ∈ Qs such that
y = Ax . Then

cy = cAx = A(cx). So cy ∈ im(A).

So im(A) is a subspace of Qt .
256



Example A5. Let T : V → W be an R-linear transformation.
Show that ker(T ) = {v ∈ V | T (v) = 0} is a subspace of V .

Let v1, v2 ∈ ker(T ). Then

T (v1 + v2) = T (v1) + T (v2) = 0 + 0 = 0. So v1 + v2 ∈ ker(T ).

Subtracting T (0) from each side of the equation
T (0) = T (0 + 0) = T (0) + T (0) gives

0 = T (0), and so 0 ∈ ker(T ).

Let v ∈ ker(T ) and let c ∈ R. Then

T (cv) = cT (v) = c · 0 = 0 and so cv ∈ ker(T ).

So ker(T ) is a subspace of V .
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Example A6. Let T : V → W be an R-linear transformation.
Show that im(T ) = {T (v) | v ∈ V } is a subspace of W .
Subtracting T (0) from each side of the equation
T (0) = T (0 + 0) = T (0) + T (0) gives

0 = T (0), and so 0 ∈ im(T ).

Let w1,w2 ∈ W . Then there exist v1, v2 ∈ V such that

T (v1) = w1 and T (v2) = w2.

Then w1 + w2 = T (v1) + T (v2) = T (v1 + v2),

and so w1 + w2 ∈ im(T ).

Let w ∈ W and let c ∈ R. Then there exists v ∈ V such that

T (v) = w .

Then cw = cT (v) = T (cv)

and so cw ∈ im(T ).

So im(T ) is a subspace of W .
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Example V27&28. Let

S = {|1, 3,−1, 1〉, |2, 6, 0, 4〉, |3, 9,−2, 4〉 }.

Then

S =























1
3
−1
1









,









2
6
0
4









,









3
9
−2
4























and

R-span(S) = im(A), where A =









1 2 3
3 6 0
−1 0 −2
1 4 4









.
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Lecture 29: Learning to do proofs – The minimax basis

theorem

Definition (Spanning set, linearly independent set, basis)

Let V be an F-vector space and let B = {v1, . . . , vk} be a subset of V .
The subset B is a spanning set of V if B satisfies

{c1v1 + · · ·+ ckvk | c1, . . . , ck ∈ F} = V .

The subset B is a linearly independent set in V if B satisfies

if c1, . . . , ck ∈ F and c1v1 + · · · + ckvk = 0

then c1 = 0, . . . , ck = 0.

The subset B is a basis of V if B satisfies:

B is a spanning set of V and B is a linearly independent set in V .
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Theorem (Basis Minimax Theorem)

Let V be an F-vector space and let B be a subset of V . The following
are equivalent:

(a) B is a basis of V .

(b) B is a minimal spanning set of V .

(c) B is a maximal linearly independent set of V .

Theorem (Exchange Theorem)

Let V be an F-vector space. Let B = {v1, . . . , vk} be a basis of V and
let D = {d1, . . . , dℓ} be another basis of V . Then there exists di1 ∈ D
such that

{di1 , b2, b3, . . . , bk} is a basis of V .

Theorem (Dimension Theorem)

Let V be an F-vector space. Any two bases of V have the same
number of elements.
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The Dimension Theorem is the reason that

dim(V ) makes sense to consider.

Definition (Dimension)

Let V be a vector space. The dimension of V is

dim(V ) = (number of elements in a basis B of V ).
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The following provides an example of a spanning set that is not minimal,
and another spanning set for the same subspace that is minimal.

Example V14. Let S be the subset of R3 given by

S = {(1, 1, 1), (2, 2, 2), (3, 3, 3)}. Determine R-span(S).

In this case

R-span(S) = {c1 |1, 1, 1〉 + c2 |2, 2, 2〉 + c3 |3, 3, 3〉 | c1, c2, c3 ∈ R}
= {c1 |1, 1, 1〉 + 2c2 |1, 1, 1〉 + 3c3 |1, 1, 1〉 | c1, c2, c3 ∈ R}
= {(c1 + 2c2 + 3c3) |1, 1, 1〉 | c1, c2, c3 ∈ R}
= {t |1, 1, 1〉 | t ∈ R} = R-span{|1, 1, 1〉}
= {|t, t, t〉 | t ∈ R}.

Here { |1, 1, 1〉 } is a basis of R-span(S) and

dim(R-span(S)) = 1 (even though S has 3 elements).
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Proposition (Span is a subspace)

Let V be a vector space. Let B = {b1, . . . , bk} be a subset of V . Then
span(B) is a subspace of V .

Proof.
To show: (1) 0 ∈ span(B).

(2) If v1, v2 ∈ span(B) then v1 + v2 ∈ span(B).
(3) If v ∈ span(B) and c ∈ R then cv ∈ span(B).

(1) Since 0 = 0b1 + · · · 0bk then 0 ∈ span{b1, . . . , bk} = span(B).

(2) Assume v1, v2 ∈ span(B). To show v1 + v2 ∈ span(B).
Since v1, v2 ∈ span(B)
then there exist a1, . . . , ak , c1, . . . , ck ∈ R such that

v1 = a1b1 + · · ·+ akbk and v2 = c1b1 + · · ·+ ckbk .
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Then

v1 + v2 = (a1b1 + · · ·+ akbk) + (c1b1 + · · ·+ ckbk)

= (a1 + c1)b1 + · · ·+ (ak + ck)bk .

So v1 + v2 ∈ span{b1, . . . , bk} = span(B).

(3) Assume v ∈ span(B) and c ∈ R.
To show cv ∈ span(B).
Since v ∈ span(B) then there exist a1, . . . , ak ∈ R such that

v = a1b1 + · · ·+ akbk .

