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These slides have been made by Arun Ram, for teaching of the summer session of MAST10007 Linear Algebra at University
of Melbourne in 2026. The template is from the University of Melbourne School of Mathematics and Statistics slide deck
produced by members of the School. Some examples from that slide deck have been retained, All the solutions and writing
has been reworked, as well as the exposition and ordering of the material.

| found slides to be an unusual medium. Each slide has very little space (compared to a page of ordinary LaTeX) and there
is some necessity to assume that the reader has little specific recall of other slides. | found it important to repeat slides
often and to continually insert cues and portions of material that had appeared in previous slides.

Slides form some unusual medium between a book and a lecture: there is an impetus for completeness and linearity that
one often strives for in a book format, but it is not appropriate for the storytelling framework of a lecture situation. At the
same time, one cannot revert to a story telling framework, as the slide need to hold together in broader arcs and structure
because they will certainly be being used as a book type resource by students.

As a result there were many places that choices were made that are absolutely not appropriate for engaging lectures and
other places that choices were made that are absolutely not appropriate for a coherent book type resource. Slide decks sit in
a strange medium between lecturing and printed resource materials. Having done this exercise | am even more convinced
that reading from slides is not an optimally healthy or effective way to deliver quality mathematics lectures.
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Lecture 1: The Hilbert space R”

Definition (The vector space R")
Let n € Z~qg. The R-vector space R" is

R" = Mpx1(R) = {|x1,...,xn) | xi € R} where |xi,...,x,) =

The addition and scalar multiplication are given by

|X17X27"'7Xn>+ |}/17}/27--~a)/n> — |X1 +}/17X2+}/27~'7Xn+}/n>

and
clx1, X2, ..., xn) = |cx1, cx2, ..., cxp)  for c € R,

The notation |xi,...,xp) is Dirac’s ket notation for the column vector
with entries xq,..., X,.



Definition (The favorite basis of R”)

Let ey, ..., e, be the length n column vectors given by

€ has 1 in the ith spot and 0 elsewhere.

Every vector in R” is a (unique) linear combination of ey, ..., ep.
(‘linear’” means using scalar multiplication and addition).

For example, if n = 4 then

1 0 0 0
o 0 |1 o — 0 . 0
1 — 0 ) € = 0 3 3 — 1 y 4 — 0
0 0 0 1
3 1 0 0 0
5 0 1 0 0
and 5 =3 0 +5 0 +(-2) 1 +0 0
0 0 0 0 1

= 3e1 +5e + (—2)e3 + Oeq.



Definition (Inner product, length function and distance function)

The standard inner product on R" is (| ): R” x R" — R given by

)1
Y2
(Xl,...,x,,]yl,...,y,,>:(x1 Xp - x,,) | =t A xayn.
Yn
The length function is || ||: R" — R given by
s oxm)ll = /o + 53+ + X3

The distance function is d: R" x R" — R given by

d(|x1s s Xn)s (Vs ¥n)) = | X1,y Xn) — Y1y V)|l



Theorem (Cauchy-Schwarz and the triangle inequality)
Let u,v € R". Then

[{w, v)[ < fluf[-Ivi[and [lu+ v < [ul] + v]

If
X=|x1,x2,...,%,) and y=|y1,¥2,...,¥n)
then
(x,y) =x"y =x1y1 + xoy2 4+ + Xn¥n
and
x| = /(x,x) and |[jx[|* = (x,x)  and
d(X,y):Hy—X”: <y—X,y—X>

Z\/(}/1—X1)2+~~~+(yn—x,,)2.



Easy to establish properties that are used VERY often.
Let x,y,z € R" and let c € R.

(Y,X) = y1x1 + yoxo + - -+ + YnXp
=X1y1 +Xo¥2 + - XpYn = <X,y>,

(x,y+2z) = xT(y+z) —x'y+xTz= (x,y) + (x,2),
(x+y,2) =(z,x+y) =(z,x) + (z,y) = (x,2) + {y,2),

<X, Cy> = XTCy = CxTy = C<X,y>, (CX,y> = <y’ CX> = C<y,X> = C<X’y>7

lex|| = V/{ex, ex) = /2 (x,x) = V2\/(x,x) = [¢| - |||



Definition (Angle and projection)
Let u,v € R” with u £ 0 and v # 0. The angle between u and v is
6(u,v) given by

X
(u,v)
cos(f(u,v)) = ————.
[Jull - flv]l &
y = cos(x)
The projection of v onto u is
v
: (u,v) |
proj, v = u. g
" <U, U> ? u
proj,,(v)

Let u,v € R". The vectors u and v are perpendicular if (u,v) = 0.
The vectors u and v are parallel if (u,v) € {1,—1}.
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Example E1. If u=11,3,1,2) and v = [2,1,—1,3) in R* then
u—v=11,-2,01)

and the distance between the points (1,3,1,2) and (2,1,—-1,3) is

d(uv) = || [1,-2,0,1) || = /12 + (-2)2 + 02 4 11
=V1i+4+0+1=16.

Example E2. If u=0,2,2,—1) and v =|—1,1,1, 1) in R* then

<U,V> = <0>27 2> _1|_1) ]-7 1) _1>
=0-(=1)42-142-14(=1)-(=1)
=0+2+1+1=5

and

lul=v0+4+4+1=v9=3

and

v =vVi+1l+1+1=V4=2
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Since |5] < 3 -2 we observe that, in this case,
[(u, V)| < [l - [lv]].

Example E4. Let u = (2,—1,—2) and v = (2,1,3). Find vectors v; and
Vo such that
V=v]+Vp

where v; is parallel to u and v; is perpendicular to u.

Solution: Since the projection of v onto u is parallel to u then let

Vi = proj,v = <u’V>u—_—3u
1 = Projy _<u’u> _9
:_Tl|27_17_2>:|%27%7%>
and
v2:u—v1:\2,—1,—2>—\%2,%,%>: %7%7%>

Then u = vy + vy and vy is parallel to u and v; is perpendicular to u.
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Lecture 2: Equations of lines and planes in R3

Let u,v € R3. The set of linear combinations of v is

R-span{v} = {tv | t € R}.

Definition

The line in R3 with direction v = |vi, vo, v3) going through the point
p = |p1, p2, p3) is

z-axis

(p1, P2, P3)
p+Rv={p+tv|tecR}

y-axis

Xx-axis



The set of linear combinations of {u,v} is

R-span{u,v} = {su+tv | s, t € R},

Definition
The plane in R® spanned in directions u = |uy, uo, u3) and
v = |v1, v, v3) going through the point p = |p1, p2, p3) is

p+Ru+Rv={p+su+ttv|s,tecR}

y-axis

Xx-axis
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Equations of lines in R3

Definition
The line in R3 with direction v = |vi, va, v3) going through the point
P = |P17P27P3> is

p+Rv={p+tv|teR}
The points in the line are the |x,y,z) in R3 such that

(x,y,2) = (p1, P2, p3) + t(v1,v2,v3), with t € R, (vector equation)

or
X = p1 + tvy,
Yy = p2+ twy, with t € R,  (parametric equation)
z=p3+ tvs,

Solving for t gives that the points on the line are the |x,y,z) in R3
which satisfy the equations

X—P1_Y—P2_Z2—p3

Vi Vo V3 '

(Cartesian form)
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Equations of planes in R3

Definition
The plane in R® spanned in directions u = |uy, uo, u3) and
v = |v1, v, v3) going through the point p = |p1, p2, p3) is

p+Ru+Rv={p+su+ttv|stecR}

Xx-axis

The points in the line are the |x,y, z) in R3 such that

X = p1 + suy + tvy,
Yy = p2 + sup + tvy, with s, t € R.  (parametric equation)

Z = p3 + suz + tvs,
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The vector equation is

(X,y,Z) = (P17P27P3) + S(U]_, u, U3) + t(V17 V2, V3)7 with s, t e R.

Let n = |a, b, ¢) be such that n is perpendicular to both u and v. In
other words, n is a vector perpendicular to the plane. Then

(nlx,y,2) = (n,p+ su -+ tv) = (n, p) + s{n, u) + t{n,v)
=(n,p)+s5-0+t-0=(n,rp),

and since (n|x,y, z) = (a, b, c|x,y,z) = ax + by + cz then the plane is
the set of |x,y,z € R3 such that

ax+ by + cz = (p,n). (Cartesian form)
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Example E8. Determine the vector, parametric and Cartesian equations
of the line through the points P = (—1,2,3) and Q = (4, —2,5).

Since the direction of the line is
Q—P=|4,-2,5)—|—-1,2,3) =1|5,—4,2)

and
P =1]-1,2,3) is a point on the line

then the line is the set of points in R3 given by
{|-1,2,3) + t-|5,—4,2) | t € R}.

Parametric equations for the line are

x = —1+45t,
y =2 —4t, with t € R.
z =3+ 2t,

Solving for t, the Cartesian equation of the line is
x+1 y—-2 z-3
5 -4 27

18



Example E9. Find a vector equation of the ‘friendly’ line through the
point (2,0,1) that is parallel to the ‘enemy’ line
x—1 y+2 z-6
1 =2 27

Does the point (0,4, —3) lie on the ‘friendly’ line?

Letting
t_x—l_y—|—2_z—6
T )
gives
x=1+1t,
y=—-2-2t, witht€eR,
z=06+2t
and

{|17 _276> + t|17 _272> | te R}
is the set of points in R3 that lie on the ‘enemy’ line.
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The ‘friendly’ line we want is parallel to the ‘enemy’ line and goes
through the point |2,0,1).

So the 'friendly’ line consists of the points
{12,0,1) +t|1,-2,2) | t € R}.

Since
|2,0, 1> + (—2) . |1, —2,2> = |0,4, —3>

then |0,4, —3) is on the ‘friendly’ line.
Example E11. Find the vector equation for the plane in R3 containing
the points P =(1,0,2) and Q = |1,2,3) and R = |4,5,6).

The point |1,0,2) is in the plane and two vectors in the plane are
Q—P=00,2,1) and R—P =|3,54).
So the points in the plane are the points |x, y,z) in R3 which satisfy

Ix,y,z) =11,0,2) +5]0,2,1) + t|3,5,4) with s,t € R.
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Example E12. Where does the line

intersect the plane 3x + 2y + z = 207

The line in parametric form is

x=1+t,
y=2+2t, withteR,
z =3+ 3t,

and plugging into the equation of the plane gives
20 =3(t+ 1) +2(2t +2) + (3t + 3) = 10t + 10 so that t = 1.

Thus the point |x,y,z) with x=1+1=2,y=2+42=4 and
z =3+ 3 is on both the line and the plane.

21



Example E13. Find a vector form for the line of intersection of the two
planes x +3y + 2z =6 and 3x + 2y + z = 11.

The points on the intersection of the two planes are the points |x, y, z)
that satisfy the system of equations

3x+2y —z=11,
x4+ 3y +2z = 6.

One of the main points of this course is to learn how to use matrices as
an efficient and organized mechanics for solving systems of equations of
this type. For now, let’s proceed ad hoc. The second equation gives

x=6—3y —2z, and plugging back into 3x+2y —z=11
gives

11=3(6—-3y—2z)+2y—2z=18—9y —6z+2y —z
=18—-7y —7z.
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So7y=7—7zandy=1—z.Sox=6—-3y—z=6—-3(1-2)—-2z
and

x=3+4 2z,
y=1—2z,  where z can be any number.
z=0+z,

So the line is the set of points |x, y, z) such that

X 3 1
vl=1[1]+z|-1], withzeR.
z 0 1

So the line is

p+ Rv, where p=13,1,0) and v=1,—-1,1).



Lecture 3: Cross products (are only available in R3)

Let i,j,k € R3 be given by

i=1,0,0), j=1[0,1,0), k=0,0,1).

Proposition (Standard basis of R®)

Let v € R3.

(a) Ifv=|a1,a2,as3) then v = aji+ axj + ask.

(b) If a1,a2,a3 € R and a1i + axj + ask =0
then a; = 0 and a, = 0 and a3 = 0.

Every vector in R3 is a (unique) linear combination of i,j and k
(‘linear’” means using scalar multiplication and addition).

For example, |5, —1,—4) = 5i + (—1)j + (—4)k.



The determinant is a shorthand for specific expressions. It will soon
become evident that these, perhaps initially complicated looking,
expressions have rather amazing properties.

The determinant of a 1 x 1 matrix is det(a11) = a11.
The determinant of a 2 X 2 matrix is

a1l 4d12
det = aji1az — aiqaji.
a1 ax

The determinant of a 3 x 3 matrix is

d11 412 413

d11d22d33 — 4124821433 — d134224d31
det | an; am ans | = 33 33 3 3

—a11a23a32 + 312323331 + a13821332-
azl asy ass

Note that
a a a a
ai1 a2 ais aip det 22 = — ajp det 21 =
o a32  4d33 a31 433
det | a1 ax ax | =
a1 an
a1 ax as +ai3 det

a1 aszn/)’

25



Definition (Cross product)

Let u = |uy, to, u3) € R3 and let v = |vi, vo, v3) € R3. The cross
product of u and v is given by

uxv=(unv—uwn)it+(uzvi — uiv3)j+ (v1va — vy k.

In terms of determinants u X v is

u X v =det <u2 u3> i — det (u1 u3>j + det (ul u2> k
Vo V3 Vi V3 Vi w2

i j Kk
"="det |ty w w3,
Vi V2 Vv3

where the last 3 x 3 determinant on the right hand side doesn't really
make sense (because i, j, k are not numbers); but this “determinant” is
a very useful mnemonic.
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If u=|u1,up,u3),v=|vi,vo,v3),w = |wy, wp, w3) then

(u,v x w) = (u1, o, ug|(vawz — wava, —(viws — vawy), viwo — vowy)
= u(vaws — vawo) — ua(viwz — vawy) + u3(viwo — vowy)

up U2 Uz
=det|lwvi w w
wip w2 w3

Since
vi v w3
(v,vxw)=det| vy v wv3 ]| =0
wip Wy w3
and
wyp w2 w3
(wy,vyxw)=det| vy v wv|=0
wyp w2 w3
then

v X w is perpendicular to both v and w.



Example E5. Find a vector perpendicular to both |1,1,1) and
11, -1,-2).

Solution: By definition of the cross product

11,1,1) x |1, -1, -2)
=1 (=2)-1-(-1),-(1-(-2)-1-1),1-(-1)-1-1)
=|-1,3,-2).
The vector |—1,3,—2) is perpendicular to both |1,1,1) and |1,—1,—2)

since
(-1,3,-2|1,1,1) =-143-2=0

and
<_1’37_2 | 1’_1)_2> =-1—-3+4=0.
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Theorem (Volumes of parallelipipeds)

(3) Letu = |up, up,u3) € R® and v = |vi, va, 3) € R3 and
W = |wi, wo, w3) € R3. The volume of the parallelipiped with
vertices 0, u,v,w,u +v,u +w,v+w,u+Vv-+Wwis

up u» us
det | vi w w3 .
wyp w2 w3
(2) Letu = |u1,up) € R? and v = |v1, v2) € R2. The area of the
paralellogram with vertices 0,u,v,u + v is

det (u1 uz) ‘ . ’
Vi W
(1) Letu = |u1) € RL. The length of the segment with endpoints 0 to
uis

| det(uy))- _
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Example E7. Find the volume of the parallelipiped with adjacent edges
@, ﬁi’ ﬁ where

P=12,0,-1), Q =14,1,0), R=13,-1,1) and S = |2,-2,2).
Since the edges of the parallelipiped are
PO=P-Q=1[21,1), PR=P—R=]1,-1,2),
PS=P—5=10,-23),
then
(Volume of parallelipiped) = |<%, PR x @H
2 1 1
=|det|1 -1 2]|= '2~det <:; ;23> —det<_12 ;)'
0 -2 3
=12(-34+4)—-(3+2)=|-3=3.
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Example E6. Find the area of the triangle in R3 with vertices |2, —5,4),

|3, —4,5) and |3, -6, 2).

Letting u=13,—4,5) —|2,-5,4) = |1,1,1) and
v=3,-6,2) —|2,-5,4) = |1,—1,—2), then
uxv=]|11,1) x [1,—1,-2)

—[1+(-2)-1-

= |-1,3,-2).
Then
(Area of triangle) =

(-1~ (-2~ 11,1 (-~ 1-1)

(area of rectangle with edges u and v)

;1 volume of parallelipiped
with edges u, v and u x v)

N—=

slusxvl=3]1[-1,3,-2)]

%\/(—1)2 + 324 (—2)2 =

3
S
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Example E10. Find the Cartesian equation of the plane with vector form
Ix,v,z) =s|1,-1,0) + t|2,0,1) + | — 1,1,1), with s,t € R.
A normal vector to this plane is
n=uxyv, where u = |1, —-1,0) and v = |2,0,1).

Thenn=uxv=|-1-0,—(1-0),0—(-2)) = |-1,-1,2).
Then |—1,1,1) is a point in the plane, and

(-1,1,1|uxv)=(-1,11|-1,-1,2) =1-1+2=2.
Since the plane is
|-1,1,1) + {|x,y,2) € R® | (x,y,z|-1,-1,2) =0}
then the Cartesian equation of the plane is

—X—y+2z=2.
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Lecture 4: Matrices

A matrix is a table of numbers.

78 62 91 85
A= 132 41 24 39
6 99 29 81

Some applications of matrices are
1. Solving systems of linear equations

Quantum mechanics

2. lengths, distances, angles, projections

3. Equations of lines and planes, volumes of parallelipipeds
4. graphs and networks

5. Data processing and analysis of data

6. Dynamics

7. Symmetry

8.

9.

. and many many more ...
33



Addition

78 62 91 85 1 2 3 4 79 64 94 89
32 41 24 39|+ 5 6 7 8 | =137 48 31 47
6 99 29 81 -1 -2 -3 -4 5 97 26 77

Scalar multiplication

78 62 91 85 26 2 21 &
~[32 41 24 39| =(105 4 8 13
6 99 29 8l 2 33 2 21

Definition (Matrix units)
Let t,s € Z-pand let i€ {1,...,t} and j € {1,...,s}. The matrix
unit Ejj is the matrix

1 in the (7, j)-entry

Ejj € Mixs(Q)  which has and 0 elsewhere,
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The favourite basis of M;xs(Q)
If t =2 and s = 3 then

100 010 001
E”‘(o 0 0>’ E12_<0 0 0>’ E13_<0 0 0>

000 000 000
E21_<1 0 0)’ E22_<0 1 0)’ E23_<0 0 1)'

Every matrix is a (unique) linear combination of Ej

(‘linear’ means using scalar multiplication and addition).

78 62 91\  T78Ey; +62E;p + 91F3
32 41 24)  432Ey +41Ex + 24Ex
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Multiplication

In English. The (i,j) entry of AB is the ith row of A times the jth
column of B.

In Math.
1, ifj =k,
E,'J'Ekg = jkE;g, where 5jk = J i
0 otherwise.
Examples:
4
(2 5 11 13) g =2-4+5-0+11-3+13-(-2)
5 =8+33—26=15.
2
78 62 91 85\ [P 182462854 AL 118512 65.37
32 41 24 39 @ 32-2+41-8i—(ﬁ)—%4~1+39-12 — 40.41
6 99 20 81 @ 6-2+99-85il(-)%9-1+81-12 04.28

=
o
o
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Theorem (Properties of matrix operations)

Let t,s € Z~o and let M;«s(Q) denote the set of t X s matrices with
entries in Q.

1
2

3.

o N o O

IfA,B € Myys(Q) then A+ B =B+ A
IfA, B, C € Myys(Q) then A+ (B + C) = (A+ B) + C.
If A€ Myys(Q), B € Mey,(Q) and C € My»o(Q) then

A(BC) = (AB)C.
If A, B € Miys(Q) and C, D € My, (Q) then
A(C+D)=AC+AD and (A+ B)C=AC+ BC.

If A€ Miys(Q
If A€ My s(Q
If A€ My s(Q
If A€ Miys(Q

, B € My, (Q) and c € Q then A(cB) = c(AB).
and 1 is the identity in Msys(Q) then A-1= A.
and 1 is the identity in M;x+(Q) then1-A = A.
then A+0=Aand 0+ A= A.

~— ~— — ~—

37



Warning. The list of properties of matrix operations says that for the
most part the matrix number system works much like the ordinary
integer number system. But be careful.

11 10
If A= <1 1> and B = <1 1>
11 10 21
we=(5 1) )= 1)
1 0 11 11
ea=(1 ) (5 1)-(1 2)
and so AB is not the same as BA. For most matrices A and B, the

product AB is not the same as BA. When it does happen, that should
be viewed as very special and very lucky. Don’t push your luck.

and



Favorite square matrices

Definition (Invertible matrices)
Let n € Z~q. Let Ejj be the n x n matrix with 1 in the (/,/) entry and 0
elswhere. The identity matrix is

1=E1+---+E)p in Mnxn(Q)'

The set of invertible n X n matrices is

_ there exists A~! € M,x,(Q)
GL,,(Q) = {A & Mnxn(Q) ‘ such that AA~1 =1 and A~ 1A=1.

| (£ ) (9=
i £

If n =2 then

39



Example Al. (Root matrices and their inverses) If c € Q and

1 ¢ 0 1 0 ¢ 1 00
X12(C): 01 0], X13(C): 01 0], X23(C): 01 ¢
0 01 0 01 0 0 1
then
1 —c 0 1 0 —c
xp() =10 1 0, xs(e)*=[0 1 o0
0 0 1 0 0 1
and
1 0 0
xpa(c)t=10 1 —c
0 0 1

Check these claims by multiplying the matrices.
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Example A2. (Diagonal generators and their inverses) If d € Q and
d # 0 and

d 00 100 100
m(d)=[0 1 0, h(d)={0 d 0], hs(d)=[0 1 0
001 00 1 00 d
then
100 1 00
m(d)y™t=[0 1 0], mdt=(0 % 0
0 01 001
and
100
h3(d)™*=(0 1 0
00 1%

Check these claims by multiplying the matrices.
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Example A3. (Row reducers and their inverses.) If ¢ € Q then

O O =
o O

1 00
and s(c)=1(0 ¢ 1
010

[y

then

o
—
o

[y

1
sifc) =11 —c 0 and s(c) 1= [0
0 O 0

Check these claims by multiplying the matrices.
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Let n € Z~q. Let Ejj be the n x n matrix with 1 in the (/,/) entry and 0
elswhere.

Definition (root matrices, diagonal generators and row reducers)
Let i,j € {1,...,n} with i # j. Let c € Q. The root matrix xj(c) is
xij(c) € Mpxn(Q) given by xj(c) =1+ cEj.
Let i € {1,...,n}. Let d € Q with d # 0. The diagonal generator
h;(d) is
hi(d) =1+ (d — 1)Ej.

Let i€ {1,...,n—1} and let c € Q. The row reducer s;j(c) is

si(c) =1 — Ejj — Eirq,iv1 + Eijiv1 + Eiga,i + cEj.

Theorem (Generators for GL,,)

Let A€ GL,(Q). Then A can be written as a product of row reducers,
diagonal generators and root matrices.
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Tutorial: Row operations

Let n € Z~q. Let Ejj be the n x n matrix with 1 in the (/,/) entry and 0
elsewhere.

Definition (root matrices, diagonal generators and row reducers)
Let i,j € {1,...,n} with i # j. Let c € Q. The root matrix xj(c) is

xij(c) € Mnxn(Q) given by xjj(c) =1+ cEj.
Let i € {1,...,n}. Let d € Q with d # 0. The diagonal generator
h,(d) is
h,(d) =1+ (d = 1)E,','.
Let i€ {1,...,n—1} and let c € Q. The row reducer sj(c) is

si{(c) =1 — Ej — Ejyai01 + Eijiv1 + Eiqa,i + cEj.



Row operations

Let
3 -9 7 1 0 54
A=|13 -21 35 and x3(54)=10 1 0
300 —100 200 0 0 1

Left multiplying by x13(54) adds 54 - (row 3) to row 1:

1 0 54 3 -9 7
0 0 1 300 —100 200
16203 —5409 10807
= 13 -21 35
300 —100 200
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Row operations

Let
3 -9 7 100
A=113 -21 35 and h3(6)=(0 1 O
300 —100 200 0 0 6
Left multiplying by h3(6) multiplies row 3 by 6:
100 3 -9 7
hy(6)A={0 1 0] |13 —21 35
0 0 6 300 —100 200
3 -9 7
=1 13 -21 35

1800 —600 1200
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Row operations

Let
3 -9 7 1 0 O
A=113 =21 35 and s(-5)=10 -5 1
300 —100 200 0 1 0

Left multiplying by s(—5) moves row 2 to be row 3 and makes row 2
equal to (—5) - (row 2) + (row 3):

1 0 0\ /3 -9 7
s(-5)-A=[0 -5 1|13 —21 35
0 1 0/ \300 —100 200

3 -9 7

= (235 5 25

13 —21 35
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Lecture 5: Finding inverses

Definition (Invertible matrices)

Let n € Z~qg. The set of invertible n x n matrices is

there exists A~ € My« n(Q
QA@Z{AEM”A@‘smMMhMA:ﬂa%%LA:L}

Definition (root matrices, diagonal generators and row reducers)

Let n € Z~q. Let Ej; be the n x n matrix with 1 in the (/,/) entry and 0
elsewhere. Let i,j € {1,...,n} with j # j. Let c € Q. The root
matrices xyy(c), the diagonal generators and the row reducers are given
by

ng(C) =1+ cEyy, hk(d) =1+ (d = 1)Ekk and

si(c)=1—E; — Eit1i+1+ Eiiv1+ Eiy1,i + cEi.

for c,d € Q with d #0, k, ¢ € {1,...,n} with k # ¢ and
ie{l,...,n—1}



1 2 1

Example M6 Find the inverseof A= | -1 -1 1
0 1 3

Start with AA~! =1 which is
1 2 1 100
-1 -1 1|]At=(|010
0 1 3 001

Left multiply both sides by s;(—1)~!, which is the matrix

010 -1 -1 1 010
11 0], toget 0 1 2]J]At=(110
001 0 1 3 001

Left multiply both sides by s,(1)~, which is the matrix

10 0 -1 -1 1
0 0 1], toget 0 1 3 |Al=
01 -1 0 0 -1

= O O
_ O
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Left multiply both sides by h3(—1)"1hy(—1)~1, which is the matrix

-1 0 0 11 -1 0 -1 0
0 1 0], toget [0 1 3 |]Al=]0 o0 1
0 0 -1 00 1 -1 -1 1

Left multiply both sides by x»3(3)~%, which is the matrix

10 0 11 -1 0 -1 0
01 —3|, toget |01 0 ]|A =3 3 =2
00 1 00 1 -1 -1 1

Left multiply both sides by x;3(—1)~1, which is the matrix
101 110 -1 -2 1
01 0|, toget [0 1 0]J]A =3 3 =2
0 0 1 00 1 -1 -1 1
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Left multiply both sides by xi2(1)~%, which is the matrix

1 -1 0 1 00 -4 -5 3
0 1 0|, toget [0 1 0]A =3 3 =2
0 0 1 0 01 -1 -1 1
Check:
—4 -5 3 1 2 1 1 00
3 3 =2 -1 -1 1]=1]1010
-1 -1 1 0 1 3 0 01
In summary,
A-1 _ xa2(1)"has(—1)Thxes(3)7

h3(=1) "t (1)t (1) s (—1) 7!
and

A= 51(—1)52(1) . hl(—l)h3(—1) . X23(3)X13(—1)X12(1).
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Example M6 Find the inverseof A= | -1 -1 1

Start with AA~1 = 1 which is

1 2 1 10
-1 -1 1|At'=(0 1 0
00

Left multiply both sides by

O = =
o = O
= O O

1 21
to get 01 2|A =
01 3

O = =

o = O

= O O
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Left multiply both sides by

1 0 0
0 1 0 to get
0 -1 1

Left multiply both sides by

O O =

O~ N
—= N
N~——
>

-

Il
~/
[N
[y
||—AO
—t

= O O
N~——

o
—_

0 0 1 0 01 -1 -1 1
Left multiply both sides by

2 -4 -5 -3
Al=(3 3 -2

-1 -1 1

o
[ay
o

10 -1 120 2 1 -1
0 1 —2| toget 0|]A =3 3 =2

1 0
0 1 0 to get
0 0 1



Example M8 Find the inverse of (; i)

) . (1 2 10
-1 _ 1
Start with AA~* = 1 which is <3 4> At = <0 1> .

Left multiply both sides by

0 1> <3 4) _1 (0 1>
1 to get 5 | AT = 1]
<1 —3 0 3 1 -3

Left multiply both sides by

0 1 3,1 (0 3
(89 we (o o= (F 2)

Left multiply both sides by

1 —4> (1 0> _1 <—2 1
3 to get A= 5 1]
<0 1 0 1 3 -3

O Wik
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Theorem (Inverses of products)
Let A, B € GL,(Q). Then AB € GL,(Q) and

(AB)"1 =B71Aa7L.
This is because, by associativity,
(B1AHYAB)=B YA 'AB=B"1-1.B=B"'B=1,
and
(AB)YBA Y =AYB 1B A=A 1. A=AtA=1

The theorem tells us that if we want to find A~! we can factor A into a
product of row reducers, diagonal generators and root matrices and
then multiply the inverses of the factors (in reverse order) to get the
inverse of A.

Theorem (Generators for GL,,)

Let A€ GL,(Q). Then A can be written as a product of row reducers,
diagonal generators and root matrices.
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Lecture 6: Factoring and the rank theorem

Root matrices.
) ) X13(C) - (

X12(C) = (

Diagonal generators.

O O =
O = 0
= O O
O O =
o = O
= O 0
~—

&

@

—~

a

N—

Il
/N
O O
o = O

d 0 0 100 100
h(dy={0 1 0|, h(d)=[0 d 0], hs(d)={0 1 0
001 00 1 00 d

Row reducers.
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—
oo ©Soo=

1 0 1
ho(d)™t =10 d' 0], hs(d)t= 10
0 1 0

Inverses of Row reducers.

0 1 0
si(c)t = (1 —c 0) and s(c)t= (
0 0 1
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Example A8. By multiplying out the matrices on the left hand side
check that

sa(1)s3(2)s2(3)s1(4) ;1 g g 110 (1)
-54(5)53(6)52(7) 251 0 0

-+ - 54(8)s3(9) 11000
-54(10) 100 0 0

Example A9. By multiplying out the matrices on the left hand side
check that

15 0 0 0 0
0 -3 0 0 0
hy(15)hy(—3)h3(76)ha(—~19)hs(2) = | 0 0 76 0 0
0 0 0 —19 0
0 0 0 0 2
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Example A5. By multiplying out the matrices on the left hand side
check that

asWssas3) (55 o o g
xi5(4)x34(5)x2a(6) _ |5 5 | 5 5
-x14(7)x23(8)x13(9) 00 0 1 1
x12(10) 00 00 1

Example A6. By multiplying out the matrices on the left hand side
check that

—10 71 302 186

x12(10)~ X13(9)_1X23(8)_ 1 -8 34 -21

1
1
1

1
1 0
x14(7) 1x04(6) " 1x3a(5)"F 0 0 1 5 3
—1 1 =
-X15(4) X25(3) X35(2) 0 O O 1 1
—1
s (1) 00 0 0 1
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Then check that

1 -10 71 -302 186 1 10 9 7 4
0 1 -8 34 =21 0 1 8 6 3
o o 1 -5 3 0 0 15 2
0 0 © 1 -1 0 0 011
0 0 O 0 1 0 0 001

10000

01000

=0 0100

00010

00001

Definition (Invertible matrices)

Let n € Z~q. The set of invertible n X n matrices is

there exists A~! € M,x,(Q)

GLn(Q@) = {A € Mnxn(Q) ‘ such that AA~ 1 =1and A" 1A=1.

|
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Example Al. By multiplying out the matrices on the left hand side
check that

s(HmER@a = (5 3)-

Example A2. By multiplying out the matrices on the left hand side
check that

aa2(4)  ha(2) T (3) T (3 = (‘32 11> .

2 2

(F 3G90

Then check that

NI|W

61



Example A3. By multiplying out the matrices on the left hand side.
check that

1 2 1
51(—1)52(1)h1(—1)h3(—1)X23(3)X13(—1)X12(1) = -1 -1 1
0 1 3

Example A4. By multiplying out the matrices on the left hand side
check that

-4 -5 3
X12(1)_1X13(—1)_1X23(3)_1 _ 3 3 2
-h3(=1)"Thy(—=1)tsp(1) sy (—1) 7t
-1 -1 1
Then check that
1 2 1 -4 -5 3 1 0O
-1 -1 1 3 3 -2]=10120
0 1 3 -1 -1 1 0 01
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An upcoming lecture will specify a specific factoring algorithm that can
factor any matrix. The output of the factoring algorithm will give us the
following theorems.

Theorem (Factoring for invertible matrices)

Let n € Z~o. Let A€ GL,(Q). The factoring algorithm gives

A = (product of si(c)s) - (product of hi(d)s) - (product of xjj(c)s)

This last theorem tells us that we can factor any invertible matrix as a
product of s;(c)s, hi(d)s and x;(c)s. The next theorem deals with
matrices that don't have to be invertible.
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Theorem (Factoring for all matrices)

Let s, t € Z~q. Let Ejj be the t x s matrix with 1 in the (i, j) entry and
0 elswhere. For r € {1,... ,min(s,t)} let

1, =En+-+Eq.
Let A € M;«s(Q). The factoring algorithm gives

A = (product of si(c)s) - (product of hi(d)s) - (product of xjj(c)s)
-1, - (product of si(c)s) - (product of x;i(c)s).

The number r that comes out of the factoring algorithm is the rank of
A. Later the rank of A will be realised as the dimension of the image of
A,

r = dim(im(A)) = rank(A) is the rank of A.
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1 -1 2 1
Example M10. Let A = (0 1 1 2) € M3,4(Q). Then

1 30 5
1 -1 1 1 30 5
A=s50) |1 -3 5 s2(0)s1(1) 2 2 —4
0 1 1 1 -2
3

0
1)
0
0 5
12).
0 0

0
1
0

1
= 5 (O)Sl (1)52(2) 0
0

~ N R ODN

O O =

= 52(0)51(1)52(2)X12( 3) (

Since this last right hand factor has a row of Os then A is not invertible.

A= 52(0)51(1)52(2)X12(—3) . 12 . X23(1)X14(5)X24(—2).

So rank(A) = 2.
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Tutorial: Inverses of an arbitrary 2 x 2 matrix

Example Al Let a,b,c,d € Q and find the inverse of A = (i Z)

Start with AA~1 = 1, which is
a b -1 1 0
(263
Case 1: ¢ # 0. Left multiply by s1(2)™!, which is the matrix
0 1 ) (c d > 1 (0 1 )
, to get A= .
(1 -2 0 b—2 1 -2

Case 1a: ¢ # 0 and ad — bc # 0. Left multiply by hy(c)~thp(2ez22) -1,
which is the matrix

1 d 1

s oty) meo D)=L )
c , to get C)A = ¢ .
(O bciad 0 1 bciad - bciad

66



Left multiply by x12(2)~2, which is the matrix

ad

d 1
<1 _1%> . to get <(1) (1)> A= (TEE T e
0 bc—ad " bc—ad

d bc—ad+ad
Al = Be—ad cc(b?—:j) _ 1 < d —b) '
bciad - bcjad ad — bc \—c¢ a

Case 1b: ¢ # 0 and ad — bc = 0. Then

6 a)a=G %)

So

and there does not exist any matrix A~! that makes this equation true.
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Case 2: ¢ = 0. Then

a b -1 1 0

G a)r=(3)
Case 2a: c=0and d # 0 and a # 0.
Left multiply by ho(d)~thi(a)~1, which is the matrix

1 b 1
1 9 1 b . 1
a a — | a

<0 %>, to get <0 1>A (0

Left mulltiply by xlz(g)_l, which is the matrix

1 1 b
19 1 0\, [*
a — [ a d

Recalling that ¢ = 0 then
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Theorem (Inverse of a 2 X 2 matrix)

Let A= [i 2] € May2(Q). Then
1 d -b
1. Ifad —b 0 then A~ = .
? <7 e ad—bc[—c a]
2. If ad — bc = 0 then A~ does not exist.
Example M5. Let A = [ i _1 ] Then

WINW[ =
~_

S errmreyo2) =3 D:(é
Check:
GOED-G9-61)

Suggestion: Figure out the formulas for the inverse of an arbitrary 3 x 3
matrix.

Nowl
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Lecture 7: The factoring algotihm

What are the s;(c) matrices?

In math: Let n € Z~q and let Ej; be the n x n matrix with 1 in the (i, )
entry and 0 elsewhere. For i € {1,...,n—1} and p,q € Z with ¢ # 0
define

si(8) =1—Ei — Eipvivn + Eijv1 — Eiri + 26 .
Note:

-1
si(8) " =1—Eji— Eivris1 + Eiivr — Eiv1i — SEip it

In English: s,-(g) is the n x n matrix with

(a) 1s on the diagonal except that the (i, /) enrty is c and the
(i+1,i+1) entryis 0, and

(b) all other entries are 0 except that the (i,/+ 1) entry is 1 and the
(i+1,i) entry is 0.
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What are the s;j(c) matrices?
By Cartoon: If n =8 and g = % then

R~
S—

56(

Note

1

=5~

I~

=
N
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We will factor off s;(Z) matrices,
step by step, to make more and more lower triangular entries 0.

Make lower triangular entries 0 in this order:

* k% k%
4 x *x *x %
3 7 x % %
2 6 9 x
1 5 8 10 =«

To make the (nonzero) (7, ) entry of the matrix A into 0:

In Math: Let g be the (i, j)-entry of A and let p be the (i — 1, ) entry
of A. Assume g # 0. Then

A= s;_l(g)B, where B = s;_l(g)_lA,

and B has 0 in the (i, j)-entry.
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In English: Let g be the (i,j) entry of A. If g # 0 then make the (i,})
into 0 as follows. Let p be the (i — 1,/) entry of A Then write

A= s;_l(g)B, where

The ith row of A moves up one row
to become the (i — 1)st row of B,

The ith row of B is ((the (i — 1)st row of A)-Z(ith row of A)), and
all other rows of B are the same as the corresponding rows fo A.

In hybrid Math-English:

A= s;_l(g)B, where

(a) row;_1(B) = row;(A),
(b) row;(B) = row;_1(A) — Zrow;(A),
(c) ifj¢g{i—1,i}then row;(B)=rowA),
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In Cartoon: Suppose

STUFF
A= i1 0 0 pr t v x ,  with g # 0.
i 0 0 g s uwy
0 00 z e f g
Then
— c. P
A_Sl—l(q)B7
where
STUFF
B= i1 0 0 g¢g s u w 3%

i 0 r—Bs t—By v—By x—-£B
! 00 q q q qy




In English: Let g be the (i,j) entry of A. If g # 0 then make the (i,})
into 0 as follows. Let p be the (i — 1,/) entry of A Then write

A= s;_l(g)B, where

The ith row of A moves up one row
to become the (i — 1)st row of B,

The ith row of B is ((the (i — 1)st row of A)-Z(ith row of A)), and
all other rows of B are the same as the corresponding rows fo A.

In hybrid Math-English:

A= s;_l(g)B, where

(a) row;_1(B) = row;(A),
(b) row;(B) = row;_1(A) — Zrow;(A),
(c) ifj¢g{i—1,i}then row;(B)=rowA),
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Full row reduction.
Let s,t € Z~g and let A € M;s(Q).

Let j; be minimal such that
column j; of A has a nonzero entry.

Let i; be maximal such that A(i,j1) # 0. Let

Let j> be minimal such that

column j> of A1) has a nonzero entry below row 1.

Let i» > 1 be maximal such that A (i, jp) # 0. Let

2) AD(2,5)) L AD(3) ) L A (-15)\ "L A1
AD =5 (Geny) = Gtay) s (i) A%
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Let j3 be minimal such that
column j3 of A® has a nonzero entry below row 2.