Then

cv = c(a1b1 + · · ·+ akbk) = (ca1)b1 + · · · + (cak)bk .

So cv ∈ span{b1, . . . , bk}. So cv ∈ span(B).
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Proof of the Dimension Theorem
Assume

B = {b1, . . . , bk} is a basis of V and

D = {d1, . . . , dℓ} is another basis of V .

Using the Exchange theorem, there exists di1 ∈ D such that
di1 6∈ span(B − b1). Then

B1 = {di1 , b2, b3, b4, . . . bk} is a basis of V .

Using the Exchange theorem, there exists di2 ∈ D such that
di2 6∈ span(B1 − b2). Then

B2 = {di1 , di2 , b3, b4, . . . bk} is a basis of V .

Continue this replacement process to obtain

B ′ = {di1 , . . . , dik} ⊆ D, such that B ′ is a basis of V .

By the Minimax Theorem D is a minimal spanning set.
So B ′ = D and k = ℓ.
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Proof of the Exchange Theorem
Assume

B = {b1, . . . , bk} is a basis of V and

D = {d1, . . . , dℓ} is another basis of V .

If d1, . . . , dℓ ∈ span(B − {b1}) then

V = span(d1, . . . , dℓ) ⊆ span(B − {b1}) ⊆ V

giving V = span(B − {b1}).
But since B is a minimal spanning set then V 6= span(B − {b1}) and so

there exists di1 ∈ D such that di1 6∈ span(B − {b1}).

di1 = c1b1 + c2b2 + · · ·+ ckbk , with c1 6= 0.

To show: B1 = {di1 , b2, . . . , bk} is a basis of V .
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To show: (1) span{di1 , b2, . . . , bk} = V .
(2) {di1 , b2, . . . , bk} is linearly independent.

(1) Since
b1 = c−1

1 (−di1 + c2b2 + · · ·+ ckvk)

then b1, b2, . . . , bk ∈ span{di1 , b2, . . . , bk}. So
V = span{b1, . . . , bk} ⊆ span{di1 , b2, . . . , bk} ⊆ V . So

V = span(di1 , b2, . . . , bk}.

(2) If a1di1 + a2b2 + · · ·+ akbk = 0 then

a1(c1b1 + c2b2 + · · · + ckbk) + a2b2 + · · · + akbk = 0.

Since B is linearly independent then a1c1 = 0.
Since c1 6= 0 then a1 = 0 and a2b2 + · · ·+ akbk = 0.
Since B is linearly independent then a2 = 0, . . . , ak = 0.
So {di1 , b2, . . . , bk} is linearly independent.
So {di1 , b2, . . . , bk} is a basis of V .
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Proof of the Minimax Basis Theorem
(a) ⇒ (b): Assume B = {b1, . . . , bk} is a basis of B .
To show: B is a minimal spanning set of V .
To show: (1) B Is a spanning set.

(2) If i ∈ {1, . . . , k} then B − {bi} is not a spanning set.

(1) Since B is a basis then B is a spanning set.

(2) To show: If i ∈ {1, . . . , k} and B − {bi} is a spanning set then B is
not a basis.
Assume i ∈ {1, . . . , k} and B − {bi} is a spanning set.
Then there exist c1, . . . , ci−1, ci+1, . . . , ck ∈ R such that

bi = c1b1 + · · ·+ ci−1bi−1 + ci+1bi+1 + · · ·+ ckbk .

Then

0 = c1b1 + · · · + ci−1bi−1 − bi + ci+1bi+1 + · · ·+ ckbk .

So {b1, . . . , bk} is not linearly independent.
So B is not a basis.

So if i ∈ {1, . . . , k} then B − {bi} is not a spanning set.
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(b) ⇒ (c): Assume B is a minimal spanning set.
To show: B is a maximal linearly independent set in V .
To show: (1) B is a linearly independent set in V .

(2) If v ∈ V then B ∪ {v} is not linearly independent.

(1) To show: If B is a spanning set and B is not linearly independent
then B is not a minimal spanning set.
Assume B is a spanning set and B is not linearly independent.
Then there exist c1, . . . , ck ∈ R and i ∈ {1, . . . , k} such that

c1b1 + · · ·+ ckbk = 0 and ci 6= 0.

Then bi = −c−1
i (c1b1 + · · ·+ ci−1bi−1 + ci+1bi+1 + · · ·+ ckbk).

So span(B − {bi}) ⊇ span(b1, . . . , bk) = V .
So span(B − {bi}) = V and B is not a minimal spanning set of B .
So if B is a minimal spanning set then B is linearly independent.

(2) To show: If v ∈ V then B ∪ {v} is not linearly independent.
Assume v ∈ V . To show: B ∪ {v} is not linearly independent.
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Since span(B) = V then there exist c1, . . . , ck ∈ R such that

v = c1b1 + · · · ckbk .

So 0 = c1b1 + · · ·+ ckbk − v .
So B ∪ {v} = {b1, . . . , bk , v} is not linearly independent.

(c) ⇒ (a): Assume B is a maximal linearly independent set.
To show: B is a basis.
To show: span(B) = V .
Assume v ∈ V . To show v ∈ span(B).
Since B is a maximal linearly independent set then B ∪ {v} is not
linearly independent.
So there exist c1, . . . , ck , ck+1 ∈ R and i ∈ {1, . . . , k + 1} such that

c1b1 + · · · + ckbk + ck+1v = 0 and ci 6= 0.

The case ck+1 = 0 cannot occur since B is linearly independent.
So ck+1 6= 0 and v = −c−1

k+1(c1b1 + · · · ckbk).
So v ∈ span{b1, . . . , bk} = span(B).
So V = span(B). So B is a basis of V .
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Lecture 30: Learning to do proofs – Invertible matrices are

square

Definition (Kernel and image of a matrix)

Let A ∈ Mt×s(Q). The kernel of A is

ker(A) = {x ∈ Qs | Ax = 0}

and the image of A is

im(A) = {Ax | s ∈ Qs}.
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Proposition

Let s, t ∈ Z>0 and let A ∈ Mt×s(R).
If ker(A) = 0 then the columns of A are linearly independent.