Let i3 > 2 be maximal such that A(2)(i3,j3) #£0. Let

3 ADGE\ L A\ 7T AD(-1)\ "L A2
AD) = sy (DGR T, (AT (ARG T 40)

Continue this process until it happens that there does not exist j 11
such that column j, 1 of A(") has a nonzero entry below row r.
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Then A(") has the property that

the first nonzero entry in row j + 1

is to the right of the first nonzero entry in row j
and
(e A(i—141) ) | (2,1) 1,1)
A=(si—1 ( A(i1.1) ) (A(lh_ll)) 51 ( A(ir,j1)

e AD(p=1jo) ) . .. V(3.52) AN (2,j)
(5’2_1 ( A (iy,j2) ) 3 ( 1)(12712)> K (A(l)(fz,jz)))

(A6 L) AU (r414y) AU (r i)
(s (GG ) s () s (e )

AN
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Then

Alr) Z(hl(A(r)(l,jl)) e

o
o

s (Ai
S AVICIENS)

.R’

where R is given by

AW (k.j)

R(k,j) = { AT (ki)'

0,

he(AD(r,jr)))

(r—1,j (1. ]
i 11))' w(ﬁ\\uE ;

A(r)(r - 17_jr—1)

(2.} ((1.
2 >8 j%)x ,(%))

(17J2)>

ifke{l,...;rtandj€ L, jx+1,...,
andjg{jk-‘rlv"')jr}?
otherwise.

s}
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Let ;41 < -+ < cs—1 < Cs be such that
{1y sdr Cr1y---, 6t ={1,...,s}. Then

R=1,-Q, where Q € GLs(Q) is given by

((r, c ((1, ¢
Q- (an<w> ...Xl,s(w»

A(r,jr) A)(L,j1)
Or e (1, ¢
. (Xr75—1 <7AA(S)'(’rfjr)l)> : -X1,5<A A((rl) 1?3'1 1)))

(r.c, " e
: (Xr,r-l—l(%) "'Xl”+1<%))

. (Sr e Sjr—l) e (52 e 5]-2_1) . (51 e Sjl—l)'
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Summary. In summary, A= P1,Q where P € GL;(Q) and
Q € GLs(Q) are given by

p:(s,-l_l(%)wz(ﬁ((ﬁ)) (A )

(syq (AD-Li) ) ADB.j) AD(2,p)
2=1\ TAD (i) 1>(:2,12 1 M (i2.j2)

) AU=D (i —1j) AC=D(r41j,) A= (r )
'(S"‘l( G ) s Ty ) s )

(h (A, ) - b (A (r i)

1 (1,
. (xr—l,jr<A/(4r)(£r_ 1}:_)1)) "‘Xl7jr<%))

(N(o (nN(1 ; (1,
oG Gent)) s G5y
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and

((r, ¢ ((1, ¢
Q- MM) ---m(%))

A (r, jr) AN(L,jr)
Vr. e, (1, ¢,
: (x,,s_l <7AA(r()r(’rfj,)l)) S Xis (A A((fl)lfjl 1)))

(r.c (L e

~(5(0) -+ 5,-1(0)) - - (2(0) - - - 5,-1(0)) - (51(0) - - - 55,-1(0))-

Theorem (The rank theorem)

Let A € M;xs(Q). Then there exist P € GL:(Q) and Q € GLs(Q) and
re{1,...,min(s,t)} such that

A=P1,Q, where 1, = Ej1+ Exp+---+ E,,.
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Lecture 8: Solutions of linear systems

o . 31 X1 . 7
Ax = b is the same as (_1 4><x2>_<2>

is the same as
3x1 + xo . 7
—x1 + 4xo S\ 2

31+ xo=7
—x1 +4x =2

which is the same as
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In general Ax = b looks like

X b
A A - A x; b;
Aml Am2 e Amn X b

Definition (Solutions of a linear system)
Let A € Mpxn(Q) and b € M,1(Q). The set of solutions of Ax = b is

X1
Sol(Ax=b) = { | : | € Mp(Q) ‘ Ax=b

Xn
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1 0 7 7
Example A. If A= <0 1> and b = <2> then Sol(Ax = b) = {<2>}

x1+0x =17, : =1,
and Ox + X0 = 2. has exactly one solution o = 2.
FA= (1 %) andb=(7) then Sol(Ax = b) = () and
10 2
X1+ 0e =1, has no solutions.
x1 +0x, = 2.
10 7 7
If A = (0 0> and b = <0> then Sol(Ax = b) = {(C> ‘ ce Q}.
x1+0x =7, has infinitely many x1 =17,

0x1 + 0x2 = 0. solutions x, =c, foranyceQ.
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2 -1 X 3
Example LS2,3&4. If A= (1 1 > X = <y> and b = <0> then

Ax=Dbis
2 =1\ (x\ _(3 L. 2x—y=3,
CN ()= () wies 27222

Start with

Left multiply both sides by

(%) e 0 5)0)-6)
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Left multiply both sides by

G ) e (61)0)

0
1)
Left multiply both sides by

1 -1 to get 10 Y (1 which is x=1,
0 1 & 0 1)\y) -1 y =1

So Sol(Ax = b) = { <_1> } (exactly one solution).
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Example LS5&6. Solve the following system of linear equations.

4x — 2y + 5z = 31,
2x — 3y — 2z =13,
x —3y +2z=11.

In matrix form, this is Ax = b, where

4 -2 5 X 31
A=12 -3 2], x=1[y], b=]13
1 -3 2 z 11
Start with
4 -2 5 X 31
2 -3 =2 y]l =113

1 -3 2 z 11
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Left multiply both sides by
10 0
0 0 1 to get
01 -2

Left multiply both sides by

0 1 O
1 -4 1 to get
0 0 1

Left multiply both sides by
0
1 to get
0

10
0 0
0 1 —X

o~ s

-2

<

N <

V4

31
11
-9

11
—13

11

17
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Left multiply both sides by

1 0 1 — 2
0 0 to get 0 1 -2
0 L 0 1

Left multiply both sides by

QO wir O

1 00 1 3 2 X 11
01 2 to get 0 0 yl=1-1
0 01 0 1 z 1

Left multiply both sides by

1 0 -2
01 O to get
0 0 1

O O =
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Left multiply both sides by

1 30 1 00
010 to get 010
0 01 0 01
So
x =6,
y =—1, or, equivalently, Sol(Ax
z=1,

(exactly one solution).
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Solving problems with an unknown parameter.
Example L11. Find the values of a, b € Q for which the system

x—2y+z=4, (a) no solution,
2x =3y +z=17, has (b) a unique solution,
3x — 6y + az = b, (c) LOTS of solutions.

In matrix form this system is

3 -6 a X b
2 -3 1 vyl =17
1 -2 1 z 4

Multiply both sides by

10 O 3 6 a X
00 1 to get 1 -2 1 yl=14
01 -2 0 1 -1 z
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Multiply both sides by
0 1 0 1
1 -3 0 to get 0
0 0 1 0
Multiply both sides by
1 00
0 01 to get 0
010

Multiply both sides by

120 1
010 to get 0
0 01 0
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Case 1: a— 3 # 0. Multiply both sides by

10 0 1 0 -1\ /x 2
01 0 to get 01 -1 y|l =1 —1
1 b—12
0 0 -3 0 0 1 V4 2-3
Multiply both sides by
100 1 0 -1\ /x 2
01 1] toget [0 1 0| |y|=[-1+22
001 00 1) \z bl
Multiply both sides by
101 1 0 0\ /x 24 =12
01 0| toget [0 1 0f(y]=[-1+522
001 00 1) \z b=12
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So

X =24+ ba—_132’
y = -1 + ba__1327
b—12
a—3"
or, equivalently,
b—12
2+ a—3
Sol(Ax = b) = —1:1% (exactly one solution).
a—3
Case 2: a—3=0. Then
1 0 -1 X 2
01 -1 y| = -1
00 O z b—12

Case 2a: b—12 £ 0. If b — 12 # 0 then this system has no solution.
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Case 2b: b—12=0. If b— 12 = 0 then this system is

x =24z,
X—z=2, L
.- 1 which is y=—-1+4 z,
y - z=0+ z,
where z can be any number. So
2 1
Sol(Ax =b)= [ 1] +span{| 1],
0 1

and there are LOTS of solutions.
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Theorem

If A € GL,(Q) then every linear system of the form Ax = b has a

unique solution, given by
x=A"'b.

So, if A€ GL,Q) then
Sol(Ax = b) = {A™!b}, which contains exactly one element.
This is because,
left multiplying both sides of Ax=b by A7,

gives
A" lAx = A lb, which says x = A~ 1b.
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Lecture 9: Kernels and Images

The set of s x 1 matrices with entries in Q is

QS = Msxl(@)-

Definition (Kernel and image of a matrix)
Let A € M;xs(Q). The kernel of A is

ker(A) = {x € Q° | Ax =0}
and the image of A is

im(A) = {Ax | s € Q).

Definition (Solutions of a linear system)

Let A € M;xs(Q) and let b € Q°. The set of solutions of the linear
system Ax = b is

Sol(Ax = b) = {x € Q° | Ax = b}.



Example LS7. If A=

o o=
O N O

1
2], x=1|x ] andb=| 4 | then
0

Ax = b is the system

x1 4 0xo + x3 = =2,
Oxy + 2xo + 2x3 = 4,  which has no solutions
0X1 + 0X2 + 0X3 = —3,

(no choice of x1, xox3 € Q will satisfy the third equation). So

Sol(Ax = b) = ().
Then Ax = 0 is the system
x1 +0x2 + x3 =0, X1 = —x3,
Oxy +2x +2x3 =0, which is Xo = X3,
0x1 + 0x2 + 0x3 =0, X3 = X3,

where x3 can be any number.



-1 -1
ker(A) = {X3 (1) ‘ X3 € @} = @-span { (1) } .
1 1
0 X1
2 ) (Xz) ‘X17X27X3 EQ}
0 X3
1 01
= Q-span { columns of (0 2 2)
00O
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Example LS8. If A=

O O~
o = O

x1 + 0xo 4+ Ox3 = 2,
0X1 + 1X2 + 0X3 = —4,
0x; 4+ Oxo + x3 = 15,

-2
andb=1] 4
15

= O O

which has exactly
one solution

2

Sol(Ax = b) = —4

Then Ax = 0 is the system

x1 + 0x2 4+ Ox3 = 0,
0X1 + 1X2 + 0X3 = 0,
Ox1 +0x2 + x3 =0,

15

which has exactly
one solution

then

X1 = 2,
2 = _47
X3 = 15.
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So

Then

X1
) (Xz) ‘ X1, X2, X3 € Q}
X3
1 0 0
=<x3 (0] +x|1]+x3(0 ‘Xl,X2,X3€Q
0 0 1
X1
= { <X2> ‘ X1,X2,X3 € Q} = Q.
X3
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Example LS9. If

O O o
OO oOoON
O O = O
O = O O
O N O Ol

X1+ 2x2 + 0x3 + 0x4 + 5x5 = 1,
Ox1 +0x0 + 1x3 + 0x4 4 6x5 = 2,
Ox; +0x2 +0x3 + x4 + 7x5 = 3,
0x; 4+ 0xo + Ox3 4+ Oxz + Ox5 = O,

More specifically,

Sol(Ax =b) =(x= [ x3

and b=

then

w N =

which has an infinite
number of solutions.

X1 = 1 —2X2 —5X5,

x2 € Q,
X3:2—6X5,
X4:3—7X5,
x5 € Q
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Equivalently,

Sol(Ax = b)

o

x
Il

ocwNn o
+

+ OoOwnNOHEH OWNOH

=~
[}
=

+ Q-span

—5X5
_52X2 0
0 + | —6xs ‘ X0, x5 € Q
0 —7X5
X5
—2 =5
1 0
0 +x5 | —6 ‘ X0, x5 € Q
0 —7
0 1
—2 =5
1 0
01],]—-6
0 —7
0 1

(A).
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Theorem (Computing solutions of linear systems)

Let A € Miys(Q) and let b € Q. Then there exist P € GL:(Q) and
Q € GLs(Q) and r € {1,...,min(s, t)} such that

A=PLQ, where 1, =FEy1 +Exp+---+E,

and
(P_lb)l
c if entries
-1
4 | (P72b), r+1,...,t
+ ker(A),
Sol(Ax = b) = Q 0 (4) of P~1p
: are all 0,
0
L0, otherwise.
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Lecture 10: Kernel and image of a matrix

Definition (Kernel and image of a matrix)

Let A € Myys(Q).

The kernel of A'is ker(A) = {x € Q° | Ax = 0}.

The image of A'is im(A) = {y € Q' | there exists x such that y = Ax}.

| N\ (1
im(A) = {Ax | x e R°} = (al e as : ‘xl,...,xseR
| 1/ \x
| |
=sx1lar | +-+Xs | as ‘Xl,...,XSGR

= R-span{columns of A}.

So im(A) is the set of linear combinations of the columns of A.
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The following Proposition specifies how the kernel and image change if
A is multiplied (on the left or the right) by an invertible matrix.

Proposition (How kernel and image change)
Let A€ Mixs(Q) and P € GL(Q) and Q € GLs(Q). Then

ker(PA) = ker(A), ker(AQ) = Q71 - ker(A),
im(PA) = P - im(A), im(AQ) = im(A).

ker(PA) = {x € Q° | PAx =0} = {x € Q° | P"'PAx = P10}
= {x € Q° | Ax =0} = ker(A),
ker(AQ) = {x € Q° | AQx =0} = {Q1Qx € Q° | AQx = 0}
= Q' {xeQ | AQx =0}
=Q Yy eQ| Ay =0} = Q! ker(A),
im(PA) = {PAx | x € Q°} = P{Ax | x e Q°} = P -im(A),
im(AQ) = {AQx | x € Q@°} = {Ay | @1y € Q°}
={Ay | y € Q*} =im(A). O
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A subspace of Q° is a subset W C Qf such that
(a) 0e W,

(b) If wi,wp € W then wi +wp € W,

(c) f we W and c e Qthen cw € W.

Proposition
Let A € M;xs(Q). Then ker(A) is a subspace of Q°.

Proof. (a) Since A0 = 0 then 0 € ker(A).
(b) Assume wy, wsy € ker(A). Then Awy =0 and Aw, = 0. So

A(Wl + Wg) =Aw; +Awo, =04+0=0. Sow; +w> € ker(A)
(c) Assume w € ker(A) and ¢ € Q. Then Aw =0 and
A(ew) = cAw = c0=0. So cw € ker(A).

So ker(A) is a subspace of Q°. O
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A subspace of Q! is a subset Y C Q! such that
(a) 0eY,

(b) Ify1,yp € Ytheny; +y €Y,
(c)IfyeYandceQthencye V.

Proposition
Let A € Miys(Q). Then im(A) is a subspace of Q*.

Proof. (a) Since 0 = AO then 0 € im(A).

(b)Assume yi, yo € im(A). Then there exist xi,x2 € Q° such that
y1 = Axy and y2 = Axp. Then

yit+y:=Ax1+Ax =A(x1+x2). Soyi+y» €im(A).

(c) Assume y € im(A) and ¢ € Q. Then there exists x € Q° such that
y = Ax. Then

cy = cAx = A(cx). So cy € im(A).

So im(A) is a subspace of Q°. O
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Let W be a subspace of Q°. A set B = {b1,..., bk} is a basis of W if
every element of W is

a unique linear combination of by, ..., bg.

Let Y be a subspace of Qf. A set D ={dy,..., by} is a basis of Y if
every element of Y is

a unique linear combination of dy, ..., dy.

A set B={by,..., bk} is a basis of ker(A) if every element of ker(A) is
a unique linear combination of by, ..., bg.

A set D ={di,...,dp} is a basis of im(A) if every element of im(A) is

a unique linear combination of di, ..., dp.
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Let t,s € Z~g and let Ej be the t x s matrix with 1 in the (i,) entry
and 0 elsewhere. Let r € {1,...,min(s,t)} and let

1, =Eun+---+ Eq.
Let e1,...,es be the standard basis of Q°. Then
{€r+1,...,6s} s a basis of ker(1,).
If @ € GLs(Q) is invertible then
{Q7tei1,...,Q@ tes} s a basis of Q lker(1,).

For example, if s=5 and t = 6 and r = 2 then

10000

01000 0 0 0

0 00 0O 0 0 0
1, = and  ker(12) = span 11,]0(,|0

0 00 OO 0 1 0

0 00 0O 0 0 1

0 00O0TO O
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Let t,s € Z~g and let Ej be the t x s matrix with 1 in the (i,) entry
and 0 elsewhere. Let r € {1,...,min(s,t)} and let

I, =E1+---+ Ep.
Let ey, ..., e be the standard basis of Qf. Then
{e1,...,&} isabasisof im(1,).
If P € GL:(Q) is invertible then
{Pe1,...,Pe} s abasisof Pim(1,).

For example, if s=5 and t = 6 and r = 2 then

100 00 1 0
01000 0 1
0 00O0OTO . 0 0
1, = 0000 0 and im(12) = span ol 1o
0 00O0OTO 0 0
0 0O0O0OTO 0 0




Theorem (Computing kernels and images)
Let P € GL:(Q), Q € GLs(Q). Let r € {1,...,min(s,t)} and let

1r - Ell + E22 SpecegF Err in Mth(Q)'

Let
A= P1,Q.

Then
ker(A) has basis {last s—r columns of @'},

im(A) has basis {first r columns of P}.

Proof. By the How Kernel and Image Change Proposition

ker(A) = ker(P1,Q) = ker(1,Q) = Q ' ker(1,) and
im(A) =im(P1,Q) =im(P1,) = Pim(1,)
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Since {@te,11,...,Q 7 tes} is a basis of QL ker(1,) then
ker(A) has basis {last s—r columns of @1},
Since {Pey,...,Pe;} is a basisof Pim(1,) then
im(A) has basis {first r columns of P}. O
Let A € M;xs(Q). By definition,

dim(ker(A)) is the number of elements in a basis of ker(A), and

dim(im(A)) is the number of elements in a basis of im(A).
From the Computing Kernels and Images Theorem,
dim(ker(A)) =s —r and dim(im(A)) = r = rank(A).

Corollary (rank-nullity theorem)
Let A € M;xs(Q). Since (s —r) + r =s then

dim(im(A)) + dim(ker(A)) = (number of columns of A).
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The following proposition shows that every invertible matrix is square
and has kernel equal to {0}.

Proposition (Invertible matrices are square)

Let A € M;«s(Q) and let r = rank(A). Assume there exists
B € Msy«+(Q) such that AB=1 and BA=1. Then

ker(A) =0, im(A)=Q"' and r=s=t.
Proof. (a) Assume Ax = 0. Then
x=BAx=B0=0. So ker(A) = {0}.
(b) If y € Qf then y = ABy = A(By) and y € im(A). So
Im(A) = Q.
(c) Let P € GL:(Q) and Q € GLs(Q) be such that A= P1,Q.

Since ker(A) = 0 and ker(A) = span{@te,11,...,Q s} then r = s.

Since r = s and Q' = Im(A) has basis {Pey, ..., Pes} then
Qf = P71Q? has basis {er,...,e}. Sor=s=t. O
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Example V27&28. Let
S={]1,3,-1,1), 2,6,0,4), |3,9,—2,4) }.

Then
1 2 3
3 6 9
5= -1’10’ -2
1 4 4
and
1 2 3
) 3 6 0
R-span(S) = im(A), where A = 10 -9
1 4 4
Now
1 200 1 00
1 0 2
|3 6 00 010 1)
A=1101 0 000(83%)’312@
1 4 0 1 0 0O
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where

AN —H|N
o — O

— O O

o O o o
o - O O

— O O O

B

im(Ple)

O O o

o O +H O

AN © O <

Then

im(A)

Thus

im(A) has basis { (
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Since

ker(A) = ker(P12Q) = ker(12Q) = Q' ker(1,)

0 -2
and Q'= ( 1 é) then ker(A) = R-span { (
0 1

Thus ker(A) has basis {|—2, 3,1)}.

O O~

-2

1
2
1

)}
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Lecture 11: Eigenvalues and eigenvectors

Definition (Eigenvectors and eigenvalues.)
Let A € Mn(Q).

o An eigenvalue of A'is an element A € Q such that ker(A — \) # 0.
Let A€ M,(Q) and X € Q.

o An eigenvector of A of eigenvalue \ is a nonzero element of
ker(A — A).

If v is an eigenvector of A of eigenvalue A then

(A—XN)v=0 and Av=)v.
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Definition (Linearly independent eigenvectors)

Let A€ M,(Q) and let p1,..., px be eigenvectors of A. The set
{p1,-..,pk} is linearly independent if p1,..., px satisfy the condition

ifc,...,ck €Qandcpr+--+ckpx =0
then ¢ =0and ¢ =0 and ... and ¢, = 0.

Theorem (Diagonalization.)

Let A € Mpxn(F). The matrix A has n linearly independent
eigenvectors p1, .. .,Pn € F" with eigenvalues \1,. .., \, if and only if
A = PDP~1 where,

| | &
P: p]_ pn and D:dlag()\l’,)\n): o
| | An

so that pi,...,Pn are the columns of P and D is the diagonal matrix
with diagonal entries A1, ..., Ap.



11

A—t:<1It 1it>:<1gt (1)> <‘1) 4_1(1__tt)2>
=<1It (1)> <(1) —(t+11_)(tf—3)>

Case1l: t+1=0. Then

a6 D) o wnr-m{ ()]

Casel: t—3=0. Then

Example EV2,6&9. Find the eigenvalues of A = <1 4).
First,

o (Z )6 7)o n - ()
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1 (-2 2 -1 0 1 -1 2

and PDP —< 1 o 3301 >
_1(4 16\ (1 4\
_4<4 4 ) \1 1 =A

The characteristic polynomial of A is

det(A—t) =det(D —t) = (-1 —t)(3—t).

122



Example EV3,4&10. Find the eigenvaluesof A= [0 5 -6

Find ker(A — t) by row reduction:

A—t

2—t

OO +Hr OO, OOH

0
0

ol
|
~+

-3

OO O O OO

6
—6
0—t

2—t -3 6

0 1 —t

0 0 —6—-(B-t)(-1t)

1 30\ /2-t0 32— 1t)
010 0 1 —t
001 0 0 —(t>?—5t+6)
2—t 0 3(2—1t)

0 1 —t

0 0 —(t—2)(t—23)
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Casel: t—2=0. Then

and

Case2: t —3=0. Then
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and

-1 0 -3 -3
ker(A—3)=ker| 0 1 —3| =span 3 .
0 0 O 1

Then A = PDP~! where

-1 0 0\°
and P l=—[-3 1 -1]| =
6 -3 2

The characteristic polynomial of A is

det(A — t) = det(D — t) = (2 — t)*(3 — t).
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Example EV5,8&12. As an element of My, »(RR), the matrix

A= (_01 é) has no eigenvalues and no eigenvectors.

The linear transformation

T: R? —» R?

Vo Ay is a rotation of X about (0,0).

As an element of My, »(C), the matrix

-1 0

ker(A—i)zspan{({)} and ker(A—H):span{(_li)}.