Proof. Let a1, . . . , as be the columns of A.
Assume ker(A) = 0.
To show: a1, . . . , as are linearly independent.
To show: If c1, . . . , cs ∈ R and c1a1 + · · · + csas = 0

then c1 = 0, c2 = 0, . . . , cs = 0.

Assume c1, . . . , cs ∈ R and c1a1 + · · ·+ csas = 0.
Then

A







c1
...
cs






= 0. So







c1
...
cs






∈ ker(A). So







c1
...
cs






=







0
...
0






.

So c1 = 0, c2 = 0, . . . , cs = 0.
So {a1, . . . , as} is linearly independent.
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Proposition

Let s, t ∈ Z>0 and let A ∈ Mt×s(R). Let a1, . . . , as be the columns of
A. Then

im(A) = span{a1, . . . , as}.

Proof.

im(A) = {Ax | x ∈ Rs} =















| |
a1 · · · as
| |











x1
...
xs







∣

∣

∣
x1, . . . , xs ∈ R











=







x1





|
a1
|



+ · · ·+ xs





|
as
|





∣

∣

∣
x1, . . . , xs ∈ R







= R-span{columns of A}.

So im(A) is the set of linear combinations of the columns of A.
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Theorem (Invertible matrices are square)

Let s, t ∈ Z>0 and let A ∈ Mt×s(R). Suppose there exists

P ∈ Ms×t(R) be such that PA = 1.

Suppose there exists

Q ∈ Ms×t(R) be such that AQ = 1.

Then

(a) ker(A) = 0.

(b) im(A) = Rt .

(c) The set of columns of A is a basis of Qt .

(d) s = t.

(e) P = Q.

275



Proof. (a) To show: ker(A) = {0}.
To show: (1) {0} ⊆ ker(A).

(2) ker(A) ⊆ {0}.
(1) Since A · 0 = 0 then 0 ∈ ker(A).
So {0} ⊆ ker(A).

(2) To show: If x ∈ ker(A) then x ∈ {0}.
Assume x ∈ ker(A). To show: x = 0.
Since x ∈ ker(A) then

Ax = 0. So PAx = P0 = 0.

So x = 1x = PAx = 0. So ker(A) ⊆ {0}.
So ker(A) = {0}.
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(b) To show: im(A) = Rt .

To show: (1) im(A) ⊆ Rt .
(2) Rt ⊆ im(A).

(1) By definition of (im(A) = {Ax | x ∈ Rs}.
Since A is a t × s matrix then im(A) ⊆ Rt .

(2) To show: If v ∈ Rt then v ∈ im(A).
Assume v ∈ Rt . To show: v ∈ im(A).

v = 1v = AQv ∈ {Ax | x ∈ Rt} = im(A).

So v ∈ im(A). So Rt ⊆ im(A).

So Rt = im(A).
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(c) Since ker(A) = 0 then

the columns of A are linearly independent.

Since im(A) = span{columns of A} and Rt = im(A) then

Rt = span{columns of A}.
So {columns of A} is a basis of Rt .

(d) Let a1, . . . , as be the columns of A. By part (c),

{a1, . . . , as} is a basis of Rt .

Let ei be the t × 1 matrix with 1 is in the ith entry and 0 elsewhere.
Then

{e1, . . . , et} is a basis of Rt .

By the Dimension Theorem, any two bases of Rt have the same number
of elements.
So s = t.

(e) To show: P = Q.

P = P · 1 = P(AQ) = (PA)Q = 1 · Q = Q. �
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Lecture 31: Application – Data Correlation

Correlation is a measure of how closely two variables are dependent.

Definition

The mean µX of a data set X = {x1, . . . , xn} is the average of the
values in the data set.

µX = 1
n
(x1 + · · ·+ xn).

The correlation of variables X and Y is

corr(X ,Y ) = cos(θ(X − µX ,Y − µY )), where

X −µX = |x1−µX , . . . , xn−µX 〉 and Y −µY = |y1−µY , . . . , yn−µY 〉.

Use cos(θ(u, v)) =
〈u, v〉

‖u‖ · ‖v‖ to compute the correlation.

A value close to 1 indicates the values a highly correlated and a value
close to −1 indicates the values are not at all correlated.
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Example E3. Suppose the data set is assignment and exam marks for 7
students.

Student Assignment Mark Exam Mark

S1 99 100
S2 80 82.5
S3 79 79
S4 75.5 82.5
S5 87.5 91
S6 67 67.5
S7 76 68

The mean assignment mark is

µA = 1
7(99 + 80 + 79 + 75.5 + 87.5 + 67 + 76) = 80.5.

The mean exam mark is

µE = 1
7(100 + 82.5 + 79 + 82.5 + 91 + 67.5 + 68) = 81.5.
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Then

A− µA = |18.5,−0.5,−1.5,−5.5, 7,−13.5,−4.5〉,
E − µE = |18.5, 1,−2.5, 1, 9.5,−14,−13.5〉

and the correlation between the assignment marks and the exam marks
is

corr(A,E ) = cos(θ(A− µA,E − µE ))

=
〈A− µA,E − µE 〉

‖A− µA‖ · ‖E − µE‖
=

656.75

(24.92)(28.62)
≈ 0.92.
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Lecture 32: Application – Data Line of best fit

Given a data set D = {(x1, y1), (x2, y2), . . . , (xn, yn)} find

the line of best fit y = abestx + bbest.

Let

A =











1 x1
1 x2
...