A : : .
<1> is an eigenvector of eigenvalue i/ and

A= ( 0 1> has two eigenvalues, i and —i.

=i\ . : : .
( 1 > is an eigenvector of eigenvalue —i.



The characteristic polynomial of A is

det(A—t)=det(D —t) = (i — t)(—i —t) = t> + 1.
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Example EV11. If PDP~1 = A then the columns of P are linearly
independent eigenvectors of A. Here is an example where A does not
have n linearly independent eigenvectors.

1 2 1-—t 2
If A_<0 1> then A—t-( 0 1—t>

which has a single row of Os when t = 1.
(The characteristic polynomial of A is det(A — t) = (1 — t)2.)

ker(A — 1) = span { (é) } .

Since A does not have two linearly independent eigenvectors then

A is not diagonalizable.
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Lecture 12: Symmetric, Hermitian, unitary and orthogonal
matrices

Definition (Transpose of a matrix)
Let A€ M;ys(Q). The transpose of Ais AT € Mgy +(Q) given by

(A7) = A;, forie{l,...,s}andj€{1,..., t}.

1 2 3

Example M4. If A= <4 5 6

1 4
)thenAT: 2 5
3 6

Definition (Symmetric, Hermitian, Unitary, Orthogonal matrices.)

A symmetric matrix is A € M,x,(C) such that A= AT,
An orthogonal matrix is A € Mpxn(C) such that AAT = 1.

A Hermitian matrix is A € Mpxn(C) such that A = Al
A unitary matrix is A € Mpyxn(C) such that AAT =1,
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Example P22 Let A{ 1 Y andB=("" °). Since
—i 1 0 —i
- 1 7 = —i 0
*x _ AT __ _ * T _
A=A _<—i 1>—A and B*=B —<0 _I.>7EB
then A is Hermitian and B is not Hermijciar].
1 —1

. AR . .
Example IP21. The matrix U = VAGERI A unitary since

w5 DA DEED-6 )

cosf) —sinf
sinf cos@

T _ [cosf) —sinf cosf)  sinf
QQ _<sin«9 cos¢9><—sin9 cos 0

_ cos? 0 + sin? 0 0 (1 0
- 0 cos?f +sin?9) — \0 1/)°

Example IP15. Q = ( > is orthogonal since
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Definition (The general linear group)

The general linear group GL,(R) is the set

_ there exists A~1 € M, ,(R)
(i) = {A € Mnxn(R) ‘ such that AA~l=1and A 1A=1

Definition (The orthogonal and unitary groups.)

The orthogonal group O,(R) is the set

On(R) = {A € Mpxn(R) | AAT =1}.
The unitary group U,(C) is the set

Un(C) = {A € Mpun(C) | AA" =1}

Example IP17. Assume Q € O,(R). Then 1 = QQT and
1 =det(1) = det(QQT) = det(Q) det(Q) = det(Q) det(Q) = det(Q)>.
So det(Q) € {1, —1}.



Definition (Standard inner products on R” and C")

(a) The standard inner product on R" is {,): R" x R" — R" given by

(x,¥) =x1y1+ -+ Xn¥n,

if x=|x1,...,%) and y = |y1,...,¥n)-
(b) The standard inner product on C" is (,): C" x C" — C" given by

(X,y) = x1y1 + -+ + Xn¥n,

if x=|x1,...,xp) and y = |y1,...,¥n).
Example IP16. Let u,v € R" and let Q@ € O,(R). Then

(ulv) =uTv and

(Qu|Qv) = (Qu)TQv =u'Q"TQv=u"1-v=uTv.
So (Qu|Qv) = (ulv).
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Definition (Orthonormal basis of R” and of C")
A basis of R" is a subset {b1,..., by} of R” such that

every vector in R” is a unique R-linear combination of by, ..., b.
A basis of C" is a subset {b1,...,b,} of C" such that
every vector in C” is a unique C-linear combination of by, ..., by.
An orthonormal basis of R" is a basis of {b1,...,bp} of R" such that
ifi,je{l,....,n} then (bj, bj) = dj,
where (,) is the standard inner product on R".
An orthonormal basis of C" is a basis of {b1,...,bp} of C" such that
ifi,je{l,...,n} then (b;,b;)=dj,

where (,) is the standard inner product on C".
133



Let A€ Mpxn(R). Then A € GL,(R) if and only if the columns of A
form a basis of R".

Theorem (Diagonalization)

Let A € Mpxn(F). The matrix A has n linearly independent
eigenvectors pi, - ..,Pn € F" with eigenvalues A1, ..., \, if and only if
A = PDP~1 where,

| | &
P: p]_ pn and D:dlag()\l’,)\n): o
| | An

so that pi,...,Pn are the columns of P and D is the diagonal matrix
with diagonal entries \1,..., \p.



Theorem

Let A€ Mpxn(C). Then A € Un(C) if and only if the columns of A
form an orthonormal basis of C" with respect to the standard inner
product on C".

Theorem (Hermitian diagonalization)
Let A € Mpxn(C) be a Hermitian matrix. If p1,...,pn, € C" are
orthonormal eigenvectors for A with eigenvalues A1, ..., A\, and

| | M
P=1p1 - pn and D =diag(A1,..., ) = -

| | An

then P is unitary and A = PDP'.



Theorem

Let A€ Mpxn(R). Then A € O,(R) if and only if the columns of A
form an orthonormal basis of R" with respect to the standard inner
product on R".

Theorem (Real symmetric diagonalization)
Let A € Mpxn(R) be a symmetric matrix. If p1,...,pn € R" are
orthonormal eigenvectors for A with eigenvalues A1, ..., A\, and

| | M
P=1p1 - pn and D =diag(A1,...,A) = -

| | An

then P is orthogonal and A = PDP'.



Example IP18. The characteristic polynomial of the symmetric matrix

det(A—t)=(1—-t)? -1
1 -1\ ) )
A=, [ ) s =1-2t+t2—1=1¢>-2t
= (t—0)(t —2).

1 (1 1 (1
5() = ()

are eigenvectors of length 1 with eigenvalues 0 and 2, respectively. Then

Then

1 1
1 ;
Q= 7 <1 _1> is orthogonal

{0 0\ 7
A_Q<0 2>Q.

and
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Example IP23. The characteristic polynomial of the Hermitian matrix

: det(A—t)=(1—t)2—(=i)-i
A:(l. ') is =1-2t+t>—1=1t>—-2t
=(t—0)(t —2).

1 1 1 1
V2 </ and 73\ i

are eigenvectors of A of length 1 with eigenvalues 0 and 2, respectively.

Then
1 1
U= 7 (i —i> is unitary

(0 0\ -7
A_UQ QU.

and
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Lecture 13: Singular value decomposition

Let t,s € Z~g and let Ej be the t x s matrix with 1 in the (i,/) entry
and 0 elsewhere.

Let A € M;xs(R). Find orthonormal eigenvectors vy, ..., vs of ALA with
eigenvalues A1, ..., s and let
| |
V=1Iwv - v and S =/ A Ei1+ -+ AsEss.
| |
If \; 75 0 let u; = ﬁAV/.
Extend vy, ..., ux to an orthonormal basis of Rt and let
| |
U=|wu - u

| |
Then U € O:(R) and V € Os(R) and S € M;,s(R) is ‘diagonal’ and

A=USVT.
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Example IP20. If

1 01

A:(é (1) é) then ATA=[0 1 0

1 01
The columns vy, vo, v3 of
1 -1
v 07

V=10 1 0 are orthonormal eigenvectors of AT A

1 1
v 07

with eigenvalues A =2, A\p =1, A3 =0. Let

1 0
U = %Avl = <0> and w = %sz = <1> .

Then {uy, up} is already an orthonormal basis of R?, Let

-3 s (7 5

Then U € O02(R), V € O3(R) and S € Moy 3(R) and A= USVT,
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Example IP19. If

(0 -1 7, (00
A_<O 0> then A A_<O 1>
The columns vy, v» of

V= (? (1)> are orthonormal eigenvectors of AT A

with eigenvalues A\; = 1, A\ = 0. Let

u = %Avl = <_01> and let w, = <(1)> .

so that {uy, up} is an orthonormal basis of R?, Let

o= (5 5) = 5= (5 8)- o)

Then U € 0(R), V € O2(R) and S € Myy»(R) and A= USVT,
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Lecture 14: Traces and Determinants

Let n € Z~q. Let Ejj be the n x n matrix with 1 in the (/,/) entry and 0
elsewhere. For i € {1,...,n—1} and ¢ € Q define

si(c) =1—Ei — Eiy1iv1 + Eijiv1 + Ei1i + cEi.
For i€ {1,...,n} and d € Q with d # 0 define
hi(d) =1+ (d — 1)E;,
For i,j € {1,...,n} with i # j and ¢ € Q define
xij(c) = 1+ cEj,
For r € {1,..., n} define

1, =En+--+Eq.
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Definition (Determinant)
The deteminant is the function det: M,x,(Q) — Q determined by

if A,B € Mpxn(Q) then det(AB) = det(A) det(B),

andifi,je{l,...,n} withi#j jand ke {l,...,n—1} and c,d € Q
with d # 0 then

det(x;(c)) =1, det(hi(d)) =d, det(sc(c))=—1.

Theorem (Factoring)
Let n € Z~q. Let

1, =En+---+E, in Mnxn(Q)-
Let A € Mpxn(Q). The factoring algorithm gives

A = (product of si(c)s) - (product of hi(d)s) - (product of xjj(c)s)
-1, - (product of si(c)s) - (product of x;j(c)s).



6 9
3 8 |. Then
0 -1

O ON

Example M12. Let A= (

13 3
A = h(2)hx(3)h3(— )(0 L 3
0 01

= h(2)h2(3) h3(—1)x12(3)x13(3)x23(3),

So
det(A) = det (hl(2)h2(3)h3(—1)X12(3))X13(%)X23(%)
— det(h(2)) det(ha(3)) det(h3(~1))
. det(x12(3))) det(x13(%)) det(X23(%))
—2.3-(-1)-1-1-1=—6.
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Then

— - M

AN

1
-1
0

Example M13. Let A

13—/_
— — O
—
_00
N~ — .
PR /-~
123) [
o— o T M
— N
SOM = 440
—
_001001
((_OO
— — )
o o o O ™
N—r
—— oo Hoo &
—~
— — —
| Vo | o _
N—r
N~ et
)
Il Il Il
<

So det(A) = (~1)- (~1)-(~1)-1-(-7) =T.
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Definition (Trace)
Let A€ Mpxn(Q). The trace of A is

A - Aig
Tr(A) = A1+ -+ Ap where A= | :
Anl o Ann

1 2 3
Tr|4 5 6] =1+5+9=15.
7 8 9

Proposition (Properties of trace)
Let A, B € Mpxn(Q) and let c € Q. Then

Example M3.

Tr(A+ B) = Tr(A) + Tr(B), Tr(cA) = c Tr(A)

and
Tr(AB) = Tr(BA).



Theorem (Determinant and trace are conjugacy invariants)

Let n € Z~o. Let A€ Mpxn(Q) and let P € GL,(Q) so that P is an
invertible n x n matrix. Then

det(PAP™1) = det(A) and Tr(PAP™1) = Tr(A).
Example M14. Let A € M,x,(Q). Since 1 = AA~1L then
det(1) = det(A) det(A~1). So

1 = det(A)det(A™!) and ﬁ(m = det(A71).

Let P € GL,(Q). Then

det(PAP™1) = det(P) det(A) det(P~1) = det(P) det(A)ﬁ(P)

- det(P)ﬁ(P) det(A) = det(A).
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Tutorial: Determinants by cofactor expansion

Definition (the (i, j)-cofactor)
Let A€ Mpxn(Q) and let i,j € {1,...,n}.

the ith row removed

Let A() be the matrix A with .
and the jth column removed.

The (i,j)-cofactor of A is

Cj = (—1)™ det(AUD).
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Theorem (cofactor expansion)

Let A€ Mpxn(Q) and let i,j € {1,...,n}. Then

det(A) =Ai1C1+ ApCio+-

and

det(A) = Alelj + Anggj —+ -

-+ AinG

+ Anj an.

cofactor expansion
across the ith row

cofactor expansion
down the jth column
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1
Example M15 and 16. If A= | -1

0

=N

Coz = (—1)?13 det ((1) f) =(-1°(1-1-0-2) = —1.

Using cofactor expansion along the third row,

det(A) = (-1)*1 .0 det<i i>+(—1)3+2~1-det<1 1>

-1 1
1 2
+(-1)*3.3. dt<_1 1)

—0-(1-1—(-1)-1)+3(1-1—(-1)-2)
—0-2+9="7.

1
1] then the (2,3)-cofactor is
3
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1 -2 01
3 2 20
Example M17. Let A= 1 0 10
0 -4 2 4
Using cofactor expansion down the fourth column,
3 2 2
det(A) = (1) -1.det{1 0 1] +0+0
0 —4 2
1 -2 0
+ ()" 4.det (3 2 2
1 0 1

— _<(_1)1+1 .3 det (_04 ;) 4 (—1)** 1 det (_24 ;) + 0)

+4((—1)1+1 ‘1 det (g f) F(=1)2 - (-2) - det G f) +o)

=-3(0+4)+(4+8)+4((2—0) +2(2—3))
=-12+1248+8 =16.



Lecture 15: Applications to graphs and networks

Square matrices with 0, 1 entries are equivalent to graphs.

Example M1&2. The graph

2 vs 01001
10111

Vi # has adjacency matrix A= |0 1 0 1 O
01101

vs 11010

There is a 1 in the (7, /) entry if there is an edge connecting vertex i
and vertex j.
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Then

01001\ /21121
1011 114122
A=AA)=]01010f]1 1212
0110122131
11010/ \12213
26 335
6 6 6 7 7
=[(36 2 5 3
376547
57 37 4

The (i,j) entry of A3 gives the number of paths of length three from
vertex | to vertex J.
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Example LS10. Calculating flows in networks

At each node e require (sum of flows in) = (sum of flows out).

10 3

b C

Determine a, b, ¢ and d in the network

Then

Node 1: 10 =a+ b,

Node 2: a=3+c,

Node 3: c+d =6,

Node 4: b=1+d.
So
a+ b+ 0c+ 0d =10, 11 0 O a 10
a+0b—c+0d=2, hich i 10 -1 0 bl |3
0Oa+0btctd=6, ™" 1oo 1 1||c| 7|66
Oa+b+0c—d=1 01 0 -1 d 1
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Start with

— O O

— — O O

Left multiply both sides by

Left multiply both sides by
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Left multiply both sides by

01_0
O O —+H O

— O O O

Left multiply both sides by

o o o -

o -+ O O

— O O O

Left multiply both sides by

— O - O

o - O O

— O O O
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This is the system

a=29,
b—d=1,
c+d=6,
0=0,

where d can be any number. So

a= 9

. b= 1

which is c— 6

d= 0

9 0

1 1

N B

L \O 1
9

L + Q-span

6 p

0

+ o+
—
Qo
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Lecture 16: Application of diagonalization to dynamics

Theorem (Diagonalization.)

Let A€ My(F). The matrix A has n linearly independent eigenvectors
P1,---,Pn € F" with eigenvalues A1, ..., A, if and only if

A= PDP!
where,
| | M
P=1{|p1 - pn and D =diag(A1,..., ) = o,
| | An
so that pi,...,Pn are the columns of P and D is the diagonal matrix

with diagonal entries \1,..., \p.
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Example EV13.

—4 0 (-4 0 o0
If D=0 0 then D0 = 0 310 o |.
0 2 0 0 210

Example EV14. If A= PDP~! then

O W o

AS=A-A-A=(PDP 1) (PDP~Y)(PDP~') = PDP~*PDP~'PDP~*
=PD-D-DP'=PD*P!,

and, similarly, if k € Z then

Ak = PD*PT.
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Let

k _ ppkp-1_ [—2 2
A P(D—:k-2 <3k1-21> <1 2
({0 %) (3 2)

_1 (2ACDF 439 4(-1) T+ 35
o ((—1)k+1 +3% 2((-1)F+39) >



Example EV15. Let

1 1
r 5 7 0
. ¢ T-[111
n—pn an - 12 2 2
wh 0 3 3

and define an evolution process by
Xp+1 = TXp.

This is the Markov chain defined by T. Since T = PDP~1, where

1 -1 1 100 T3 3

P=|2 0 -2|,D=(0 % o], Pt=|-} 0%
1 1

1 1 1 000 -1
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then the stationary state of the process on R3 defined by T is

" 0 0
lim T"xo = lim PD"P !'xg = lim P[0 (1) o] P~
n—o0 n—o0 n—o0
0 0 0
100 1 -1 1 i i:
=P[0 0 0|P=(2 0 —2||0 00
000 1 1 1/\0o 00

%(ro—l-Po-i-Wo) %
= %(fo-i-Po-i-Wo) = %
z(fo+P0+Wo) 7

1

X0

162



Lecture 17: Vector spaces and linear transformations

A field is a number system F that is similar to Q, R and C
(the precise definition is given on slide 139-140).

The number systems @@, R and C are all fields. There are some ‘more
exotic' fields like finite fields. For example, if p is a prime number then
the p-clock number system [, is a finite field.

The world of F-vector spaces works for any field F. But, the properties
depend on F. For example, with dimension of a vector space

The R-dimension of R3 is 3.

The C-dimension of C3 is 3.

The R-dimension of C3 is 6.

The Q-dimension of R3 is co.

We often write ‘Let F be a field'. You are encouraged to think of F as
R or Q (or whatever your favourite field is).

Later we may explore some cool applications of vector spaces that use

finite fields (codes, fast Fourier transform, etc.).
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Definition (IF-vector space)

Let IF be a field. A [F-vector space, or F-module, is a set V with
functions

%4

VxV — vV FxV
(c,v) cv

%
and
(vi,v2) = v+wv —
(addition and scalar multiplication) such that
(a) If vi,vo,v3 € V then (vi + v2) + vz = v1 + (v2 + v3),

(b) There exists 0 € V such thatif v € V then 0+ v = v.
(c) If v € V then there exists —v € V such that v 4 (—v) = 0.
(d) If vi,vp € V then vi + vo = v» + vy,

If c1,cp € Fand v € V then (a1 + @)v =cv+ ov,
If c1,c0 € Fand v € V then ci(qv) = (ae)v,

)
)
)
e) If ceFand vi,vp € V then c(vi + v2) = cv1 + cva,
)
)
) If v eV then lv =v.
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Linear transformations are for comparing vector spaces.

Definition

Let IF be a field and let V and W be F-vector spaces. An [F-linear
transformation from V to W is a function f: V — W such that
(a) If vi,v» € V then f(vi + wp) = f(v1) + f(w2),

(b) If ceF and v € V then f(cv) = cf(v).

One vector space can be a subspace of another.

Definition (Subspace)
Let V be an F-vector space. A subspace of W is a subset W C V such
that

(a) 0e W,

(b) If wi,wp € W then wy +wp € W,

(c) f we W and c € F then cw € W.



Definition (Basis and dimension)

Let IF be a field and let V be an [F-vector space.
Let {v1,v2,...,vk} be a subset of V.
An [F-linear combination of vy, ...,v, is an element of the set

]F-Span{V]_,...,Vk}:{C]_V1—|—“'—|—Cka ’ C17C2)~~~7Ck€]F}~
The set {v1,...,Vvk} is linearly independent over F if it satisfies:
ifcr,...,ck €EFand vy + -+ v =0

then ¢ =0, =0, ..., ¢, =0.
An F-basis of V is a subset B C V such that
(a) F-span(B) =V,
(b) B is linearly independent.
The F-dimension of V is the number of elements of a F-basis B of V.
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Favourite vector spaces and favourite bases

1. R"={|a1,a2,...,an) | a1,32,...,3n € R} = Mpx1(R) has basis
{e1,€,...,en}, where ¢ =10,...,0,1,0,...,0),

has 1 in the jth entry and O elsewhere.

2. Mpmxn(R) has basis

{Ei |ief{l,....,m}, je{l,....n}},
where Ej; is the matrix with 1 in the (i, /) entry and 0 elsewhere.

3. R[x]<n ={a0+a1x+---+apx" | ap,a1,...,a, € R}

has basis  {1,x,x2,...,x"}.

4. The vector space of polynomials with coefficients in R is

R[x] = R-span{1, x, x%, x>, ...} which has basis {1,x,x%,x3,...}.
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Example V22. Let vi, va, v3, v4 € R3 be given by

Vl:‘17273>7 V2:|37679>7 V3 = |_1707_2>7 Vg = |17474>
Is {v1, v2, v3,v4} linearly independent?
Express v» and vy as linear combinations of v; and vs.

Is {v1, v3} linearly independent?

(a) Since v» = 3vq then 0 =3v; — v» =3v; — v + 0vz + —v4.
Soci =3, =-1 =0, cg =0 is a case that gives
avi+ ovo + vz + cavg = 0.

So {v1, va, v3, v4} is not linearly independent.

(b) Since vo = 3v; + Ovz then v, € R-span{vy, v3}.
Since vi + v3 = (0,2,1) and v; +[0,2,1) = |1,4,4).
So va4 = 2v; + v3. So va4 € R-span{vy, v3}.
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(c) To show: If ¢, € R and ¢1]1,2,3) + | —1,0,2) = [0,0,0)
then ¢ =0 and ¢ = 0.