...
1 xn











, y =







y1
...
yn






, u =

(

a
b

)

so that

y − Au =







y1 − (a + bx1)
...

yn − (a + bxn)






PICTURE

Goal: Minimize ‖y − Au‖.
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Let

W = {Au | u =

(

a
b

)

∈ R2} and

~s ∈ R2 such that A~s = projW (y).
PICTURE

Then ‖y − A~s‖ will be minimal if y − A~s is perpendicular to W .

So we want if u ∈ R2 then 〈y − A~s,Au〉 = 0.

So we want if u ∈ R2 then utAt(y − A~s) = 0.

So we want Aty − AtA~s = 0.

So we want AtA~s = Aty.

So we want

~s = (AtA)−1Aty =

(

abest
bbest

)

and the line of best fit is y = abestx + bbest.
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Example IP14 Follow the above procedure. Given the data set
D = {(−1, 1), (1, 1), (2, 3)} then

A =





1 −1
1 1
1 2



 and y =





1
1
3



 .

Then

AtA =

(

1 1 1
−1 1 2

)





1 −1
1 1
1 2



 =

(

3 2
2 6

)

and

Aty =

(

1 1 1
−1 1 2

)





1
1
3



 =

(

5
6

)

and (AtA)−1 = 1
14

(

6 −2
−2 3

)

.

So

~s =
1

14

(

6 −2
−2 3

)(

5
6

)

=
1

14

(

18
8

)

=

(

9
7
4
7

)

.

So the line of best fit is
y = 9

7 +
4
7x .
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Lecture 33: Review – Subspace examples

Example V6. Is W = {|x , y , z〉 ∈ R3 | x + y + z = 0} a R-subspace of
R3?

A R-subspace of R3 is a subset W ⊆ R3 such that

(a) If w1,w2 ∈ W then w1 + w2 ∈ W ,

(b) 0 ∈ W ,

(c) If w ∈ W then −w ∈ W ,

(d) If w ∈ W and c ∈ R then cw ∈ W .

Proof.

(a) Assume w1 = |a, b, c〉 ∈ W and w2 = |x , y , z〉 ∈ W .

Then a + b + c = 0 and x + y + z = 0.

Then w1 + w2 = |a + x , b + y , c + z〉 and
(a+ x)+ (b+ y)+ (c + z) = (a+ b+ c)+ (x + y + z) = 0+0 = 0.

So w1 + w2 ∈ W .
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(b) 0 = |0, 0, 0〉 satisfies 0 + 0 + 0 = 0. So 0 ∈ W .

(c) Assume w = |x , y , z〉 ∈ W .

Then x + y + z = 0.

Then −w = | − x ,−y ,−z〉 and
(−x) + (−y) + (−z) = −(x + y + z) = −0 = 0.

So −w ∈ W .

(d) Assume w = |x , y , z〉 ∈ W and c ∈ R.

Then x + y + z = 0.

Then cw = |cx , cy , cz〉 and
cx + cy + cz = c(x + y + z) = c · 0 = 0.

So cw ∈ W .

So W is a subspace of R3.
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Example V7. Is the line L = {|x , y〉 ∈ R2 | y = 2x + 1} a subspace of
R2?

A subspace of R2 is a subset L ⊆ R2 such that

(a) If w1,w2 ∈ L then w1 + w2 ∈ L,

(b) 0 ∈ L,

(c) If w ∈ L then −w ∈ L,

(d) If w ∈ L and c ∈ R then cw ∈ L.

Since 0 = |0, 0〉 and 0 6= 2 · 0 + 1 then 0 6∈ L.
So L is not a subspace of R2.
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Example V8. Is W = {a1x + a2x
2 | a1, a2 ∈ R} a subspace of R[x ]62?

A subspace of R[x ]62 is a subset W ⊆ R[x ]62 such that

(a) If w1,w2 ∈ W then w1 + w2 ∈ W ,

(b) 0 ∈ W ,

(c) If w ∈ W then −w ∈ W ,

(d) If w ∈ W and c ∈ R then cw ∈ W .

Proof.

(a) Assume w1 = a1x + a2x
2 ∈ W and w2 = b1x + b2x

2 ∈ W .

Then a1, a2 ∈ R and b1, b2 ∈ R.

Then
w1 + w2 = a1x + a2x

2 + b1x + b2x
2 = (a1 + a1)x + (b1 + b2)x

2

and a1 + b1 ∈ R and a2 + b2 ∈ R.

So w1 + w2 ∈ W .

(b) 0 = 0x + 0x2 satisfies 0 ∈ R and 0 ∈ R. So 0 ∈ W .
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(c) Assume w = a1x + a2x
2 ∈ W .

Then a1, a2 ∈ R.

Then −w = −(a1x + a2x
2) = −a1x + (−a2)x

2 and −a1 ∈ R and
−a2 ∈ R.

So −w ∈ W .

(d) Assume w = a1x + a2x
2 ∈ W and c ∈ R.

Then a1, a2 ∈ R.

Then cw = c(a1x + a2x
2) = (ca1)x + (ca2)x

2 and ca1 ∈ R and
ca2 ∈ R.

So cw ∈ W .

So W is a subspace of R[x ]62.
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Example V9. Is the set of real 2× 2 matrices whose trace is equal to 0
a subspace of M2×2(R)?

A subspace of M2×2(R) is a subset W ⊆ M2×2(R) such that

(a) If w1,w2 ∈ W then w1 + w2 ∈ W ,

(b) 0 ∈ W ,

(c) If w ∈ W then −w ∈ W ,

(d) If w ∈ W and c ∈ R then cw ∈ W .

Proof. The set of real 2× 2 matrices whose trace is equal to 0 is

W =

{(

a11 a12
a21 a22

)

∣

∣

∣
a11 + a22 = 0

}

.