Assume c1, ¢ € R and ¢1]1,2,3) + | —1,0,2) = |0,0,0).

Then

a—c=0,
2c1 +0c =0,
3c1 + 20 =0.

The first equation gives ¢; = ¢ and the second equation gives 2¢c; =0
so that ¢ = ¢; = 0. This system has

only one solution: c1=0, co=0.

So {vi,v3} is linearly independent. O
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Example V7. Is the line
L={|x,y) €R?* | y =2x+1} a subspace of R??

Since 0 =10,0) and 0 #2-0+ 1 then 0 & L.
So L is not a subspace of R?.

Example A8. Is the line
L={|x,y) €R?| y =2x} a subspace of R??

Since |0,0) = |0,2 - 0) then |0,0) € L.
Assume |a, 2a),|b,2b) € L. Then

|a,2a) + |b,2b) = |(a + b),2(a+ b)) € L.
Assume |a,2a) € L and ¢ € R. Then
¢ -la,2a) =|(ca),2(ca)) € L.

So L is a subspace of R?.
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Definition (Field)
A field is a set F with functions

FxF — F d FxF — F
(a,b) — a+b an (a,b) — ab

such that

(Fa) If a,b,c € F then (a+b)+c=a+(b+c),
(Fb) If a,b € F thena+ b= b+ a,

(Fc) There exists 0 € F such that

ifaclF then 0+a=aand a+0=g,

(Fd) If a € IF then there exists —a € F such that a+ (—a) = 0 and
(—a)+a=0,
(Fe) If a,b,c € F then (ab)c = a(bc),
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Definition (Field continued)
(Ff) If a,b,c € F then

(a+b)c=ac+bc  and c(a+ b) = ca+ cbh,
(Fg) There exists 1 € F such that
facF then l-a=aanda-1=a,

(Fh) If a € F and a # 0 then there exists a—! € F such that aa=! =1
and a~la=1,

(Fi) If a,b € IF then ab = ba.
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Lecture 18: Linear transformations

Linear transformations are for comparing vector spaces.

Definition

Let IF be a field and let V and W be F-vector spaces. An [F-linear
transformation from V to W is a function f: V — W such that

(a) If vi,v» € V then f(vi + wp) = f(v1) + f(w2),
(b) If ceF and v € V then f(cv) = cf(v).
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1 2 3 4
Example AL. LetA-(5 6 7 8>'

Let T: R* — R? be the function given by T(x) = Ax so that

X1 X1

X 1 2 3 4 X1+ 2x2 4+ 3x3 + 4x4

T = 2
X3 ~\b 6 7 8 X3 a 5x5 + 6xg + 7x7 +8xg )

X4 X4

Show that T is a linear transformation.
Let u,v € R* Then, by the distributive property of matrix
multiplication,

Tu+v)=Alu+v)=Au+ Av =T(u)+ T(v).

Let u € R* and c € R. Then, by the associative property of scalar
multiplication for matrices,

T(cu) = Acu = cAu = cT(u).

So T is a linear transformation.
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Example A2. Let t,s € Zso and A € M;ys(R). Let T: R® — R’ be the
function given by

Show that T is a linear transformation.
Let u,v € R®. Then, by the distributive property of matrix
multiplication for matrices,

T(u+v)=Au+v)=Au+Av = T(u)+ T(v).

Let u € R® and ¢ € R. Then, by the associative property of scalar
multiplication for matrices,

T(cu) = Acu = cAu = cT(u).

So T is a linear transformation.
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Example A3. Let n € Z~¢o and let T: M,(Q) — Q by the function

given by
T(A) = Tr(A). @ TH(A)

Show that T is a Q-linear transformation.
Let A, B € Mpxn(Q). Then
TA+B)=Tr(A+B)=(A+B)uu+--+(A+B)m
=Aun+Bu+-+ A+ B
:A11+"'+Ann++811+"'8nn
= Tr(A) + Tr(B) = T(A) + T(B).
Let A€ Mpxn(Q) and c € Q. Then
T(cA) =Tr(cA) = (cA)11 + -+ + (cA)nn
=cAn+ -+ Am
=c(A11+ -+ Apn) = cTr(A) = cT(A).

So T is a linear transformation.



Example A4. Let T: Myy2(Q) — Q be the function given by

a b a b
T<C d)—det<c d)—ad—bc.

Show that T is a linear transformation.

Let A= ((1) (1)> and let ¢ = 2. Then

T(cA) = det(2A) = det (g :

>:2-2—0-0:4

and
10

cT(A) = 2det (0 1

):2.(1-1—0-0):2.

So this gives an example where T(cA) # cT(A).
So T cannot possibly be a linear transformation.
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Lecture 19: span, linear independence and bases

Definition (Basis and dimension)

Let IF be a field and let V be an [F-vector space.
Let {v1,v2,...,vk} be a subset of V.
An [F-linear combination of vy, ...,vk is an element of the set

]F-Span{V]_,...,Vk}:{C]_V1—|—“'—|—Cka ’ C17C2)~~~7Ck€]F}~
The set {v1,...,Vvk} is linearly independent over F if it satisfies:
ifci,...,ck €Fand vy + -+ kv =0

thenc; =0, o =0, ..., ¢k = 0.

An F-basis of V is a subset B C V such that
(a) F-span(B) =V,
(b) B is linearly independent.

The F-dimension of V is the number of elements of a F-basis B of V.
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Example A9. Let V be a Q-vector space and let vy, vo, vz, vq, v5 € V.
Let S = {v1, v, v3,va, v5}. Show that Q-span(S) is a subspace of V.

(a) Since 0 = Ovy + Ov, + Ovz + Ovy4 + Ovs then 0 € Q-span(S).
(b) Assume a = ajvi + axva + azvaz + aava + asvs € Q-span(S) and
b = byvi + bovy + b3vs + bavy + bsvs € Q-span(S). Then
a+b=aivi +avo+ azvz + asvs + asvs
+ byvi + bava + b3vz + bavg + bsvs
= (a1 + b1)vi + (a2 + b2)va + (a3 + b3)v3

+ (84 + b4)V4 + (85 + b5)V5.
So a+ b € Q-span(S).
(c) Assume a = ajvy + axvo + a3va + asgva + asvs € Q-span(S) and
c € Q. Then

ca = c(alvl + axVvo + azvz + agvq + a5V5)

= cajvi + capvp + cazvs + cagvy + casvs € Q-span(S).

So Q-span(S) is a subspace of V.
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Example V13. In R[x]<2, is 1 — 2x — x? € R-span{l + x + x2,3 + x?}?

By definition R-span{l + x + x2,3 + x?}
= {Cl(]. + x + X2) + C2(3 + X2) | Cc10 € R}
So we need to show that there exist ¢, ¢ € R such that

al+x+x*)+aB+x*)=1-2x—x%

ca+3c =1,
So we need to show that the system ¢; + 0cp = —2, has a solution.
a+o=-1,
The second equation gives c; = —2 and then o = -1—c =142 =3.
Since the equation ¢; + 3¢, = 1 also works when ¢ = -2 and ¢, =3
then ¢; = —2, ¢; = 1 is a solution to this system.

Alternatively, the solution can be found by row reduction as follows. In
matrix form the equations are

1

13\
10 <1>: -2
1 1)\ ~1
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Left multiply both sides by

1 0 O
00 1 to get
01 -1

Left multiply both sides by

0 1 0O
1 -1 0 to get
0 0 1

Left multiply both sides by
1 0 0
0 0 1 to get
01 -2

o

o
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Left multiply both sides by

1 0 0 11 -1
0 -1 0] toget [0 (C1>: 1
0 0 1 0 0) \@ 0

Left multiply both sides by

-1

[y

1 0
0 0 to get
0 1

o O
o =
7N
S 0
~_
|
o =

1
0
So ¢ = —2 and ¢ = 1 is a solution.

So —2(L+x+x?)+(B3+x%)=1-2x—x2
So 1 —2x — x? € R-span{l + x + x?,3 + x?}.

So 1 —2x — x? is a linear combination of 1 + x + x2 and 3 + x2 and

1 —2x — x* € R-span{1 + x + x?,3 + x°}.
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Example V16new. Let S be the subset of R[x]<2 given by

S ={1+4+2x,1+5x+3x%x+ x?}. Show that span(S) = R[x]<>.
Proof. By definition

R-span(S) = {c1(14+2x)+ 2 (14+5x+3x?) +c3(x+x%) | a1, &2, c3 € R},

To show: (a) R-span(S) C R3
(b) R® C R-span(S).

Since S C R3 and R? is closed under addition and scalar
multiplication then R-span(S) C R[x]<2.

To show: R[x]<2 C span(S).

To show: R-span{1, x,x?} C span(S).

Since R-span(S) is closed under addition and scalar multiplication,
To show: {1,x,x2} C R-span(S).
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To show: There exist ¢1, ¢, c3,d1, do, d3, 1, o, r3 € R such that

a(1+2x) + o(1 4 5x 4+ 3x%) + c3(x + x?) = 1 4 0x + x2,
di(1 4 2x) + da(1 + 5x + 3x%) + d3(x + x?) = 04 x + 0x,
(14 2x) + (1 4 5x 4 3x%) + r3(x + x%) = 0 + 0x + x°.

To show: There exist ¢, ¢, c3,d1, do, d3, 11, 2, r3 € R such that

1 10 Cc1 dl r 1 00
2 51 (&) d2 r =10 10
0 31 c3 d3 r3 0 01
Multiply both sides by
1 00 110 a d n 1 -2 0
—2 1 0] toget ([0 3 1 ¢ d |l =10 1 0
0 01 0 31 3 d3 r3 0 0 1
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Multiply both sides by

1 0 O 1 10 aa d n 1 -2 0
0 1 0] toget |0 3 1 ¢ d |l =10 1 0
0 -1 1 0 00 3 d3 r3 0 -1 1

Since the bottom row on the left hand side is all 0 and the bottom row
on the right hand sides is not all 0 then there do not exist
c1,C,C3,d1,dr,d3, 11, 12, r3 € R such that

1 10 1 d1 n 1 00
2 51 C d2 r = 010
0 31 c3 d3 r3 0 01

So {1,x,x?} Z R-span(S).
So span(S) # R[x]<2. O
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Example V23. Is S = {(1,—1),(2,4)} a basis of R??
Let

(Y e e
L0 = -0

So S is linearly independent.

If |a, b) € R? then |a, b) = 1|1, —1) + 2|2, 4), where

c 2 1\ /a 2a—1p
2)=G ) 6)-(E5)
@ 6 6 697 6
So R? C R-span(S). Since S C R? and R? is closed under addition and

scalar multiplication then R-span(S) C R2. So R-span(S) = R2.
So S is a basis of R
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Example V21. Let S be the subset of M,(R) given by

13 -2 1 1 10
_ . . .
S {(1 1> ’ < 1 _1> ) <4 5 > } Is S linearly independent?

To show: If ¢, ¢, c3 € R and

13\, (2 1), (1 10)_(00
“Al1 1)72(1 —1)7%\4 2)7\o o

then ¢ =0, & =0, c3 = 0.

Suppose an oracle tells you to try (or you guess) ¢c; = —3, & =1,
c3 = —1 and then you verify that

S0+ L)-6G9)-=0)+C 2
().

This means that you don't have to have cj, ¢ and ¢3 all 0 to get a zero
linear combination.

So S is not linearly independent.
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If you have no oracle, or are not a good guesser, then proceed as follows.

Assume c1, ¢, c3 € R and

1 3 2 1 1 10 00
o) el 2l 2)=(0)

Then
c— 20+ c3=0, 1 -2 1 c 0
3+ @+ 106 =0, or, equivalentl 3 110 C1 =10
c+otde=0 °° Y11 1 4 : o
c—o+2c =0, 1 -1 2 3
Left multiply both sides by
1 00 O 1 -2 1 c 0
010 0 et |31 10 ; _ (o
000 1 & 1 -1 2 | (2
001 —1 0 2 2 3
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Left multiply both sides by

1 0 0 O 1
00 1 0 to set 1
01 -3 0 & 0
00 0 1 0
Left multiply both sides by
0O 1 0O 1
1 -1 0 O to cet 0
0 0 10 & 0
0O 0 01 0
Left multiply both sides by
1 00 O 1
01 0 O to wet 0
000 1 & 0
0 01 -2 0

-2 1\ .
1 2 {4
4 4 ? 1\,
2 2 3
12y o .
1 -1 {4
4 4 |\~ 0
2 2 e

1 2
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Left multiply both sides by

O O o

O O O

o= OO

O ONIH O

ONIR = O

o = O O

= O O O

Left multiply both sides by

= O O O

to get

OO o

to get

oo o

Left multiply both sides by

O O O

O O - =

O = OO

= O O O

to get

O O O

O O = O

2 (o] 0
2
() = 0
0 c 0
0 3
2 C1 0
1
() == 0
0 C 0
0 3
3 C1 0
1
() = 0].
0 3
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This gives the system

c+3c =0, L = —3c
whichis ¢ = —c;s,
o+ c =0,
3 = (3,
which has solutions

-3 -3

a | -1 c3 € R } = R-span -1

1 1

Soc; =0, & =0, cg =0 is not the only solution.

This means that you don't have to have cj, ¢ and ¢3 all 0 to get a zero
linear combination.

So S is not linearly independent.
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Lecture 20: Kernel and image of a linear transformation

Definition (Kernel and image of a linear transformation)

The kernel of an F-linear transformation f: V — W is the set
ker(f) ={v e V| f(v) =0}.
The image of an F-linear transformation f: V — W is the set
im(f) ={f(v) | ve V}.

Definition (Kernel and image of a matrix)
Let A € M;xs(Q). The kernel of A is

ker(A) = {x € Q° | Ax =0}
and the image of A is

im(A) = {Ax | s € Q°}.



Example A5. Let T: V — W be an R-linear transformation.
Show that ker(T) = {v e V | T(v) =0} is a subspace of V.

Let vi,v» € ker(T). Then
T(vi+w)=T(wn)+T(v)=0+0=0. So v+ v € ker(T).

Subtracting T(0) from each side of the equation
T(0)=T(0+0)= T(0)+ T(0) gives

0=T(0), andso O € ker(T).
Let v € ker(T) and let c € R. Then
T(cv) =cT(v)=c-0=0 andso cv & ker(T).

So ker(T) is a subspace of V.
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Example A6. Let T: V — W be an R-linear transformation.
Show that im(T) ={T(v) | v € V} is a subspace of W.
Subtracting T(0) from each side of the equation
T(0)=T(0+0)= T(0)+ T(0) gives

0=T(0), andso 0€im(T).
Let wi, wo € W. Then there exist vi, v» € V such that

T(vn)=wy and T(wvp)=ws.
Then wi + wo = T(v1) + T(v2) = T(v1 + v2),

and so wy + wo € im(T).
Let w € W and let ¢ € R. Then there exists v € V such that
T(v)=w.
Then cw = ¢T(v) = T(cv)
andso cw €im(T).

So im(T) is a subspace of W.
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Definition (Injective, surjective, bijective, invertible)
Let S and T besets and let f: S — T be a function from S to T.
(a) The function f: S — T is injective if f satistifes

if s1,50 € S and f(s1) = f(s2) then s; = 5.
(b) The function f: S — T is surjective if f satisfies
if t € T then there exists s € S such that f(s) = t.
(c) The function f: S — T is bijective if f is
both injective and surjective.

(d) The function f: S — T is invertible if there exists a function
g: T — S such that

gof=Ids and fog=Idr.
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Let V be a vector space. The dimension of V is

dim(V) = (number of elements in a basis B of V).

Theorem (The rank-nullity theorem)

Let f: V — W be an F-linear transformation. Then
(a) ker(f) is a subspace of V.

(b) im(f) is a subspace of W.

(c) dim(ker(f)) + dim(im(f)) = dim(V).

Theorem

Let f: V — W be an F-linear transformation. Then
(a) f is injective if and only if ker(f) = {0}.

(b) f is surjective if and only if im(f) = W.

(c) f is invertible if and only if f is both injective and surjective.



Example LT15. Let T: R3 — R? be the linear transformation given by
T(vavz) = (2X _yay—l_z)
Find bases for ker(T) and Im(T) and verify the rank-nullity theorem.

ker(T) ={|x,y,z) € R* | T(x,y,z) =0,0)}
={|x,y,z) €R*| |2x — y,y +2) =0,0)}

:{|x,y,z>ER3‘ x—y=0, }

y+z=0
X =3y,
= \X,y7Z>ER3( y=y,
z=—y
={y-13,1,1) e R* | y € R} = R-span{|},1,-1)}

and {|%, 1,—1)} is a basis of ker(T). So dim(ker(T)) =
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Since
T(3,0,0)=1,0) and T(0,0,1) =[0,1)

then
|1,0) and |0, 1) are elements of im(T).

Since im(T) is a subspace of R? then R-span{|1,0),[0,1)} is a subset
of im(T). So

im(T) =R? and {]1,0),]0,1)} is a basis of im(T).
So dim(im(T)) =2 and

dim(ker(T)) +dim(im(T)) =2+1=3 and 3 =dim(R%)

is the dimension of the source of the linear transformation T: R3 — R2.
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Example LT16&17. Let T: R[x]<2 — R[x]<1 be the linear
transformation given by

T(ap + a1x + 32x2) = (ap — a1 + a2)(1 + 2x).
Find bases for ker(T) and Im(T).
Is T injective?

Is T surjective?

ker(T) = {ap + a1x + axx® € R[x]<2 | T(ao + arx + a»x?) = 0 + 0x}
= {ap + a1x + axx* € R[x]<2 | (ap — a1 + a2)(1 + 2x) = 0 + Ox}

ap— a1 +a=0,
2(ao—a1+a2):0

= {ag + aix+ axx® €R[x]<2 | a0 = a1 — ap}
= {(a1 — a2) + a1x + axx* | a1, a € R}
={a1(14+x) + ax(—1+ x?) | a,a» € R}

= R-span{l + x, —1 + x?}

= {ao + a1x + ax? € R[x]<2
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and {1 + x, —1+ x?} is a basis of ker(T).

im(T) = {T(ag + a1x + axx?) | ag, a1, a2 € R}
= {(ao —a; + 32)(1 + 2X) | ag, a1,ar € R}
= {a(1 +2x) | a € R} = R-span{l + 2x}

and {1 + 2x} is a basis of im(T). So dim(im(T)) = 1.
Since ker(T) # {0} then T is not injective.
Since R[x]<1 = {cp + c1x | c1, & € R} then

im(T) # R[x]<1 and T is not surjective.
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Lecture 21: With respect to a basis

Even in an arbitrary vector space, vectors and linear transformations can
be converted to matrices, provided that the corresponding column
vectors and matrices are constructed with respect to a basis.

Definition (Basis)

Let V be an F-vector space. A basis of V is aset S = {by,by,...,b,}
such that every vector in V is a unique linear combination of by, ..., b,.

Definition (Coordinates)

Let B ={bs,...,b,} be an ordered basis for an F-vector space V' and
let v € V. The coordinate vector of v with respect to B is [v]g € F"
given by
C1
vls =1 : if v=qcgby+- -+ c,b,.

Cn



Example V33. The coordinate vector of v = (1,5) with respect to the
basis S = {(1,0),(0,1)} of R? is

[v]s = (é) since (1,5)=1-(1,0)+5-(0.1).

The coordinate vector of v = (1,5) with respect to the basis
B={(2,1),(-1,1)} of R%is

V]s = @ since (1,5) = 2-(2,1) +3- (~L1).

Example VV34. The coordinate vector of p = 2 4+ 7x — 9x? with respect
to the basis B = {2, 3x, —3x2} of Q[x]<, is

1
[Pl = [ 14| since 24+ 7x —9x®2=1-2+14-(3x) +3-(-3x?).
3
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Definition
Let f: V — W be an F-linear transformation. Let B = {by,...,bs} be
a basis of V and let C = {c3,¢p,...,c:} be a basis of W. Suppose that

f(bl) = A11C1 + A21C2 + -+ A,,lc,,,
f(bg) = A12C1 + A22C2 + -+ A,,gc,,,

f(bn) = Alncl + A2nc2 oo Anncn’
The matrix of f with respect to bases B and C is the matrix

Ain A -0 Al
An Axp - Ao
[flce = . .

Anl An2 Ann
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Definition (Change of basis matrix)

Let V be and F-vector space. Let B = {by,...,b,} be a basis of V
and let C = {cy,...,cy} be another basis of V. Let

b1 = Anici + Axico + - - - + Anicp,
by = A1pci + Axco + - - - + Apocp,

bn = Alncl + A2nc2 qFeee p Anncna

The change of basis matrix from B to C is

A A - An

At Axp - Ao
[Mcs = : :

Anl An2 e Ann

The change of basis matrix is the matrix of the identity transformation
| with respect to the basis B and C.
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Let T: U— V and f: V — W be linear transformations. Let
B be a basis of U, C a basis of V' D a basis of W.