(a) Assume w1 =

(

a11 a12
a21 a22

)

∈ W and w2 =

(

b11 b12
b21 b22

)

∈ W .

Then a11 + a22 = 0 and b11 + b22 = 0.

Then w1 + w2 =

(

a11 + b11 a12 + b12
a21 + b21 a22 + b22

)

and

(a11 + b11) + (a22 + b22) = (a11 + a22) + (b11 + b22) = 0 + 0 = 0.

So w1 + w2 ∈ W .
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(b) 0 =

(

0 0
0 0

)

(0, 0, 0) satisfies 0 + 0 = 0. So 0 ∈ W .

(c) Assume w =

(

a11 a12
a21 a22

)

∈ W .

Then a11 + a22 = 0.

Then −w = −
(

a11 a12
a21 a22

)

=

(

−a11 −a12
−a21 −a22

)

and

(−a11) + (−a22) = −(a11 + a22) = −0 = 0.

So −w ∈ W .

(d) Assume w =

(

a11 a12
a21 a22

)

∈ W and c ∈ R.

Then a11 + a22 = 0.

Then cw = c

(

a11 a12
a21 a22

)

=

(

ca11 ca12
ca21 ca22

)

and

ca11 + ca22 = c(a11 + a22) = c · 0 = 0.

So cw ∈ W .

So W is a subspace of M2×2(R).
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Example V10. Is

S =

{(

a b
c d

)

∈ M2(R)
∣

∣ ad − bc = 0

}

a subspace of M2(R)?.

A subspace of M2×2(R) is a subset S ⊆ M2×2(R) such that

(a) If w1,w2 ∈ S then w1 + w2 ∈ S ,

(b) 0 ∈ S ,

(c) If w ∈ S then −w ∈ S ,

(d) If w ∈ S and c ∈ R then cw ∈ S .

Let w1 =

(

1 0
0 0

)

. Since 1 · 0− 0 · 0 = 0− 0 = 0 then w1 ∈ S .

Let w2 =

(

0 0
0 1

)

. Since 0 · 1− 0 · 0 = 0− 0 = 0 then w2 ∈ S .

Then

w1 + w2 =

(

1 0
0 0

)

+

(

0 0
0 1

)

=

(

1 0
0 1

)

and 1 · 1− 0 · 0 = 1.

So w1 + w2 6∈ S .

So S is not a subspace of M2×2(R).
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Lecture 34: Review – Linear transformation examples

Example LT3. Is the functionT : M2(R) → R given by

T

(

a b
c d

)

= det

(

a b
c d

)

= ad − bc a linear transformation?

A linear transformation from M2(R) to R is a function f : M2(R) → R

such that

(a) If v1, v2 ∈ M2(R) then f (v1 + v2) = f (v1) + f (v2),

(b) If c ∈ R and v ∈ M2(R) then f (cv) = cf (v).

Since

1 = T

(

1 0
0 1

)

= T

((

1 0
0 0

)

+

(

0 0
0 1

))

is not equal to

0 = 0 + 0 = T

(

1 0
0 0

)

+ T

(

0 0
0 1

)

then condition (a) does not hold and T is not a linear transformation.
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Example LT4. Is the function T : R3 → R2 given by

T (x1, x2, x3) = (x2 − 2x3, 3x1 + x3) a linear transformation?

A linear transformation from R3 to R2 is a function f : R3 → R2 such
that

(a) If u, v ∈ R3 then f (u + v) = f (u) + f (v),
(b) If c ∈ R and v ∈ R3 then f (cv) = cf (v).

(a) Assume u, v ∈ R3 with u = |u1, u2, u3〉 and v = |v1, v2, v3〉. Then
T (|u1, u2, u3〉+ |v1, v2, v3〉 = T (|u1 + v1, u2 + v2, u3 + v3〉)

= |(u2 + v2 − 2(u3 + v3), 3(u1 + v1) + (u3 + v3)〉
= |u2 − 2u3 + v2 − 2v3, 3u1 + u3 + 3v1 + v3〉
= |u2 − 2u3, 3u1 + u3〉+ |v2 − 2v3, 3v1 + v3〉
= T (|u1, u2, u3〉) + T (|v1, v2, v3〉)

(b) Assume c ∈ R and u ∈ R3 with u = |u1, u2, u3〉. Then
T (c · |u1, u2, u3〉) = T (|cu1, cu2, cu3〉) = |cu2 − 2cu3, 3cu1 + cu3〉

= c |u2 − 2u3, 3u1 + u3〉 = cT (|u1, u2, u3〉).
So T is a linear transformation.
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Lecture 35: Review – Span examples

Example V12. In R3, is |1, 2, 3〉 ∈ R-span{|1,−1, 2〉, | −1, 1, 2〉}?
By definition R-span{|1,−1, 2〉, | −1, 1, 2〉}

= {c1|1,−1, 2〉 + c2| −1, 1, 2〉 | c1, c2 ∈ R}.
So we need to show that there exist c1, c2 ∈ R such that

|1, 2, 3〉 = c1|1,−1, 2〉 + c2| −1, 1, 2〉.

So we need to show that the system
c1 − c2 = 1,
−c1 + c2 = 2,
2c1 + 2c2 = 3,

has a solution.

In matrix form the equations are





2 2
1 −1
−1 1





(

c1
c2

)

=





3
1
2



 .
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Left multiply both sides by





1 0 0
0 0 1
0 1 1



 to get





2 2
−1 1
0 0





(

c1
c2

)

=





3
2
3



 .

Already this gives an equation 0c1 + 0c2 = 3, which has no solution.