Then
[f o Tlps = [flpc[T]cs-

Let T: V — W be a linear transformation.

S be a basis of V. C be a basis of W,
B be another basis of V, D be another basis of W.

Then
[lloc[Tlcellles = [Tlps and  [l]sg[llgs = [/]ss = 1.

This last equation tells us that [/]sg is invertible. Since invertible
matrices must be square then B and S have the same number of
elements.

Theorem

Let V' be an F-vector space. Any two bases of V have the same
number of elements.



Example LT2&14. The derivative with respect to x is the linear
transformation T: R[x]<3 — R[x]<2 given by

T(ao + arx + apx? + a3x3) = a; + 2ax + 3a3x°.

Since
T(1) = T(1 4 0x 4 0x* + 0x) = 0 + Ox + 0x?,
T(x) = T(0+ 1x + 0x?® + 0x®) = 1 + Ox + 0x?,
T(x?) = T(0+ 0x + 1x* + 0x®) = 0 + 2x + 0x?,
T(x3) = T(0+ 0x + 0x* 4+ 1x®) = 0 + Ox + 3x2,

then the matrix of T with respect to the basis S = {1, x, x?, x3} of
R[x]<3 and the basis B = {1, x, x?} of R[x]<2 is

O O~

0
2
0

w O O

0
[Tles = |0
0
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Then

ker(T) = {p € R[x]<3 | T(p) = 0}

_ 2 3| a1+ 2ax + 3azx?

_{a°+"1x+a2x TAT 04 0x + 0x2 + 053
:{ao+alx—|—agx2—|—a3x3 | a3 =0and ay =0 and a3 = 0}
= {ap 4 0x + 0x® + 0x> | a9 € R}
={ap | ap € R} = R-span{1}

and

im(T) ={T(p) | p € R[x]<3}
={T(ap + a1x + x> + 33x3) | ap, a1, a2, a3 € R}

= {a; + 2ax + 3a3x? | a1, a2, 33 € R} = R[x] <2,
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Example LT4. Let T: R3 — R? be the function given by

01 —2> o

T(x1,%2,x3) = |x0 — 2x3,3x1 + x3) = (3 0 1

X3

With respect to the basis S = {|1,0,0),0,1,0),]0,0,1)} of R® and the
basis B = {|1,0),0,1)} of R? the matrix of T is

= (3] 2).
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Example LT11. Let T: Mayx2(R) — May2(R) be the linear
transformation given by

T(Q) = Q.
Find the matrix of T with respect to the basis B = {Ei1, E12, E1, Exa},
where Ej; is the matrix with 1 in the (i, /) entry and 0 elsewhere.
Since

T(Enn)=Enn=1-E114+0-En+0-Ex +0- Epp,
T(Ex) =Ex1=0-E;1+0-Ep+1-Ep+0- Ep,
T(Ex1) =E1p=0-E;1+1-Ep+0-Ep+0- Ep,
T(Ex)=Ep=0-E;1+0-Ep+0-Ep +1-Ep,

then the matrix of T with respect to the basis B = {Ej1, E12, Eo1, Exo}
is

[Tles =

o O o
o= O O
[l el o]
= O O o
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Example LT12. Let T: R[x]<2 — R[x]<1 be the linear transformation
given by
T(ao + aix + 32X2) = (ao + 32) + apx.

Find the matrix of T with respect to the basis B = {1, x, x?} of
R[x]<2 and the basis C = {1, x} of R[x]<;.

Find the matrix of T with respect to the basis B = {1, x, x?} of
R[x]<2 and the basis D = {2,3x} of R[x]<1.

Let by =1, bp=x,bs=x>and g =2, @ =3xand d; =1, d» = x.

Since
T(1)=1+x =1-1+1-x =1.241.(3x),
T(x)=0 =0-1+0-x =0-2+0-(3x),
T(x*) =1 =1-1+0-x =1.240-(3x),
then
T(b)=1-di+1-d, T(b) =3 + 3¢,
T(b) =0-dy +0-dy, and T(b)=0-c1+0-0c,

T(b3)=1-d1+0-dy, T(b3)=3-a+0 o,
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and

[Tlos = G 8 (1)> and  [T]cg = C 8 é) :

Example LT13. Suppose that T: R3 — R? is a linear transformation
and that the matrix of T with respect to

the basis A = {|1,0,0),(0,1,0),]0,0,1)} of R3 and

the basis S = {|1,0),|0,1)} of R? is

[T]sa = G é _02>

Find the matrix of T with respect to
the basis B = {|1,1,0), [1,—1,0), |1, -1,-2)} of R® and
the basis C = {|1,1), |1, 1)} of R2.

WI—N
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Lecture 22: Picturing linear transformations 7 : R?> — R?

Example LT5. Let T: R? — R? be the transformation which is
reflection across the y-axis.

y-axis y-axis

Tl L

(o)~ (&) =0 (g) vo- (1) o
() =)= () C)

then the matrix of T with respect to the basis S = {|1,0), [0,1)} is

[Tlss = <_01 (1)> :

Then
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Example LT19. Find the matrix of the linear transformation
T:R? — R? which is projection onto the x axis.

Is T injective? Is T surjective. Is T invertible?

y-axis y-axis

Tl L

7(0)= )= () o ()
(D)= ()= () o ()

then the matrix of T with respect to the basis S = {|1,0),|0,1)} is

[T]ss = (é 8) :

The linear transformation T is not injective, not surjective, not
invertible 214

Since
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Example LT9. Let ¢ € Ryg and let T: R? — R? be the linear
transformation which is the shear by a factor of ¢ along the x-axis.

. -axis
y-axis 4

|\ m -

7(0)= ()= () o )
()= ()= )+ ()

then the matrix of T with respect to the basis S = {|1,0),]0,1)} is

[Tlss = <é i) :

The linear transformation T is invertible and
ker(T) = {0} and im(T)=R>

Since
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Example LT10. Find the image of (x,y) € R? after a shear along the
x-axis with ¢ = 1 followed by a reflection across the y-axis.

0)=0 D6 )0)-G )0)-0v7)

So
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Example LT8. Let ¢ € Ryg and let T: R? — R? be the linear
transformation which is stretching of the x-axis by a factor of c.

. -axis
y-axis y

| | - m

7(0)=(5) =< (o) ()
7)== (o) 0)

then the matrix of T with respect to the basis B = {(1,0),(0,1)} is

[T]es = ((C) (1)> :

Since

and
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Example LT7&18. Let T: R? — R? be the linear transformation which
is rotation by 6 (about the origin counterclockwise).

y-axis y-axis

"R
X-axiIs X-axiIs

()= () et ()0 ()
()= () o () ()

then the matrix of T with respect to the basis S = {(1,0),(0,1)} is

Since

cosf —sinf
[Tlss = <sin9 cos )

is the matrix of the rotation by —8 with respect to the basis S.

and [T_l]ss _ < cosf  sin 9)

—sin@ cos6
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Example EV1. Let T: R? — RR? be the reflection in the line y = 5x.

-axis -axis
y ¥

Xx-axis Xx-axis

y = b5x y = bx

Identify two lines through the origin that are invariant under T and find
the image of the direction vectors for each of these lines.
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Let

B = {(17 5)7 (57 _1)}7

Xx-axis

(5,-1)

One line is the line y = bx and the other line is the line orthogonal to
y = bx. The line y = bx has slope 5 and the line orthogonal to y = bx

has slope —% and equation y = —%x. The corresponding direction

vectors of these lines are (1,5) and (1, —1) and
T(1,5)=(1,5) and T(1,-%)=—(1,-%)=(-11).
If vi = (1,5) and v, = (1, —%) then

TV1 =1- Vi and TV2 = (—1) - Vo.
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Example LT6&23. Let T: R? — R? be the linear transformation which
is reflection in the line y = bx.

y-axis y-axis

Xx-axis Xx-axis

Let

B = {(1? 5)? (5? _1)}’

so that the first vector in B is a vector in the direction of the line
y = bx and the second vector in B is a vector perpendicular to y = bx.
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Since

[T]ee = (é _01> o Mse= (é _51>

. 1 -5
Mes = Mse) ™ =4 (75
then the matrix of T with respect to the basis S = {(1,0),(0,1)} is

ot -4 3) ¢ 3)(3 )
46 2)( D) 2)-(F
In other words,

(#)=5 6 s 0)
D5 l)s )

and

._.
GIRGler

-

N\

o =

N~
Il

and
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Example LT20,21&24. Let T: R? — R? be the linear transformation
given by
T(X7y) = (3X_y7_x+3y)'

and let B and S be the bases of R? given by

B={(1,1),(-1,1)} and  S={(1,0),(0,1)}

Let u and v be the vectors in R? determined by

be= (1) e Ws=(3).

The change of basis matrices between B and S are

Mes= (2 1) wnd Mse=Wle=3(; ).

Then
Ju]s = (g) and Vs = (}) |
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The matrices of T with respect to S and B are

[Tlss = (_31 _31> and  [T]gg = <§ 2)

so that T stretches by a factor of 2 in the direction |1,1) and T
stretches by a factor of 4 in the direction |1, —1).
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Lecture 23: Inner product spaces

Definition (Inner product)
Let F=Ror F=C. Let

~ :C—C begiven by a+ bi=a— bi,
~:R—R begvenby 3a=a.

Let V be an F-vector space. An inner product on V is a function

: X
) \(/u, v\)/ : <UI’FV> such that
(1) If u,v € V then (u,v) = (v, u),
(2) If u,v € V and a € F then (au,v) = a(u, v),
(3) ifu,v,w € V then (u+v,w) = (u,w) + (v, w),
(4) (Positive semi-definite) If u € V then (u, u) € Rxp.
(5) (Positive definite) If u € V and (u,u) = 0 then u = 0.
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Definition (Length, distance, angles.)

Let V be an [F-vector space with an inner product.
Length is the function || ||: V — Rxq given by

lull? = {u, u).
Distance is the function d: V x V — R given by
d(u,v) = v —ul|.
Angle is the function 6: V' x V' — Ryg - given by

Re({u, v))

cos(O(u, v)) = Tall- vl

Vecotrs u, v are orthogonal if (u,v) = 0.
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Definition (Standard inner products.)

() ) RIXRT o R

@) = () given by
<U1, ug, ..., Un|V1, Vo,..., Vn> = uivi SF oo p UnVn,
(,): C"xC" — C )
(2) ) = () given by
<U1au27---aun|V1,V2,~~~7Vn> — U1V_1+"'+Unv_n,

(3) Flx]<n X F[x]<n — F given by
(aotaix+ -+ apx" | a+ax+ -+ cpx")

1
= / (ap + aix + - - apx")(Co + Tix + - - - + Trx") dx.
0
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Example IP5. Let u=|1+i,1=i) and v = |i,1) in C? with the
standard inner product. Then

(uvy = (1 +i, 1 —ili,1) = (1 +i)i+ (1 -1
=(1-N)(-N+1-i=—i+1+1—-i=2-2i

(viuy = (i, 11 +i, 1=y =il +i)+1-(1—1)
=i(l=N+1+i=i+1+1+i=2+2i,

() =1 +i1—il+i1-N=0+)A1+)+0-)N1-1)
=1+N)1-N+1-N1+)=1+1+14+1=4,

() ={i,1]|i,1)=i-i+1-1=i(-)+1=1+1=2,

d(u.v) = VL TL = \1- T4 ()N =vITI=V2
_ Re((ulv))  Re(2—-2i) 2 1
sV =l = 2oz 2B v

So f(u,v) = 7.
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Example IP7. Let u =1 and v = x in R[x]<2 with the standard inner

product. Then

(ulu) = (1]1) =

I\Jli—‘
||
N[=
|
o
Il
N=

(ulv) = (1]x) =

= x- g = o br = h = &
Re((ulv)) _ 3 _ V3
-V =T

cos(O(u,v)) =

So f(u,v) =%.



Example IP2. The map (,): R3 x R® — R given by

((u1, u2, u3), (vi,v2,v3)) = urvi — Uava + U3v3

1 0 0 uy
= (Vl Vo V3) 0 -1 0 [2)
0 0 1 u3

has
<(O7 1?0)¢(0¢170)> =0-1+0=-1 g R}O-

So (,) is not positive definite.
Example IP6. The map (,): C? x C?> — R given by

(u1, 1), (vi, v2)) = itnVi — itV = (Vi 3) <(l) —0/) (i)

has
((1,0),(1,0)) =i-1-1—i-0-0=i ¢ Rso.

So {,) is not positive definite.
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Example IP3. The map (,): R? x R? — R given by

<(U1, U2), (Vl, V2)> =2u1vi — 2t1vo — 2Ur vy + o v

=(vi ) <_22 _32> <Z;>

(1, w2), (U1, ) = 2uf — 2uouy — 2upuy + 3u§
= 2uf —4uur + 3u§
= 2(u — 2uyup + u3) + U3

= (u1 — U2)2 + U% € Ryo.

has

Assume ((u1, u2), (u1, u2)) = 0.

Then 2(up — up)? + ud = 0 then 13 = 0 and (u; — u2)? = 0.
So uy =0and vy = up; =0. So (uy,u) =0.

So (,) is positive definite.
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Example IP1. The map (,): R? x R? — R given by

(01, 1), (vi, v2)) = v + 2uve = (v W) ((1) g) <1>

u?

has {(u1, up), (u1, up)) = u? +2u3 € Roy.

Assume ((u1, u2), (u1, up)) = 0.

Then u? + 20§ = 0 so that u? =0 and 2u3 = 0.

So (u1,u2) =0.

So (,) is positive definite.

Example IP8. Let V be an F-vector space with an inner product. Let
u,v € V and suppose that v and v are orthogonal. Then

lu+vP=(u+v,utv)=(u,u+v)+{(v,u+v)
= (v, u) + (v, v) + (v, u) + (v, v)
= [[ul® +0+0+ v
= [Jull® + Iv]>.

This is the Pythagorean theorem.
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Example IPAL. Let A € M,y ,(C) satisifying A = At and let
(,): C"x C" — C be given by

Vi
(U1, tn), (Viy oo yvi)) = (U1, .. un)A | 2 | = ufAY,

Vn
If uyv € C" then
(v, u) = (VIAG) = (0tAtv)" = (u'Atp)t
= (u*AV)" = (u,v),

and if « € C and u,v € C" then

(au,v) = (au)t AV = auAv = a(u, v)
and, if u,v,w € C" then
(u+v,w) =(u+v) Aw = (v + vH)Aw
= u'Aw + vIAW = (u, w) + (v, w).

So (,) satisfies all the properties of an inner product, except perhaps
the positive definiteness.
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Lecture 24: Gram matrices, orthogonality and projections

Definition (Gram matrix.)

Let V be an [F-vector space with inner product (,)V x V — F.
Let B={b1,...,bn} be a basis of V.
The Gram matrix of (,) with respect to B is the matrix

(b1, b1) (b1,bp) -+ (b1,bn)
A (b2, b1) (b2,b2) - (b2,bn)
(bnb1) (Bab2) -+ (b, by)

In other words, the (i, /) entry of the Gram matrix A of (,) with respect
to the basis B is
Ajj = (bi, bj).
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Example IPA2. Let V be a FF-vector space with an inner product
(,): VXV —>TF. Let B={b,...,b,} be a basis of V and

let
A be the Gram matrix of (,) with respect to the basis B.

Let u = by +---+upb, € Vandletv=wvib+---+v,b, €V so

that
u Vi

[uls =] : and [v]g =

Then

(U, V> = <U1b1 + -+ Unbna vibi +--- + ann>

— Z uivj(bj, bj) = Z uiAjjvj

ij=1 ij=1
= [u]EA[V]B.
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Example IP4. The R-vector space R[x]<2 has basis B = {1, x, x?}.
Since the standard inner product ( | ): R[x]<2 X R[x]<2 — R has

1

(pla) = | pgdx

S~

then
(1) =1, (1x) :% (1x%) = %
X|1) =3, x) =3 x)=g,
0PI =3, () =3, (X% =g,
(

then the Gram matrix of ( | ) with respect fo B is

A—

QI =D =W (=

BFW[EN=

WIEN[= =

If u=7+3x+2x2%and v =5+ x? then

7 5
[us=|3 and [v]g=10
2 1
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Then
1
<u\v>:/ (7 + 3x 4 2x%)(5 + x?) dx
0

1
:L/‘(35%—7X2%—15X—%3x3—k10x24—2x4)dx
0

— 7 15 3 10 2
=3%B+I4+L 4341042

and

1 1
[Wl5AL i) (o
u vB—732 5 =z 7 0
? t1i\y

3 4 5

5+%

5

732 24—?

315
_ 7 15 3 10 2
=Ptz ty Tzt 3 b5

o (ulv) = [ulsAlv]e.
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Lecture 25: Projections and orthogonalisation

Definition (Orthogonal and orthonormal sequences.)

Let V be an F-vector space with an inner product (,): V x V — F.

Let u,v € V. The vectors u and v are

orthogonal  if (u,v) = 0.

An orthogonal sequence is a sequence (by, ..., by) of vectors in V such
that

ifi,je{l,...,k} andi#j then (b;,b;)=0.
An orthonormal sequence is an orthogonal sequence (b, ..., bx) such
that

if i € {1,...,/(} then <b,',b,'> =1

An ordered orthonormal basis of V is an orthonormal sequence
(b1,...,bk) in V such that B is a basis of V.
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Proposition

Assume B = (b, ..., b,) is an ordered orthonormal basis of VV and
x € V. Then

x = (x,b1)b1 + -+ + (x, by) bp.

Definition (Orthogonal projections.)

Let W be a subspace of V. Let {b1,..., bk} be an orthonormal basis of
W. Let x € V. The orthogonal projection of x onto W is

projy/(x) = (x, b1)by + - -+ + (x, by ) by.



Example IP9,10&11 Let (,): R® x R3 — R be given by

((u1, up, u3), (v1, v2, v3)) = u1va + 2upva + u3vs.

Let
S={(1,1,1),(1 -1,1),(1,0 — 1)}.

Then

((1,1,1),(1,-1,1)) =1-2+4+1=0,
((1,1,1),(1,0,-1)) =1+0-1=0,
((1,-1,1),(1,0,-1)) =1+0-1=0,

So S is an orthogonal sequence in R3 with respect to (,).
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Let

by = ﬁu, where v =(1,1,1),
by = iv, where v =(1,-1,1),
v
b3 = iW7 where  w = (1,0,01).
[[wl]
Then
by =%(1,1,1) since ((1,1,1),(1,1,1)) = 4,
b, = 3(1,—1,1) since ((1,-1,1),(1,-1,1)) = 4,
by = 7(1 ,—1) since ((1,0,-1),(1,0,-1)) =2,

and {b1, by, b3} is an orthonormal sequence in R® with respect to (,).



Let x =|1,1,—1) and ¢, &, c3 € R such that

x = c1b1 + by + c3bs.
Then

c =ci(b,b1) + 0+ 0= (c1by + cpbo + c3b3, b1) = (x, b1)

=((1,1,-1),3(1,1,1)) = 3(1+2-1),
2 = c{ba, bo) = (c1b1 + cabo + c3b3, bo) = (x, bo)
=((1,1,-1),3(1,-L,1) =3(1-2- 1)

c3 = (x,b3) = ((1,1,-1), 75(1,0,-1)) = 5(1+0+1) = Z = V2.
So x is written as a linear combination of the basis elements in the form

= (1, ]., —].) = (X, b1>b1 + <X, b2>b2 + <X, b3>b3
=1-by+(—1)- by +V2b3
=(1,1,1) — (1,—1,1) + v2(1,0, -1).
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Example IPA3. Let V =R" and let u € V with u # 0. Let
W = R-span{u} = {au | a € R}.

Then W is a 1-dimensional subspace of V. Let

1
b1 = —Uu.
[[u]

Then {b1} is an orthonormal basis of W.
Let x € V. Then

1 1
projyy (x) = (x, b1)b1 = (x, —u)+—ru
w(x) Tl T
X
(x,u) : |
= ¢ = Prelul) {y
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Example IP12. Let V = R3 and let
W ={|x,y,z) €R®| x +y+z=0}.
The set
{b1, b2} = {551, -1,0), [1,1,-2)}
is an orthonormal basis of W with respect to the standard inner product
on R3.
Let x =|1,2,3). Then
projyy(x) = (x|by) by + (x|b2) b>
<1 2 3|¢2 =2,0) - =5[1,-1,0)
_2> : %“‘7 1, _2>
)i|1,—1,0> +3(1+2-6)|1,1,-2))

The shortest distance from x to W is
[x = projw (x)II = [[11,2,3) — [=1,0,1) ||
=112,2,2) | = VA+4+4=2V3.
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Example IP13. (The Gram-Schmidt process of orthogonalization)
Let V = R3 with the standard inner product. Let S = {vy, v2, v3} with

V1= |17 1’1>’ V2 = |Ov 1’1>’ Vi = |0’07 1>'

Convert S into an orthonormal basis B.
Step 1. Make vy into a unit vector. Let

1 1 1

— " —|L 1

S

and let §$ = {bl, Vo, V3}.
Step 2. Make v, orthogonal to b;. Let

up = vo — (v, by) b

and let Sy = {b1, uz, v3}.
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Step 3. Make ws into a unit vector. Let
1

b= e = R L B =12k )
and let S3 = {b1, by, v3}.
Step 4. Make v3 orthogonal to by and by. Let
us =v3 — (v3,b1)by — (V3, by) by
=10.0.0) = 175 75 ) ~ %1% Ve )

=12 -1 _1 1 _1y_|n =11
=l5+53 5l-3-5 =053
Step 5. Make w3 into a unit vector. Let

1
b = — = —1 0 __1 l —
3 ”U3HU3 \/2/—4| ) D >2> |

Then
B = {by, by, b3} is an orthonormal set.
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Lecture 26: Learning to do proofs — Orthogonality and
linear independence

Definition (Orthogonal and orthonormal sequences.)