So |1, 2, 3〉 6∈ R-span{|1,−1, 2〉 and | −1, 1, 2〉}.
So |1, 2, 3〉 is not a linear combination of |1,−1, 2〉 and | −1, 1, 2〉.
So |1, 2, 3〉 6∈ R-span{|1,−1, 2〉, | −1, 1, 2〉}.
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Example V13. In R[x ]62, is 1− 2x − x2 ∈ R-span{1 + x + x2, 3 + x2}?
By definition R-span{1 + x + x2, 3 + x2}

= {c1(1 + x + x2) + c2(3 + x2) | c1c2 ∈ R}.
So we need to show that there exist c1, c2 ∈ R such that

c1(1 + x + x2) + c2(3 + x2) = 1− 2x − x2.

So we need to show that the system
c1 + 3c2 = 1,
c1 + 0c2 = −2,
c1 + c2 = −1,

has a solution.

In matrix form the equations are





1 3
1 0
1 1





(

c1
c2

)

=





1
−2
−1



 .
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Left multiply both sides by





1 0 0
0 0 1
0 1 −1



 to get





1 3
1 1
0 −1





(

c1
c2

)

=





1
−1
−1



 .

Left multiply both sides by





0 1 0
1 −1 0
0 0 1



 to get





1 1
0 2
0 −1





(

c1
c2

)

=





−1
2
−1



 .

Left multiply both sides by





1 0 0
0 0 1
0 1 −2



 to get





1 1
0 −1
0 0





(

c1
c2

)

=





−1
−1
0



 .
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Left multiply both sides by





1 0 0
0 −1 0
0 0 1



 to get





1 1
0 1
0 0





(

c1
c2

)

=





−1
1
0



 .

Left multiply both sides by





1 −1 0
0 1 0
0 0 1



 to get





1 0
0 1
0 0





(

c1
c2

)

=





−2
1
0



 .

So c1 = −2 and c2 = 1 is a solution.

So −2(1 + x + x2) + (3 + x2) = 1− 2x − x2.

So 1− 2x − x2 ∈ R-span{1 + x + x2, 3 + x2}.
So 1− 2x − x2 is a linear combination of 1 + x + x2 and 3 + x2.
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Example V14. Let S be the subset of R3 given by

S = {(1, 1, 1), (2, 2, 2), (3, 3, 3)}. Determine R-span(S).

In this case

R-span(S) = {c1 |1, 1, 1〉 + c2 |2, 2, 2〉 + c3 |3, 3, 3〉 | c1, c2, c3 ∈ R}
= {c1 |1, 1, 1〉 + 2c2 |1, 1, 1〉 + 3c3 |1, 1, 1〉 | c1, c2, c3 ∈ R}
= {(c1 + 2c2 + 3c3) |1, 1, 1〉 | c1, c2, c3 ∈ R}
= {t |1, 1, 1〉 | t ∈ R}
= {|t, t, t〉 | t ∈ R}.
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Example V15. Let S be the subset of R2 given by

S = {|1,−1〉, |2, 4〉}. Show that span(S) = R2.

Proof. By definition R-span(S) = {c1|1,−1〉 + c2|2, 4〉 | c1, c2 ∈ R}.
To show: (a) R-span(S) ⊆ R2

(b) R2 ⊆ R-span(S).

(a) Since S ⊆ R2 and R2 is closed under addition and scalar
mutliplication then R-span(S) ⊆ R2.

(b) To show: R2 ⊆ R-span(S).
To show: R-span{|1, 0〉, |0, 1〉} ⊆ R-span(S).

Since R-span(S) is closed under addition and scalar multiplication, we
can show {|1, 0〉, |0, 1〉} ⊆ R-span(S).

To show: There exist c1, c2, d1, d2 ∈ R such that

c1|1,−1〉 + c2|2, 4〉 = |1, 0〉 and d1|1,−1〉 + d2|2, 4〉 = |0, 1〉.
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To show: There exist c1, c2, d1, d2 ∈ R such that

(

1 2
−1 4

)(

c1 d1
c2 d2

)

=

(

1 0
0 1

)

.

Since
(

1 2
−1 4

)(

2
3 −1

3
1
6

1
6

)

=

(

1 0
0 1

)

then
2
3 |1,−1〉 + 1

6 |2, 4〉 = |1, 0〉, and

−1
3 |1,−1〉 + 1

6 |2, 4〉 = |0, 1〉.
So |1, 0〉 ∈ R-span(S) and |0, 1〉 ∈ R-span(S).
So R-span{|1, 0〉, |0, 1〉} ⊆ R-span(S).
So R2 ⊆ R-span(S).
So R-span(S) = R2.
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Example V16. Let S be the subset of R3 given by

S = {|1, 2, 0〉, |1, 5, 3〉, |0, 1, 1〉}. Show that span(S) = R3.

Proof. By definition

R-span(S) = {c1|1, 2, 0〉 + c2|1, 5, 3〉 + c3|0, 1, 1〉 | c1, c2, c3 ∈ R}.

To show: (a) R-span(S) ⊆ R3

(b) R3 ⊆ R-span(S).

(a) Since S ⊆ R3 and R3 is closed under addition and scalar
multiplication then R-span(S) ⊆ R3.

(b) To show: R3 ⊆ span(S).

To show: R-span{|1, 0, 0〉, |0, 1, 0〉, |0, 0, 1〉} ⊆ span(S).

Since R-span(S) is closed under addition and scalar multiplication,

To show: {|1, 0, 0〉, |0, 1, 0〉, |0, 0, 1〉} ⊆ R-span(S).
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To show: There exist c1, c2, c3, d1, d2, d3, r1, r2, r3 ∈ R such that

c1|1, 2, 0〉 + c2|1, 5, 3〉 + c3|0, 1, 1〉 = |1, 0, 0〉,
d1|1, 2, 0〉 + d2|1, 5, 3〉 + d3|0, 1, 1〉 = |0, 1, 0〉,
r1|1, 2, 0〉 + r2|1, 5, 3〉 + r3|0, 1, 1〉 = |0, 0, 1〉,

To show: There exist c1, c2, c3, d1, d2, d3, r1, r2, r3 ∈ R such that





1 1 0
2 5 1
0 3 1









c1 d1 r1
c2 d2 r2
c3 d3 r3



 =





1 0 0
0 1 0
0 0 1



 .