Let V be an F-vector space with an inner product (,): V x V — F.

Let u,v € V. The vectors u and v are

orthogonal  if (u,v) = 0.

An orthogonal sequence is a sequence (by, ..., by) of vectors in V such
that

ifi,je{l,...,k} and i #j then (bj,b;)=0.
An orthonormal sequence is an orthogonal sequence (b, ..., bx) such
that

if i € {1,...,/(} then <b,',b,'> =1

An ordered orthonormal basis of V' is an orthonormal sequence
(b1,...,bk) in V such that B is a basis of V.
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Theorem (Pythagorean Theorem)

Let V' be a C-vector space with an inner product (,): V x V — C. Let
u,ve V. If (u,v) =0 then

lu =+ vl = Jlull® + [|v]*.

Proof. Assume (u,v) = 0.
To show [[u+ v|[? = JJul® + [|v]*.

[|u+ VH2
,u) + <uvw+GT5+<ww

HMF+0+0+HN2
= [Jull® + [Iv]*.
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Proposition (Orthogonal sets are linearly independent)

Let V be a vector space with inner product (,): V x V — C.
Let B={by,..., by} be an orthogonal set in V.
Then B is linearly independent.

Proof. Assume B is an orthogonal set in V.
To show: B is linearly independent.
To show: If ¢1,...,cc € Cand c1by +---+ckby =0

then c; = 0,60 =0,...,¢c, =0.
Assume c1,...,¢c € Cand by + -+ ckbe = 0.
To show: ¢ =0, =0,...,¢c, =0.

To show: If i € {1,..., k} then ¢; = 0.
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Assume i € {1,..., k}. To show: ¢; = 0.

0= (C1b1 + -+ cr by, b,'>
= Cl(bl, b,'> + -+ C,'_1<b,'_1, b,‘> + C,'(b,'7 b,'>
+ Cit1(bit1, bj) + - - + ck{bx, bj)
=c -0+ - +ci—1-0+4ci(b;, b;)
+cy1:04+--+c-0
= C,'(b,‘,b,'>.

Since (,) is an inner product and b; # 0 then (b;, b;) # 0. So

So B is linearly independent.
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Lecture 27: Learning to do proofs — Linear transformations

Linear transformations are for comparing vector spaces.

Definition (Linear transformation)

Let F be a field and let V and W be F-vector spaces. An [F-linear
transformation from V' to W is a function f: V — W such that

(a) If vi,v € V then f(vi + wp) = f(v1) + f(w),
(b) If ceF and v € V then f(cv) = cf(v).

251



Example A2. Let t,s € Zsg and A € M;s(R). Let Ta: R® — R? be
the function given by

Ta(x) = Ax. Ax

Show that T4 is a linear transformation.
Let u,v € R®. Then, by the distributive property of matrix
multiplication for matrices,

Ta(u+v)=Au+v)=Au+ Av = Ta(u) + Ta(v).

Let v € R® and ¢ € R. Then, by the associative property of scalar
multiplication for matrices,

Ta(cu) = Acu = cAu = cTa(u).

So T, is a linear transformation.
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Let T: V — W be a linear transformation. Assume that T has an
inverse function T-1: W — V. Show that T~ 1 is a linear
transformation.

Assume wy, wo € W. Then

THT(TH(w)) + T(TH(w2)))
T HT(TH(w1) + T (w2))
T w1) + T~ (wa),

T_l(Wl + W2)

where the first equality is because T o T~1 = = Id), the second equality is
because T is a linear transformation) and the third equality is because
T 1oT =1Id. Assume w € W and ¢ € R. Then

T Y ew)=T Y T(TH W) =T 1T(c- T Hw)) =c- T Hw).

So T~ lis a linear transformation.



Lecture 28: Learning to do proofs — Subspaces

Definition (Kernel and image of a linear transformation)

The kernel of an F-linear transformation f: V — W is the set
ker(f) ={v e V| f(v) =0}.
The image of an F-linear transformation f: V — W is the set
im(f) ={f(v) | ve V}.

Definition (Kernel and image of a matrix)
Let A € M;xs(Q). The kernel of A is

ker(A) = {x € Q° | Ax =0}
and the image of A is

im(A) = {Ax | s € Q°}.



A subspace of Q° is a subset W C Qf such that
(a) 0e W,

(b) If wi,wp € W then wi +wp € W,

(c) f we W and c e Qthen cw € W.

Proposition
Let A € M;xs(Q). Then ker(A) is a subspace of Q°.

Proof. (a) Since A0 = 0 then 0 € ker(A).
(b) Assume wy, wsy € ker(A). Then Awy =0 and Aw, = 0. So

A(Wl + Wg) =Aw; +Awo, =04+0=0. Sow; +w> € ker(A)
(c) Assume w € ker(A) and ¢ € Q. Then Aw =0 and
A(ew) = cAw = c0=0. So cw € ker(A).

So ker(A) is a subspace of Q°. O
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A subspace of Q! is a subset Y C Q! such that
(a) 0eY,

(b) Ify1,yp € Ytheny; +y €Y,
(c)IfyeYandceQthencye V.

Proposition
Let A € Miys(Q). Then im(A) is a subspace of Q*.

Proof. (a) Since 0 = AO then 0 € im(A).

(b)Assume yi, yo € im(A). Then there exist xi,x2 € Q° such that
y1 = Axy and y2 = Axp. Then

yit+y:=Ax1+Ax =A(x1+x2). Soyi+y» €im(A).

(c) Assume y € im(A) and ¢ € Q. Then there exists x € Q° such that
y = Ax. Then

cy = cAx = A(cx). So cy € im(A).

So im(A) is a subspace of Q°. O

256



Example A5. Let T: V — W be an R-linear transformation.
Show that ker(T) = {v e V | T(v) =0} is a subspace of V.

Let vi,v» € ker(T). Then
T(vi+w)=T(wn)+T(v)=0+0=0. So v+ v € ker(T).

Subtracting T(0) from each side of the equation
T(0)=T(0+0)= T(0)+ T(0) gives

0=T(0), andso O € ker(T).
Let v € ker(T) and let c € R. Then
T(cv) =cT(v)=c-0=0 andso cv & ker(T).

So ker(T) is a subspace of V.
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Example A6. Let T: V — W be an R-linear transformation.
Show that im(T) ={T(v) | v € V} is a subspace of W.
Subtracting T(0) from each side of the equation
T(0)=T(0+0)= T(0)+ T(0) gives

0=T(0), andso 0€im(T).
Let wi, wo € W. Then there exist vi, v» € V such that

T(vn)=wy and T(wvp)=ws.
Then wi + wo = T(v1) + T(v2) = T(v1 + v2),

and so wy + wo € im(T).
Let w € W and let ¢ € R. Then there exists v € V such that
T(v)=w.
Then cw = ¢T(v) = T(cv)
andso cw €im(T).

So im(T) is a subspace of W.
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Example V27&28. Let

S={]1,3,-1,1), |2,6,0,4), |3,9,—2,4) }.

Then
1 2 3
3 6 9
= -1’10 | -2
1 4 4
and
1 2 3
. 3 6 0
R-span(S) = im(A), where A = 10 -9
1 4 4
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Lecture 29: Learning to do proofs — The minimax basis
theorem

Definition (Spanning set, linearly independent set, basis)

Let V be an F-vector space and let B = {vi,..., vk} be a subset of V.
The subset B is a spanning set of V if B satisfies

{c1v1+~-~+ckvk | Cl,-..,Ck EF}: V.
The subset B is a linearly independent set in V if B satisfies
ifci,...,ck €Fand vy + -+ kv =0

then g =0,...,cx =0.

The subset B is a basis of V if B satisfies:

B is a spanning set of V and B is a linearly independent set in V.
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Theorem (Basis Minimax Theorem)

Let V' be an F-vector space and let B be a subset of V. The following
are equivalent:

(a) B is a basis of V.
(b) B is a minimal spanning set of V.

(c) B is a maximal linearly independent set of V.

Theorem (Exchange Theorem)

Let V' be an F-vector space. Let B = {vi,..., vk} be a basis of V and
let D ={d,...,ds} be another basis of V. Then there exists d;, € D
such that

{di,, b2, b3,...,bx} is a basis of V.

Theorem (Dimension Theorem)

Let V' be an F-vector space. Any two bases of V' have the same
number of elements.



The Dimension Theorem is the reason that

dim(V) makes sense to consider.

Definition (Dimension)

Let V be a vector space. The dimension of V is

dim(V) = (number of elements in a basis B of V).
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The following provides an example of a spanning set that is not minimal,

and another spanning set for the same subspace that is minimal.

Example V14. Let S be the subset of R? given by
S$=1{(1,1,1),(2,2,2),(3,3,3)}. Determine R-span(S).
In this case

R-span(S) ={a |1,1,1) + ©2,2,2) + ¢33,3,3) | c1, 2, c3 € R}
={a|l,1,1) +2c1,1,1) + 3c3|1,1,1) | c1, 2,3 € R}
={(a +2c0+3ca)|1,1,1) | 1,0, 3 € R}
={t|1,1,1) | t € R} = R-span{|1,1,1)}
={|t,t,t) | t € R}.

Here { |1,1,1) } is a basis of R-span(S) and

dim(R-span(S)) =1 (even though S has 3 elements).
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Proposition (Span is a subspace)

Let V' be a vector space. Let B = {by,..., by} be a subset of V. Then
span(B) is a subspace of V.

Proof.

To show: (1) 0 € span(B).
(2) If vi, vo € span(B) then v; + v5 € span(B).
(3) If v € span(B) and ¢ € R then cv € span(B).

(1) Since 0 = 0by + - - - 0by then 0 € span{bs, ..., bx} = span(B).

(2) Assume vy, v» € span(B). To show v; + v» € span(B).
Since v1, v» € span(B)
then there exist a1,...,ax,c1,...,ck € R such that

vi =aiby +---+akby and vo =ciby + -+ ckbi.
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Then

vi+w = (albl + -+ akbk) + (C1b1 + -+ Ckbk)
= (a1 + )b + -+ (ak + ck)bx.
So vi + v» € span{by, ..., bk} = span(B).

(3) Assume v € span(B) and c € R.
To show cv € span(B).
Since v € span(B) then there exist aj, ..., ax € R such that

v=aiby + -+ axbx.

Then

cv = c(albl + -+ akbk) = (cal)bl + -+ (cak)bk.

So cv € span{b,...,bc}. So cv € span(B).
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Proof of the Dimension Theorem
Assume

B={b1,...,bx} s a basis of V and
D ={d,...,ds} is another basis of V.

Using the Exchange theorem, there exists d;; € D such that
di, & span(B — b1). Then

Bi1 = {d,, b2, b3, bs,... by} is a basis of V.

Using the Exchange theorem, there exists d;, € D such that
di, & span(B1 — b2). Then

By = {dj,,di,, b3, ba, ... bc} is a basis of V.

Continue this replacement process to obtain

B'={d;,...,di,} €D, such that B"is a basis of V.

By the Minimax Theorem D is a minimal spanning set.
So B'=D and k = /.

266



Proof of the Exchange Theorem
Assume

B={b1,...,bx} s a basis of V and
D ={d,...,ds} is another basis of V.

If di,...,dy € span(B — {b1}) then
V =span(dy,...,ds) Cspan(B —{b1}) C V

giving V = span(B — {b1 }).
But since B is a minimal spanning set then V # span(B — {b;}) and so

there exists dj, € D such that dj, & span(B — {b1}).
di, = cbi + by + -+ ckbk, with ¢g #0.

To show: By = {dj, by, ..., b} is a basis of V.
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To show: (1) span{dj, ba,...,bc} = V.
(2) {di,, bo, ..., by} is linearly independent.
(1) Since
by = ¢; H(—di, + caby + -+ + ki)

then by, bo, ..., bx € span{d;, bo,...,bx}. So
V =span{bi,...,bc} Cspan{di,ba,...,bx} C V. So
V = span(d;, ba, ..., bk}
(2) If a1di, + a2bp + - - - + agbgx = 0 then
ai(ciby + by + - + ckbk) + axby + -+ - + akbk = 0.

Since B is linearly independent then a;c; = 0.

Since ¢ # 0 then a; = 0 and axby + - - - + agby = 0.
Since B is linearly independent then a =0,...,a, =0.
So {dj,, b2, ..., bk} is linearly independent.

So {dj,, ba,..., bk} is a basis of V.
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Proof of the Minimax Basis Theorem
(a) = (b): Assume B = {bs,..., by} is a basis of B.
To show: B is a minimal spanning set of V.
To show: (1) B Is a spanning set.
(2) If i € {1,...,k} then B — {b;} is not a spanning set.

(1) Since B is a basis then B is a spanning set.

(2) To show: If i € {1,...,k} and B — {b;} is a spanning set then B is
not a basis.

Assume i € {1,...,k} and B — {b;} is a spanning set.

Then there exist ¢1,...,¢—1,Ci+1,--.,Ck € R such that

bj = c1by + -+ + ci—1bj—1 + Cit1biy1 + -+ + Ciby.
Then
O0=cabi+ -+ c-1bi—1— bj + cit1bit1 + - + ckby.

So {b1,..., b} is not linearly independent.
So B is not a basis.

Soif i € {1,...,k} then B — {b;} is not a spanning set.
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(b) = (c): Assume B is a minimal spanning set.
To show: B is a maximal linearly independent set in V.
To show: (1) B is a linearly independent set in V.
(2) If v € V then BU {v} is not linearly independent.

(1) To show: If B is a spanning set and B is not linearly independent
then B is not a minimal spanning set.

Assume B is a spanning set and B is not linearly independent.

Then there exist c1,...,cc € Rand i € {1,..., k} such that

abi+ -4+ ckbe=0 and ¢ #0.

Then b; = —Cl-_l(Clbl 4+ -+ ci—1bi—1 + Ciy1bit1 + - + Ckbk).
So span(B — {b;}) 2 span(by,...,bk) = V.

So span(B — {b;j}) = V and B is not a minimal spanning set of B.
So if B is a minimal spanning set then B is linearly independent.

(2) To show: If v € V then BU {v} is not linearly independent.
Assume v € V. To show: B U{v} is not linearly independent.
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Since span(B) = V then there exist cy, ..., ¢k € R such that
v=oc1by + - cybyg.

So0=oc1by+ -+ ckbe — v.
So BU{v} ={bs,..., bk, v} is not linearly independent.

(c) = (a): Assume B is a maximal linearly independent set.

To show: B is a basis.

To show: span(B) = V.

Assume v € V. To show v € span(B).

Since B is a maximal linearly independent set then B U {v} is not
linearly independent.

So there exist ¢1,..., ¢k, ckr1 € Rand i € {1,...,k+ 1} such that

cbi+--+ckbk +ckpiv=0 and ¢ #0.

The case cx4+1 = 0 cannot occur since B is linearly independent.

So ckr1 #0and v = —Ck_jl(clbl + -+ cxbk).

So v € span{bs,..., bk} = span(B).

So V =span(B). So B is a basis of V. O
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Lecture 30: Learning to do proofs — Invertible matrices are
square

Definition (Kernel and image of a matrix)
Let A € M;xs(Q). The kernel of A is

ker(A) = {x € Q° | Ax =0}
and the image of A is

im(A) = {Ax | s € Q).
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Proposition

Let s,t € Z~g and let A € M;«s(R).
If ker(A) = 0 then the columns of A are linearly independent.

Proof. Let ay,...,as be the columns of A.
Assume ker(A) = 0.
To show: aj,...,as are linearly independent.
To show: If ¢1,...,cs € Rand cia; + -+ csas =0
then ¢t =0, =0,...,¢cs = 0.

Assume ¢1,...,¢s € Rand cia; + - + csas = 0.
Then

a a (o] 0

A =0 So | | € ker(A). So =

CS Cs Cs 0

Socg=0,60=0,...,cs =0.

So {a1,...,as} is linearly independent. O
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Proposition

Let s,t € Z~o and let A € M;s(R). Let ay,...,as be the columns of
A. Then

im(A) = span{ai, ..., as}.

Proof.
| N\ [
im(A) = {Ax | x e R°} = ap -+ as : X1,...,% €R
| 1/ \x
| |
={x1la| t+ - +Xs| as X1,...,%X €ER

= R-span{columns of A}.

So im(A) is the set of linear combinations of the columns of A. O
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Theorem (Invertible matrices are square)

Let s,t € Z~go and let A € M;xs(R). Suppose there exists

P € Mgy +(R) be such that PA=1.

Suppose there exists

Q € Msy+(R) be such that AQ = 1.

Then

(a) ker(A) = 0

(b) im(A) =

(c) The set of columns of A is a basis of Q.
(d) s=

(e) P= Q
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Proof. (a) To show: ker(A) = {0}.

To show: (1) {0} C ker(A).
(2) ker(A) C {0}.

(1) Since A-0 =0 then 0 € ker(A).
So {0} C ker(A).

(2) To show: If x € ker(A) then x € {0}.
Assume x € ker(A). To show: x = 0.
Since x € ker(A) then

Ax =0. So PAx = P0=0.

So x = 1x = PAx = 0. So ker(A) C {0}.
So ker(A) = {0}.
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(b) To show: im(A) = R*.
To show: (1) im(A) C RE.
(2) Rt C im(A).
(1) By definition of (im(A) = {Ax | x € R®}.
Since Ais a t X s matrix then im(A) C R*.

(2) To show: If v € Rf then v € im(A).
Assume v € RE. To show: v € im(A).

v=1v=AQv € {Ax | x € R'} = im(A).

So v € im(A). So R Cim(A).
So R = im(A).
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(c) Since ker(A) = 0 then
the columns of A are linearly independent.
Since im(A) = span{columns of A} and R* =im(A) then
R" = span{columns of A}.
So {columns of A} is a basis of R*.
(d) Let ay,...,as be the columns of A. By part (c),
{a1,...,as} s a basis of R".

Let e be the t x 1 matrix with 1 is in the ith entry and O elsewhere.
Then
{e1,...,e:} s a basis of R".

By the Dimension Theorem, any two bases of R? have the same number
of elements.
Sos=t.

(e) To show: P = Q.
P=P-1=PAQ)=(PAQR=1-Q=Q. O

278



Lecture 31: Application — Data Correlation

Correlation is a measure of how closely two variables are dependent.

Definition

The mean pux of a data set X = {x1,...,x,} is the average of the
values in the data set.

X = %(Xl + -+ Xp).
The correlation of variables X and Y is
corr(X,Y) =cos(6(X — ux, Y — ny)), where

X—px = x1—px, s Xa—px) and Y — py = [y1 =y, ..., Yo — fy)-

Use cos(f(u,v)) = _Auv) to compute the correlation.
[lull - [lv]

A value close to 1 indicates the values a highly correlated and a value

close to —1 indicates the values are not at all correlated.
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Example E3. Suppose the data set is assignment and exam marks for 7
students.

Student | Assignment Mark Exam Mark
S1 99 100
S2 80 82.5
S3 79 79
S4 75.5 82.5
S5 87.5 91
S6 67 67.5
S7 76 68

The mean assignment mark is

fta = 1(99 + 80 + 79 + 75.5 4 87.5 + 67 + 76) = 80.5.

The mean exam mark is

pte = +(100 + 82.5 + 79 + 82.5 + 91 + 67.5 + 68) = 81.5.



Then

A— jia=|185,-05,—15 —55,7,—13.5 —4.5),
E— pug =[185,1,-25,1,9.5 —14, —13.5)

and the correlation between the assignment marks and the exam marks
is

corr(A, E) = cos(0(A — pa, E — ug))

_ <A — HA, E— ,uE> o 656.75 ~ 0.92
IA=pall - 1E—pell ~ (24.92)(28.62)

281



Lecture 32: Application — Data Line of best fit

Given a data set D = {(x1,y1), (x2,¥2),- -, (Xn, ¥n)} find

the line of best fit y = apestX + Dpest-

Let
1 X1
= ) y = : ) u= (b)
1 Xn .yl'l
so that
y1— (a + bX1)
y—Au= : PICTURE
yn — (a4 bxp)

Goal: Minimize ||y — Aul||.

282



Let

a 2
b)ER}and

§€R? such that A3 = projy(y).

W={Au]u= ( PICTURE

Then |ly — As|| will be minimal if y — AS is perpendicular to W.

So we want ifu € R? then (y— AS, Au)=0.
So we want ifu € R? then uAf(y— A3)=0.
So we want A’y — ATAS = 0.