Multiply both sides by





1 0 0
−2 1 0
0 0 1



 to get





1 1 0
0 3 1
0 3 1









c1 d1 r1
c2 d2 r2
c3 d3 r3



 =





1 −2 0
0 1 0
0 0 1



 .
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Multiply both sides by





1 0 0
0 1 0
0 −1 1



 to get





1 1 0
0 3 1
0 0 0









c1 d1 r1
c2 d2 r2
c3 d3 r3



 =





1 −2 0
0 1 0
0 −1 1



 .

Since the bottom row on the left hand side is all 0 and the bottom
row on the right hand sides is not all 0 then there do not exist
c1, c2, c3, d1, d2, d3, r1, r2, r3 ∈ R such that





1 1 0
2 5 1
0 3 1









c1 d1 r1
c2 d2 r2
c3 d3 r3



 =





1 0 0
0 1 0
0 0 1



 .

So {|1, 0, 0〉, |0, 1, 0〉, |0, 0, 1〉} 6⊆ R-span(S).

So span(S) 6= R2.
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Example V17. Let S be the subset of R[x ]62 given by

S = {1 + x + x2, x2}. Show that span(S) = R[x ]62.

Proof. By definition

R-span(S) = {c1(1 + x + x2) + c2x
2 | c1, c2 ∈ R}.

To show: (a) span(S) ⊆ R[x ]62

(b) R[x ]62 ⊆ R-span(S).

(a) Since S ⊆ R[x ]62 and R[x ]62 is closed under addition and scalar
multiplication then R-span(S) ⊆ R[x ]62.

(b) To show: R[x ]62 ⊆ R-span(S).

To show: R-span{1, x , x2} ⊆ R-span(S).

Since R-span(S) is closed under addition and scalar multiplication,

To show: {1, x , x2} ⊆ R-span(S).
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To show: There exist c1, c2, d1, d2, r1, r2 ∈ R such that

c1(1 + x + x2) + c2x
2 = 1, d1(1 + x + x2) + d2x

2 = x ,

and
r1(1 + x + x2) + r2x

2 = x2.

To show: There exist c1, c2, d1, d2, r1, r2 ∈ R such that





1 0
1 0
1 1





(

c1 d1 r1
c2 d2 r2

)

=





1 0 0
0 1 0
0 0 1



 .

Multiply both sides by





−1 1 0
0 1 0
0 0 1



 to get





0 0
1 0
1 1





(

c1 d1 r1
c2 d2 r2

)

=





1 0 0
0 1 0
0 0 1



 .
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Since the top row on the left hand side is all 0 and the top row on
the right hand sides is not all 0 then there do not exist
c1, c2, d1, d2, r1, r2 ∈ R such that





1 0
1 0
1 1





(

c1 d1 r1
c2 d2 r2

)

=





1 0 0
0 1 0
0 0 1



 .

So {1, x , x2} 6⊆ R-span(S).

So R-span{1, x , x2} 6⊆ R-span(S).

So R[x ]62 6⊆ R-span(S).

So R-span(S) 6= R[x ]62.
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Lecture 36: Review – Linear independence examples

Example V18a Let S be the subset of C3 given by

S = {|2i ,−1, 1〉, | −6,−3i , 3i〉}. Is S C-linearly independent?

To show: If c1, c2 ∈ C and c1 |2i ,−1, 1〉 + c2|−6,−3i , 3i〉 = |0, 0, 0〉
then c1 = 0, c2 = 0.
Assume c1, c2 ∈ C and c1 |2i ,−1, 1〉 + c2|−6,−3i , 3i〉 = |0, 0, 0〉.
Then

2ic1 − 6c2 = 0,
−c1 − 3ic2 = 0,
c1 + 3ic2 = 0,

or equivalently





2i −6
−1 −3i
1 3i





(

c1
c2

)

=





0
0
0



 .

Skipping the row reduction steps (DON’T skip the row reduction steps
on an exam or an assignment!), this system has solutions

(

c1
c2

)

=

(

0
0

)

+ t

(

−3i
1

)

, with t ∈ R.

So c1 = 0, c2 = 0 is not the only solution.
So S is not linearly independent.
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Example V18b. Let B be the subset of R3 given by

B = {|2i ,−1, 1〉, |4, 0, 2〉}. Is B linearly independent?

To show: If c1, c2 ∈ C and c1 |2i ,−1, 1〉 + c2|4, 0, 2〉 = |0, 0, 0〉 then
c1 = 0, c2 = 0.
Assume c1, c2 ∈ C and c1 |2i ,−1, 1〉 + c2|4, 0, 2〉 = |0, 0, 0〉
Then

2ic1 + 4c2 = 0,
−c1 + 0c2 = 0,
c1 + 2c2 = 0,

or equivalently





2i 4
−1 0
1 2





(

c1
c2

)

=





0
0
0



 .

Skipping the row reduction steps (DON’T skip the row reduction steps
on an exam or an assignment!), this system has only one solution
c1 = 0, c2 = 0.
So S is linearly independent.
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Example V19. Let S be the subset of R3 given by

S = {(2, 0, 0), (6, 1, 7), (2,−1, 2)}. Is S linearly independent?

To show:
If c1, c2, c3 ∈ R and c1 |2, 0, 0〉 + c2|6, 1, 7〉 + c3|2,−1, 2〉 = |0, 0, 0〉
then c1 = 0, c2 = 0, c3 = 0.
Assume c1, c2, c3 ∈ R and
c1 |2, 0, 0〉 + c2|6, 1, 7〉 + c3|2,−1, 2〉 = |0, 0, 0〉.
Then

2c1 + 6c2 + 2c3 = 0,
c2 − c3 = 0,

7c2 + 2c3 = 0,
or equivalently





2 6 2
0 1 −1
0 7 2









c1
c2
c3



 =





0
0
0



 .