So we want A'As = Aly.

So we want

3= (AtA)—lAty — <ZZeS‘:>
€s

and the line of best fit is y = apestX + bpest -
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Example IP14 Follow the above procedure. Given the data set
D ={(-1,1),(1,1),(2,3)} then

1 -1 1
A=11 1 and y=[1
1 2 3

Then

g_i 6 -2
T 14\-2 3

So the line of best fit is
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Lecture 33: Review — Subspace examples

Example V6. Is W = {|x,y,z) € R® | x+y + z = 0} a R-subspace of

R37?

A R-subspace of R3 is a subset W C R3 such that

(a) If wi,wo € W then wqy +wy € W,

(b) 0e W,

(c) If we W then —w € W,

(d) f we W and c € R then cw € W.

Proof.

(a) Assume wy = |a,b,c) € W and wo = |x,y,z) € W.
Thena+b+c=0and x+y+z=0.

Then wi +wo =|a+x,b+y,c+z) and
(a+x)+(b+y)+(c+z)=(a+b+c)+(x+y+z)=0+0=0.

Sow; +wy € W.
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0=10,0,0) satisfies0+0+0=0. So 0 € W.
Assume w = |x,y,z) € W.
Then x4+ y +z=0.

Then —w = | — x,—y,—2z) and

() + () +(=2)=-(x+y+2z)=-0=0

So —w e W.
Assume w = |x,y,z) € W and ¢ € R.
Then x4+ y +z=0.

Then ew = |cx, ¢y, cz) and
ex+ey+ecz=c(x+y+z)=c-0=0.
Socw e W.

So W is a subspace of R3.
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Example V7. Is the line L = {|x,y) € R? | y = 2x + 1} a subspace of
R27?
A subspace of R? is a subset L C R? such that

If wi,ws € L then wy +wy € L,

0el,

If we L then —w e L,

If we Land c € R then cw € L.

Since 0 =10,0) and 0 #2-0+ 1 then 0 & L.
So L is not a subspace of R?.
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Example V8. Is W = {a1x + apx? | a1, a» € R} a subspace of R[x]<2?

A subspace of R[x]<2 is a subset W C R[x]|<» such that
If wi,wro € W then wy +wy, € W,
0e W,
If we W then —w € W,
If we W and c € R then cw € W.
Proof.
Assume wy = a1x + axx2 € W and wy = bix + byx? € W.
Then ai,a> € R and by, bp € R.

Then
w1 + wo = arx + aox? + bix + box? = (a1 + a1)x + (b1 + bp)x?
and a; + by € R and a, + b, € R.

Sow; +wy € W.
0 = Ox + 0x? satisfies 0 e Rand 0 € R. So 0 € W.
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Assume w = a;x + axx? € W.
Then ai,a> € R.

Then —w = —(a;x + a2x2) = —a1x + (—32)X2 and —a; € R and
—ap € R.

So —we W.
Assume w = a;x + axx?> € W and ¢ € R.
Then ai,a> € R.

Then cw = c(a1x + axx?) = (ca1)x + (ca2)x? and ca; € R and
cay € R.

Socw e W.
So W is a subspace of R[x]<2. O
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Example V9. Is the set of real 2 x 2 matrices whose trace is equal to 0
a subspace of May2(R)?
A subspace of May2(R) is a subset W C Mayo(R) such that
If wi,ws € W then wy +wy € W,
0e W,
If we W then —w € W,
If we W and c € R then cw € W.
Proof. The set of real 2 x 2 matrices whose trace is equal to 0 is

a1l 412
W = ‘a +a»=0;.
{(am am) 11+ 2 }

Assume wy = <311 312> € W and wp, = <le 212> e W.
21 a2 21 b2

Then a1 + ax» = 0 and by + by = 0.

ai1 + b1 aw+ b2
Th =
en wi w2 <a21 + b1 axn + b22> and

(a11 + b11) + (a22 + b22) = (811 + a@22) + (b11 + b)) =0+ 0= 0.

Sow; +wr € W.
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00
Assume w = (311 312> cW.
a1 ax
Then a13 + ax»n = 0.
Then —w = — <311 312> _ <—311 —312> and
a1 ax —ay —ax
(—a11) + (—ax) = —(a11 + ax) =—-0=0.
So—w e W.

a a
Assume w = (11 “2) ¢ W and c € R.
a1 ax

Then ail + axp = 0.
a a ca ca

Then cw = ¢ [ “11 “12) = 1 121) and
ap1 a2 Caz1 Cax2

cail + caxp = c(a11 + 322) =c-0=0.

0= (0 0> (0,0,0) satisfiess0+0=0. So 0 € W.

Soew € W.

So W is a subspace of May2(R).
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Example V10. Is

5— {(i 2) € My(R) ‘ ad — bc = 0} a subspace of My(R)?.

A subspace of My, 2(R) is a subset S C M,y 2(R) such that
If wi,wsr € S then wy +w, € S,
0es,
If we S then —w € S,
If we S and c € R then cw € S.

Let wy = <(1) 8) Sincel-0—0-0=0—-0=0then wy € S.

Let wo, = <8 (1)> Since0-1—-0-0=0—-0=0 then wy, € S.

Then

10 00 10
W1+W2—<0 0>+<0 1>—<0 1> and 1-1-0-0=1.

Sow; +wy &€ 8S.
So S is not a subspace of My o(R).
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Lecture 34: Review — Linear transformation examples

Example LT3. Is the functionT: My(R) — R given by
T(? b = det ( ° b = ad — bc a linear transformation?
c d c d

A linear transformation from Mo(R) to R is a function f: Mp(R) — R
such that

(a) If vi,w € MQ(R) then f(Vl + V2) = f(Vl) + f(VQ),
(b) If ce R and v € My(R) then f(cv) = cf(v).

Since 1:76 c1>>27<<é 8>+<8 (1)>>

is not equal to
10 0 0
0_0+0_T<0 O)+r<0 1)

then condition (a) does not hold and T is not a linear transformation.
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Example LT4. Is the function T: R3 — R? given by
T(x1,%2,x3) = (x2 — 2x3,3x1 + X3) a linear transformation?
A linear transformation from R3 to R? is a function f: R3 — R? such
that
If u,v € R3 then f(u+ v) = f(u)+ f(v),
If c € R and v € R3 then f(cv) = cf (v).
(a) Assume u, v € R3 with u = |uy, tp, u3) and v = |vy, va, v3). Then
T(lu1, u2, uz) + [vi, vo, v3) = T(lur + vi, U2 + vo, U3 + v3))
= |(u2 + vo — 2(u3 + v3),3(u1 + v1) + (u3 + v3))
= |up — 2u3 + vo — 2v3,3u1 + u3 + 3v1 + v3)
= |up — 2u3,3u1 + u3) + |vo — 2v3,3v1 + v3)
= T(|u1, u2, u3)) + T(|v1, v2, v3))
(b) Assume ¢ € R and u € R3 with u = |uy, t, u3). Then
T(C . |U1, u, U3>) = T(|CU1, cup, CU3>) = |Cu2 — 2cus, 3cuy + CU3>
= C|U2 —2u3,3u + U3> = CT(|U1, us, U3>).

So T is a linear transformation.
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Lecture 35: Review — Span examples

Example V12. In R3, is |1,2,3) € R-span{|1,—1,2),|—1,1,2)}?
By definition R-span{|1,—1,2),|—1,1,2)}
= {C1|1’ _1?2> + C2| _1’ 172> | 1,0 € R}

So we need to show that there exist ¢1, ¢, € R such that

11,2,3) = 1|1, -1,2) + o] —1,1,2).

a—-c=1,
So we need to show that the system —c; + ¢ =2, has a solution.
2c1 +2¢ =3,
2 2 c
In matrix form the equations are | 1 —1 <c1> =11
2

-1 1 2
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Left multiply both sides by

100 2 2 3
00 1| toget [-1 1 (C1>: 2
01 1 0 0/ \@ 3

Already this gives an equation Oc; + 0c; = 3, which has no solution.

So |1,2,3) & R-span{|1,—1,2) and | —1,1,2)}.
So |1,2,3) is not a linear combination of |1,—1,2) and | —1,1,2).
So |17273> € R_Span{“'v _172>7 | _17 172>}
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Example V13. In R[x]<2, is 1 — 2x — x? € R-span{l + x + x2,3 + x2}?
By definition R-span{l + x + x2,3 + x?}

= {Cl(]. + x + X2) + C2(3 + X2) | C10 € R}
So we need to show that there exist ¢, ¢ € R such that

a(l+x+x3)+aB+x%)=1-2x—x2
ca+3c =1,
So we need to show that the system c¢; + 0cp = —2, has a solution.
caa+o=-1,

In matrix form the equations are

1 3
10 <C1>: -2
1 1)\ —1
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Left multiply both sides by

1 0 O
00 1 to get
01 -1

Left multiply both sides by

0 1 0O
1 -1 0 to get
0 0 1

Left multiply both sides by
1 0 0
0 0 1 to get
01 -2

o

o
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Left multiply both sides by

1 0 0 11\ ~1
0 -1 0| toget |O <C1>= 1
0 0 1 0 0 2 0

Left multiply both sides by

-1

[y

1
0
0

o O
o = O
N
9 0
~_
Il
O =

0
1 0 to get
0 1
So ¢ = —2 and ¢ = 1 is a solution.
So 2(1+x+x?)+(B+x?)=1-2x—x°
So 1—2x — x? € R-span{l + x + x?,3 + x2}.

So 1 —2x — x? is a linear combination of 1 + x + x2 and 3 + x2.

O
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Example V14. Let S be the subset of R? given by
S$=1{(1,1,1),(2,2,2),(3,3,3)}. Determine R-span(S).
In this case
R-span(S) ={a |1,1,1) + ©2,2,2) + ¢33,3,3) | c1, 2, c3 € R}
= {Cl |]., 1, 1> + 2¢ |]., 1, 1> + 3¢3 ‘1, 1, 1> ‘ C1,C,C3 € ]R}
= {(Cl + 20 + 3C3) [1,1,1) | c1, 0,3 € R}

={t]1,1,1) | t € R}
={|t,t,t) | t € R}.
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Example V15. Let S be the subset of R? given by
5: {‘17_1>7|274>} ShOW that Span(S) :R2_

Proof. By definition R-span(S) = {c1|1, —1) + 22,4) | c1, 2 € R}.
To show: (a) R-span(S) C R?

(b) R? C R-span(S).
(a) Since S C R? and R? is closed under addition and scalar
mutliplication then R-span(S) C R2.
(b) To show: R? C R-span(S).
To show: R-span{|1,0),]0,1)} C R-span(S).
Since R-span(S) is closed under addition and scalar multiplication, we
can show {|1,0),]0,1)} € R-span(S).
To show: There exist ¢, ¢, d1,d> € R such that

all,—1) + ¢|2,4) =|1,0) and di|1,—1) 4+ d»|2,4) = |0,1).
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To show: There exist ¢, ¢, di,d> € R such that

(L ED-673)

Since

ON=WIN

o= |
W=

N——
Il

&)

then
2|11,—1) + £|2,4) = [1,0), and

So |1,0) € R-span(S) and |0,1) € R-span(S).
So R-span{|1,0),]0,1)} C R-span(S).

So R? C R-span(S).

So R-span(S) = R2,
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Example V16. Let S be the subset of R? given by
S={1,2,0),]1,5,3),/0,1,1)}. Show that span(S) = R3.
Proof. By definition
R-span(S) = {a]1,2,0) + |1,5,3) + ¢3/|0,1,1) | c1, ¢, c3 € R}

To show: (a) R-span(S) C R3
(b) R® C R-span(S).

Since S C R3 and R3 is closed under addition and scalar
multiplication then R-span(S) C R3.

To show: R3 C span(S).

To show: R-span{|1,0,0),|0,1,0),]0,0,1)} C span(S).

Since R-span(S) is closed under addition and scalar multiplication,

To show: {|1,0,0),10,1,0),[0,0,1)} C R-span(S).
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To show: There exist ¢1, ¢, c3,d1, do, d3, 1, rp, r3 € R such that

al1,2,0) + «]1,5,3) + ¢3/0,1,1) = |1,0,0),
d1‘1,2,0> + d2|1,5,3> + d3‘0, 1,1> = |0,1,0>,
r|1,2,0) + r|1,5,3) + r3]0,1,1) = (0,0, 1),

To show: There exist ¢1, ¢, c3,d1, do, d3, 1, o, r3 € R such that

110 a
2 5 1 ()
0 31 C3

Multiply both sides by
1 00 11
—2 1 0] toget |0 3
0 01 0 3

d n
b n|=

1 00
010
d3 r3 0 01

[e)

a d n
o d n|=
a3 d3 3

[ -
O O =
O =
= O O

304



So span(S) # R2.

Multiply both sides by

1 0 0 1 10 C1 dl n 1 -2 0
0 1 0] toget |0 3 1 o d n|l=(0 1 0
0 -1 1 0 0O C3 d3 r3 0 -1 1

Since the bottom row on the left hand side is all 0 and the bottom
row on the right hand sides is not all 0 then there do not exist
c1,C,C3,d1,dr,d3, 11, 2, r3 € R such that

1 10 C1 dl n 1
2 51 (@) d2 @) = 0
0 3 1 0

SO {|1707 0>7 |07 170>7 |07 07 1>} g R—span(S).
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Example V17. Let S be the subset of R[x]<2 given by
S={1+x+x3x%} Show that span(S) = R[x]<2.
Proof. By definition
R-span(S) = {c1(1+ x + x?) + ©x? | c1, 2 € R}
To show: (a) span(S) C R[x]<2
(b) R[x]<2 € R-span(S).

Since S C R[x]<2 and R[x]<2 is closed under addition and scalar
multiplication then R-span(S) C R[x]<2.

To show: R[x]<2 € R-span(S).

To show: R-span{1, x, x?} C R-span(5).

Since R-span(S) is closed under addition and scalar multiplication,
To show: {1,x,x%} C R-span(S).
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To show: There exist c¢1, ¢, dq, do, 11, » € R such that
a(l4+x+x3)+ x> =1, di(l+x+x3)+dox® = x,

and
n(l+x+x%) + nx?=x%

To show: There exist ¢1, ¢, dq1, do, 11, r» € R such that

10 v 100
10 <C1 dl 1): 01 0
1 1) \@ @2 n 00 1
Multiply both sides by
110 00\ , 100
0 1 0] toget |1 0 (1d1 1>:010
0 0 1 1 1) \@ 2 " 00 1
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Since the top row on the left hand side is all 0 and the top row on
the right hand sides is not all 0 then there do not exist
c1,C,d1,dr, 1, € R such that

1o <C1 d1 r1>
10 d =
1 1) \@ @

So {1,x,x?} Z R-span(S).

So R-span{1, x, x?} Z R-span(S).

So R[x]<2 Z R-span(S).
So R-span(S) # R[x]<2. O

O O =
o = O
= O O
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Lecture 36: Review — Linear independence examples

Example V18a Let S be the subset of C3 given by
S ={]2i,-1,1),| —6,—3i,3i)}. Is S C-linearly independent?

To show: If ¢1, ¢ € C and ¢ |2/, —1,1) + ¢»|—6,—3/,3/) = |0,0,0)
then ¢ =0, o = 0.

Assume ¢1, ¢ € C and ¢ |2/, —1,1) + ¢|—6,—3/,3i) = |0,0,0).
Then

2[61 - 662 == 0, 2i —6 c 0
—c1 — 3ico =0,  or equivalently -1 =3i <c1> =10
a1+ 3icp =0, 1 3i 2 0

Skipping the row reduction steps (DON'T skip the row reduction steps
on an exam or an assignment!), this system has solutions

C1 . 0 —3i .
<C2>_<0>+t<1>’ with t € R.

So ¢ =0, ¢ = 0 is not the only solution.

So S is not linearly independent.
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Example V18b. Let B be the subset of R? given by
B ={2i,—1,1),]4,0,2)}. Is B linearly independent?

To show: If ¢1, ¢ € C and ¢ 2/, —1,1) + ¢»|4,0,2) = |0,0,0) then
= 0, C = 0.

Assume c1, ¢ € C and ¢ |2i,—1,1) + |4,0,2) = 0,0, 0)

Then

2ic; +4c =0, 2i 4 c 0
—c1 +0c =0, or equivalently -1 0 <c1> =10
a +2c =0, 1 2) \7? 0

Skipping the row reduction steps (DON'T skip the row reduction steps
on an exam or an assignment!), this system has only one solution
= 0, C = 0.

So S is linearly independent.
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Example V19. Let S be the subset of R? given by
5={(2,0,0),(6,1,7),(2,—1,2)}. Is S linearly independent?

To show:

If c1,¢c0,c3 € Rand ¢ |2,0,0) + 2/6,1,7) + c3/2,—1,2) = |0,0,0)
thenc; =0, & =0, i3 =0.

Assume ¢y, ¢, c3 € R and

c12,0,0) + ¢106,1,7) + c3]2,—1,2) =10,0,0).

Then
2c1 + 62 + 23 =0, 2 6 2 c1 0
¢ —c3 =0, orequivalently |0 1 -1 aol=10
7co 4+ 2c3 =0, 07 2 c3 0

Skipping the row reduction steps (DON'T skip the row reduction steps
on an exam or an assignment!), this system has only one solution:
C1:0, C2:0, C3:0.

So S is linearly independent.
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Example V20&26. Let S be the subset of R[x]<> given by
S={1+2x+5x>,1+x+x%1+2x+3x?}. Is S a basis of R[x]<2?

To show: If ¢1,,c3 € R and

caa(l+2x+5x%) + (1 + x + x2) + c3(1 +2x +3x%) = 0
then ¢ =0, =0, c3 =0.

Assume ¢y, ¢, c3 € R and

c1(1 4 2x +5x%) + ca(1 + x + x2) + c3(1 + 2x + 3x%) = 0.
Then

ca+o+ca=0, 1 11 5] 0
2c1 + ¢ +2c3 =0, or, equivalently, |2 1 2 ol=10
5¢ + o+ 30 =0, 5 1 3 C3 0

Skipping the row reduction steps (DON'T skip the row reduction steps
on an exam or an assignment!), this system has only one solution:
C1:0, C2:0, C3:0.

So S is linearly independent.

Since dim(R[x]<2) = 3 and S contains 3 linearly independent elements
then B is a basis for R[x]<2.
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Example V21. Let S be the subset of M,(R) given by

13 -2 1 1 10
_ . . .
S {(1 1> ’ < 1 _1> ) <4 5 > } . Is S linearly independent?

To show: If ¢, ¢, c3 € R and

13 2 1 1 10 0 0
q@ J+Q<1 4>+QQ.2>_Q 0

thenc; =0, =0, i3 =0.
Assume ¢y, ¢, c3 € R and

13), (-2 1), (1 10)_(00
Al 1)72(1 —1)7%\s 2) 7 \o o)

Then
c—2c0 4+ c3=0, 1 -2 1 c 0
3a+ e +10c =0, or, equivalentl 3 110 (:1 =10
c+otde=0 °% Y11 1 4 ; o
c1—o+2c =0, 1 -1 2 3
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Skipping the row reduction steps (DON'T skip the row reduction steps
on an exam or an assignment!), this system has solutions

C1 0 -3
ol=(0]+t| 1], with t € R.
C3 0 -1

Soc; =0, g =0, c3 =0 is not the only solution.
So S is not linearly independent.

Here is a check that ¢; = —3, ¢o =1, ¢c3 = —1 is a solution:
_313+—21_110__313+—3—9
11 1 -1 4 2 ) 11 -3 -3
(0 0
~\0 0/°
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Lecture 37: Review — Basis examples

Example V23. Is S = {(1,—1),(2,4)} a basis of R??
Let

as(L 3 e i)
OGO e (@0

So S is linearly independent.
If |a, b) € R? then |a, b) = 1|1, —1) + 2|2, 4), where

2 _1
a)_ (5 —3\(e\_ (52— zb
()= 9)6)-E8)
So R2 C R-span(S). Since S C R? and R? is closed under addition and

scalar multiplication then R-span(S) C R2. So R-span(S) =
So S is a basis of R2.

o=
[N
SN—

W]
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1 0 01 00 .
Example V24. IsS—{<O _1>,<0 O>’(1 0>}abaS|sof

{A e My(R) | Tr(A) =0}7

If ¢1,c,c3 € R and

1 0, (0 1), (00)_(00
“lo -1 210 0) "%\ 1 0/ " \o o0

=
(? _Ci > = <8 g) and o =0,
3 ! c3 = 0.

So S is linearly independent.

then
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Then
{Ae My(R) | Tr(A) =0}

ail  an
= | a11, @12, a21,a2 € R,a11 +ax» =0
a1 axp

a ¢
<C; _il> | C1,0,3 € R}
1 0 01 00
a (O _1> + o <O 0> + c3 (1 0> ‘ c1,C,C3 € R}

So S is a basis of {A € Mp(R) | Tr(A) = 0}.
Example V25. Is

{6 EYCO) e

Since Eq1, E12, Ez1, Exp is a basis of Ma(R) then dim(M,(R)) = 4.
Since S contains only 3 elements then S is not a basis of My(RR).
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