Skipping the row reduction steps (DON’T skip the row reduction steps
on an exam or an assignment!), this system has only one solution:
c1 = 0, c2 = 0, c3 = 0.
So S is linearly independent.
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Example V20&26. Let S be the subset of R[x ]62 given by

S = {1 + 2x + 5x2, 1 + x + x2, 1 + 2x + 3x2}. Is S a basis of R[x ]62?

To show: If c1, c2, c3 ∈ R and
c1(1 + 2x + 5x2) + c2(1 + x + x2) + c3(1 + 2x + 3x2) = 0
then c1 = 0, c2 = 0, c3 = 0.

Assume c1, c2, c3 ∈ R and
c1(1 + 2x + 5x2) + c2(1 + x + x2) + c3(1 + 2x + 3x2) = 0.
Then

c1 + c2 + c3 = 0,
2c1 + c2 + 2c3 = 0,
5c1 + c2 + 3c2 = 0,

or, equivalently,





1 1 1
2 1 2
5 1 3









c1
c2
c3



 =





0
0
0



 .

Skipping the row reduction steps (DON’T skip the row reduction steps
on an exam or an assignment!), this system has only one solution:
c1 = 0, c2 = 0, c3 = 0.
So S is linearly independent.

Since dim(R[x ]62) = 3 and S contains 3 linearly independent elements
then B is a basis for R[x ]62.
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Example V21. Let S be the subset of M2(R) given by

S =

{(

1 3
1 1

)

,

(

−2 1
1 −1

)

,

(

1 10
4 2

)}

. Is S linearly independent?

To show: If c1, c2, c3 ∈ R and

c1

(

1 3
1 1

)

+ c2

(

−2 1
1 −1

)

+ c3

(

1 10
4 2

)

=

(

0 0
0 0

)

then c1 = 0, c2 = 0, c3 = 0.
Assume c1, c2, c3 ∈ R and

c1

(

1 3
1 1

)

+ c2

(

−2 1
1 −1

)

+ c3

(

1 10
4 2

)

=

(

0 0
0 0

)

.

Then

c1 − 2c2 + c3 = 0,
3c1 + c2 + 10c3 = 0,

c1 + c2 + 4c3 = 0,
c1 − c2 + 2c3 = 0,

or, equivalently,









1 −2 1
3 1 10
1 1 4
1 −1 2













c1
c2
c3



 =





0
0
0



 .
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Skipping the row reduction steps (DON’T skip the row reduction steps
on an exam or an assignment!), this system has solutions





c1
c2
c3



 =





0
0
0



+ t





−3
1
−1



 , with t ∈ R.

So c1 = 0, c2 = 0, c3 = 0 is not the only solution.
So S is not linearly independent.

Here is a check that c1 = −3, c2 = 1, c3 = −1 is a solution:

−3

(

1 3
1 1

)

+

(

−2 1
1 −1

)

−
(

1 10
4 2

)

= −3

(

1 3
1 1

)

+

(

−3 −9
−3 −3

)

=

(

0 0
0 0

)

.
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Lecture 37: Review – Basis examples

Example V23. Is S = {(1,−1), (2, 4)} a basis of R2?
Let

A =

(

1 2
−1 4

)

. Then A−1 = 1
6

(

4 −2
1 1

)

=

(

2
3 −1

3
1
6

1
6

)

.

So
(

1 2
−1 4

)(

c1
c2

)

=

(

0
0

)

gives

(

c1
c2

)

=

(

0
0

)

.

So S is linearly independent.

If |a, b〉 ∈ R2 then |a, b〉 = c1|1,−1〉 + c2|2, 4〉, where
(

c1
c2

)

=

(

2
3 −1

3
1
6

1
6

)(

a
b

)

=

(

2
3a − 1

3b
1
6a +

1
6b

)

.

So R2 ⊆ R-span(S). Since S ⊆ R2 and R2 is closed under addition and
scalar multiplication then R-span(S) ⊆ R2. So R-span(S) = R2.

So S is a basis of R2.
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Example V24. Is S =

{(

1 0
0 −1

)

,

(

0 1
0 0

)

,

(

0 0
1 0

)}

a basis of

{A ∈ M2(R) | Tr(A) = 0}?

If c1, c2, c3 ∈ R and

c1

(

1 0
0 −1

)

+ c2

(

0 1
0 0

)

+ c3

(

0 0
1 0

)

=

(

0 0
0 0

)

then
(

c1 c2
c3 −c1

)

=

(

0 0
0 0

)

and

c1 = 0,
c2 = 0,
c3 = 0.

So S is linearly independent.
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Then

{A ∈ M2(R) | Tr(A) = 0}

=

{(

a11 a12
a21 a22

)

| a11, a12, a21, a22 ∈ R, a11 + a22 = 0

}

=

{(

c1 c2
c3 −c1

)

| c1, c2, c3 ∈ R

}

=

{

c1

(

1 0
0 −1

)

+ c2

(

0 1
0 0

)

+ c3

(

0 0
1 0

)

∣

∣

∣
c1, c2, c3 ∈ R

}

= span(S).

So S is a basis of {A ∈ M2(R) | Tr(A) = 0}.
Example V25. Is

S =

{(

1 0
0 −1

)

,

(

0 1
0 0

)

,

(

0 0
1 0

)}

a basis of M2(R)?

Since E11,E12,E21,E22 is a basis of M2(R) then dim(M2(R)) = 4.
Since S contains only 3 elements then S is not a basis of M2(R).
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